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Abstract—A new probabilistic framework for beat tracking of
musical audio is presented. The method estimates the time be-
tween consecutive beat events and exploits both beat and non-beat
information by explicitly modeling non-beat states. In addition
to the beat times, a measure of the expected accuracy of the
estimated beats is provided. The quality of the observations used
for beat tracking is measured and the reliability of the beats is au-
tomatically calculated. A k-nearest neighbor regression algorithm
is proposed to predict the accuracy of the beat estimates. The
performance of the beat tracking system is statistically evaluated
using a database of 222 musical signals of various genres. We show
that modeling non-beat states leads to a significant increase in
performance. In addition, a large experiment where the parame-
ters of the model are automatically learned has been completed.
Results show that simple approximations for the parameters of the
model can be used. Furthermore, the performance of the system
is compared with existing algorithms. Finally, a new perspective
for beat tracking evaluation is presented. We show how reliability
information can be successfully used to increase the mean perfor-
mance of the proposed algorithm and discuss how far automatic
beat tracking is from human tapping.

Index Terms—Beat-tracking, beat quality, beat-tracking re-
liability, k-nearest neighbor (k-NN) regression, music signal
processing.

1. INTRODUCTION

HE task of beat tracking consists in automatically de-
T tecting the moments of musical emphasis in an audio
signal. This task is the equivalent to the human act of tapping
music with a foot so it is not surprising that the beat rate is
often described as the foot-tapping rate. In the following, we
use the term beat to describe the individual temporal events that
define this metrical level and beat period to denote the regular
time between events. As in [1], the term beat phase is used to
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indicate the location of a beat with respect to the previous beat.
The beat is the most salient of the underlying periodicities of
a musical signal. It is the basic time unit of music and it deter-
mines the temporal structure of an audio signal, making beat
tracking a very important task in music information retrieval
(MIR) research [2]. Thus, beat estimation enables the beat
synchronous analysis of musical audio [3] and it is of interest
in multiple applications including, structural segmentation of
audio [4], interactive musical accompaniment [5], cover-song
detection [6], music similarity [7], chord estimation [8], and
music transcription [9].

The automatic extraction of beats from musical signals is a
challenging process due to both musical and physical reasons.
Musical properties such as the rhythmic complexity of a per-
formance have a large impact on beat tracking accuracy as dis-
cussed in [10]. In [11], critical passages that are prone to beat
tracking errors are identified and the erroneous beats are clas-
sified. Thus, beats that do not correspond to any note event,
boundary beats, ornamental beats, weak bass beats or constant
harmony beats make beat tracking difficult. In addition, there
are physical properties that impact beat tracking accuracy such
as the poor condition of a recording or the presence of high re-
verberation. To face the difficulties of estimating beat times in
audio signals multiple strategies have been proposed.

A. Related Work

A brief description of some of the existing approaches to beat
tracking is presented in this section. For more details, good re-
views of tempo induction and beat tracking algorithms can be
found in [1] and [12].

A multi-agent approach has been proposed by Dixon in [13].
This approach extracts a sequence of onset events and derives
a number of beat period candidates from an analysis of the
inter-onset-interval distribution of the sequence of onsets. As in
Goto et al. [14], anumber of competing agents evaluate multiple
beat hypotheses to determine the best sequence of beat times.
Laroche [15] uses a least-square estimation of the local tempo
followed by a dynamic programming stage used to obtain the
beat locations. Similarly, Ellis [16] first identifies the beat pe-
riod and then finds the beat phases by using a dynamic program-
ming algorithm, and Stark et al. [3] implement a real-time beat
tracking based on this approach.

Other approaches formulate the beat tracking problem using
a probabilistic framework. Based on the symbolic data model
of Cemgil et al. [17], Hainsworth [18] explores the use of par-
ticle filtering where the beat locations are modeled as a peri-
odic sequence driven by a time-varying tempo process. Davies
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et al. [19] propose a two-state model for beat tracking. A gen-
eral state tracks the beat period and a context-dependent state is
used to enforce continuity within a tempo hypothesis. A hidden
Markov model (HMM) is proposed by Klapuri et al. [20] to si-
multaneously estimate the tatum, tactus, and measure metrical
levels. Beat phases are independently estimated using an addi-
tional HMM whose hidden state models beat time instants.

More recently, Peeters [21] introduced a probabilistic frame-
work formulated as an inverse Viterbi problem. Instead of de-
coding the sequence of beats along time, the system proposed
by Peeters decodes beat times over beat-numbers. Following the
idea of Laroche [15], a beat template is used to model tempo-
related expectations on an onset signal. Thus, instead of es-
timating the beat observation likelihood using a single onset
observation, the system calculates the observation likelihood
through a cross-correlation of the onset signal and the estimated
beat template. This template needs to be learned from a dataset
and results depend on the musical genre.

B. Motivation

Despite the number of beat tracking strategies, there are still
some issues that need to be addressed. Previous probabilistic
approaches model the likelihood of a beat at a particular time
either using a single observation, as for example in [20] and [16],
or using a correlation template, as in [15] and [21]. However, the
observations at non-beat time instants provide extra information
that can potentially be exploited for beat tracking.

In addition, earlier work has concentrated on comparing the
mean performance of different beat tracking methods such as in
[1], [20] and [19]. The risk of focusing the analysis of the per-
formance on average values overlooks the reasons beat trackers
fail to correctly estimate beats. As discussed by Grosche et al.
[11], beat tracking accuracy is determined by the musical and
physical properties of a performance. However, the specific lim-
itations of a particular beat tracking algorithm also have to be
taken into account. Understanding these limitations is essential
to improving the performance of beat tracking methods. Doing
so could lead to the eventual automatic prediction of the be-
havior of beat tracking algorithms and the ability to combine
them according to their expected performance.

C. Proposed Model

The aim of this paper is to present a reliability-informed
beat tracking method for musical signals. To integrate mu-
sical-knowledge and signal observations, a probabilistic
framework that models the time between consecutive beat
events and exploits both beat and non-beat signal observations
is proposed. This differs from [20] that models beat time in-
stants and only uses beat information. Simple approximations
for the parameters of this probabilistic model are also provided
using musical knowledge. Contrary to the current trend in beat
tracking which exclusively estimate beat locations, the specific
limitations of the proposed probabilistic model are identified
and a measure of the expected accuracy of the estimated beats
is also provided. The idea of automatically measuring the ex-
pected performance of a beat tracking algorithm is general and
can potentially be extended to any other system by identifying
its own limitations.
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Fig. 1. Block diagram of the reliability-informed beat tracking system. It re-
turns the set of estimated beat times * and a measure of the reliability of the
estimates 7.

The system analyzes the input musical signal and extracts a
beat phase and a beat period salience observation signal from
which the beat period is calculated. Then, the beat tracking prob-
abilistic model takes as input parameters the phase observation
signal and the beat period estimation, returning the set of beat
time estimates. Finally, the quality of the beat period salience
observation signal is assessed and a k-nearest neighbor algo-
rithm is used to measure the reliability of the beat estimates.
Fig. 1 shows an overview of the proposed beat tracking system.

The remainder of this paper is structured as follows. Section II
describes the different elements of the reliability-informed beat
tracking system shown in Fig. 1. Then, Section III describes
the database and the evaluation measures used to compare the
proposed algorithm with state-of-the-art beat tracking methods.
Section IV presents the experimental results where we evaluate
the importance of the different elements of the beat tracking
model, discuss the use of a learning algorithm for the automatic
estimation of the parameters of the model, compare the pro-
posed method with existing systems and discuss the benefits of
using reliability information. Finally, the main conclusions and
future work are summarized in Section V.

II. BEAT TRACKING SYSTEM

This section describes the different elements of the reliability-
informed beat tracking method illustrated in Fig. 1. The pro-
posed beat tracker is publicly available under the GNU Public
License.! Section II-A presents the feature extraction process.
Then, Section II-B introduces the method used for beat period
estimation. The proposed probabilistic beat tracking model is
described in Section II-C. Finally, the quality analysis is pre-
sented in Section II-D and the calculation of the reliability mea-
sure in Section II-E.

Thttp://www.gts.uvigo.es/~ndegara/Publications.html
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A. Feature Extraction

In beat tracking, an onset detection function is commonly
used as a midlevel representation that reveals the location of
transients in the original audio signal. This detection function
is designed to show local maxima at likely event locations [22].
Many methods exist to emphasize musical events and perfor-
mance often depends on the features used for beat tracking [23].
The complex spectral difference method [24] shows good be-
havior for a wide range of audio signals and has been success-
fully used in other beat tracking systems [19]. It works in the
complex domain, emphasizing onsets due to a change in the
spectral energy and/or a deviation in the expected phase. Al-
though the proposed probabilistic framework can accept any
onset signal, the complex spectral difference has been selected
as the reference method used to discuss results.

In the following, the complex domain onset signal at time £ is
denoted as o(t). As in [19], the time-resolution for o(t) is 11.6
ms. As shown in the block diagram of Fig. 1, the onset signal
o(t) constitutes the phase observation used to determine the beat
locations B* and extract the beat period salience signal s(¢, 7).

The periodicity of the phase observation signal o(¢) is ana-
lyzed to determine the beat period salience of the musical signal.
For that, the shift-invariant comb filterbank approach described
in [19] is adopted. The method can be summarized as follows.
First, the signal o(t) is segmented into frames of 6 s in length
and an overlap of 75%, equivalent to a resolution of 1.5 s. The
length of the analysis window is long enough to correctly es-
timate the beat period and the resolution short enough to track
changes. Then, the signal is normalized using an adaptive mean
threshold and half-wave rectified. The autocorrelation of the re-
sulting signal is calculated to discard phase-related information
and emphasize potential periodicities. Finally, the autocorrela-
tion is processed by a shift-invariant comb filterbank weighted
by a beat period preference curve. The beat period salience in-
formation is assumed to stay constant for the 1.5 s that define its
original time resolution, then the same time index ¢ can be effec-
tively used for o(t) and s(¢, 7). For a more detailed description
of s(t, 7) see the derivation of the beat period salience signal in
[19].

Fig. 2 presents examples of the observation signals o(¢) and
s(t, 7). Fig. 2(a) shows the phase observation signal (i.e., the
onset detection function) o(¢) and the annotated beat time in-
stants. In general, the phase observation signal o(¢) will present
large values at beat locations and small values at non-beat time
instants. Fig. 2(b) shows the beat period salience signal s(¢, 7)
for ¢t = 0 and the annotated beat period of the input music signal.
The signal s(¢, ) is a measure of the salience of each beat pe-
riod candidate 7 at time ¢. The beat period 7 can take any value
in {1,...,128}, in time frame units. Thus, the maximum beat
period allowed is 1.5 s given the fixed time-resolution of 11.6
ms. This feature is used to track the tempo and to assess the
quality of the beat period estimate as shown in Fig. 1.

B. Beat Period Tracking

The proposed beat tracking system estimates the beat period
and phases independently. Like the beat phase observation o(¢),
the beat period estimate 7(¢) is an additional parameter to the
beat tracking model shown in Fig. 1. To extract the sequence
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Fig. 2. Example of the extracted observation signals. (a) Phase observation
signal o(t) (continuous line) and beat annotations (dotted line). (b) Beat period
salience signal s(t, 7) for t = 0 (continuous line) and annotated beat period
(dotted line).

of periods 7(¢) from the beat period salience observation signal
s(t, ), an offline version of the hidden Markov model method
presented in [3] is used. The system assumes the beat period
to be a slowly varying process and the transition probabilities
are modeled using a Gaussian distribution of fixed standard de-
viation. For a complete description of the beat period tracking
method see [3].

C. Probabilistic Model for Beat Tracking

Music is highly structured in terms of the temporal ordering
of musical events defining a context that can be used to deter-
mine beat events. In particular, beats are regularly spaced in time
with small deviations from the beat period. To integrate this
contextual knowledge with signal observations and then esti-
mate beat phases, a hidden Markov model (HMM) is used [25].
This probabilistic framework has been shown to be useful for
modeling temporal dependencies. Examples of using a HMM to
model the temporal nature of music can be found in [20], [26]
and [21].

The proposed beat tracking system defines a first-order HMM
where a hidden variable ¢ represents the phase state and mea-
sures the elapsed time, in frames, since the last beat event. The
total number of states NV, is determined by the estimated beat
period 7(t), denoted in the following as 7;. The possible states
for ¢ are {0,1,...,N,, — 1} (see Section II-C3 for details).
Thus, state ¢ = n indicates that there have been n frames since
the last beat event and state ¢ = 0 denotes the beat state. A state
at time frame ¢ is denoted as ¢, and a particular state sequence
(¢1,¢2,-..,67) as ¢r.7.

The temporal structure of the beat sequence is encoded in
the state transition probabilities a;; = P(¢s = j |1 = 1).
Then, as the phase state variable ¢;_; measures the elapsed time
since the last visit to the beat state O at time £ — 1, the allowed
transitions are from ¢;_; = m to ¢; = n + 1 or to the beat state
¢+ = 0. The observable variable for the phase states, o, is the
phase observation signal o(¢) and 0o; = o(t) in the following.
The phase observation o, is assumed to be independent of any
other state given the current state, and then the state-conditional
observation probability is P(o; | ¢¢).

The first-order HMM model introduced above is summarized
in Fig. 3(a). The hidden variable ¢; is shown with circles and
the observation o; variable with boxes. Links represent the con-
ditional dependencies between the state and observation vari-
ables. Additionally, transitions between hidden states are shown
in Fig. 3(b) where the states are represented by circles and tran-
sitions by links. There are only two possible transitions from



DEGARA et al.: RELIABILITY-INFORMED BEAT TRACKING OF MUSICAL SIGNALS

011 0y

Or+1

(b)

Fig. 3. Hidden Markov model for beat tracking. (a) Hidden state and obser-
vation variables conditional dependencie. (b) State transition diagram for the
hidden state ¢,.

a particular state which considerably reduces the search space.
Unlike other works where only the beat “strength” is consid-
ered [20], [16], [21], we specifically model non-beat states and
account for non-beat observations.

1) Estimation Goal: The goal of the proposed probabilistic
model is to estimate the sequence of beats which best explains
the phase observations, o;. To do so, the most likely sequence
of hidden states ¢7., that led to the set of observations o;.7 is
estimated as

¢1.p = argmax P(¢r.7 | o1.7) (1

d1:T

where 7" denotes the number of frames of the input audio signal.
This optimization problem can be easily solved using the well-
known Viterbi algorithm [27]. Once the optimal sequence of
hidden states ¢7., has been decoded, we are ready to obtain the
set of beat times B*. We do this by selecting the time instants
where the sequence ¢, visited the beat state. Thus,

B* ={t: ¢} =0}. @)

Considering the model assumptions presented in Fig. 3(a), the
posterior probability of (1) can be written as

T

P(¢pr.r|o1r) o P(y) [[ Plor| ) P(dele1) (3

t=2

where P(¢) is the initial state distribution, P(¢|¢i—1) the
transition probabilities and P(o; | ¢;) the observation likeli-
hoods. These probabilities constitute the parameters of the
proposed beat tracking model and reasonable estimates are
provided below.

2) Estimation of the Observation Likelihoods: The obser-
vation likelihoods P(o; | ¢+) need to be estimated for the N,
states of the model. A common approach to determine the pa-
rameters of the HMM is to model the observation distributions
with a Gaussian mixture model (GMM) and automatically learn
these distributions using a Baum—Welch algorithm [25]. How-
ever, this approach is computationally very demanding and it
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requires a large number of training samples. To avoid this situa-
tion, reasonable estimates for the state-conditional distributions
can be obtained.

Recall that the phase observation signal o, is designed to show
large values at event locations. As aresult, it is reasonable for the
beat state observation likelihood P(o; | ¢ = 0) to be assumed
proportional to the observation

P(o¢| ¢t = 0) x oy. 4

Similarly, reasonable estimates for the non-beat state obser-
vation likelihoods {P(o; | #: = n) : n # 0} can be obtained.
Although the observation likelihoods of states submultiples of
the beat period will probably show a different distribution, the
observation model is simplified by assuming that all non-beat
states {¢; : ¢ # 0} are identically distributed. This state-tying
approach is equivalent to the data model simplification intro-
duced in [28]. We could try to find a suitable distribution for
each of the non-beat states; however, state-conditional distri-
butions show significant variability from genre to genre as dis-
cussed in [15]. Again, it is acceptable to assume that the phase
observation signal o; will show small values at non-beat loca-
tions. Then, a reasonable estimate for the non-beat state obser-
vation likelihood functions {P(o¢|¢: = n) : n # 0} is

P(ot| e =m) x 1 — o. 3)

These estimates are equivalent to using a first-order polynomial
to model the state-conditional distributions.

Section IV-B discusses the goodness of these observation
likelihood estimates, comparing this simple model with a
trained approach where the model parameters are automatically
learned.

3) Estimation of the Initial and Transition Probabilities: The
initial probability P(¢;) models the time instant when the first
beat is expected to be. We do not make any assumption over the
location of the first beat, therefore a discrete uniform distribu-
tion for P(¢1) is chosen.

The transition probabilities P(¢; | ¢:—1) encode the temporal
structure of the sequence of beats. Specifically, beats are ex-
pected to be regularly spaced in time with small deviations from
the beat period 7;. The probability density function of the time
between consecutive beats at any time instant, A, is modeled to
be proportional to a Gaussian distribution centered at the beat

period 7
1 n—1)2
V2ro? xp <_( 20;) ) ©

where the standard deviation o models the tolerance to tempo
deviations that occur in musical performances [12] and timing
deviations caused by the temporal resolution of the onset signal
[29]. The Gaussian distribution is normalized to sum to unity in
order to be a valid probability distribution. As in [21], a value
of 0.02 s is chosen for the standard deviation and then o = 1.72
frames.2

The number of states of the HMM will be determined by the
largest time between beats allowed. Assuming a maximum time

P(A=n)x

2Recall that the time-resolution is 11.6 ms, Section II-A.
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Fig. 4. Relation between state transition probabilities a;; and the distribution
of the time between beats P(A ). States are represented by circles and transitions
by links.

between beats of 7, + 30, we account for 99% of the support
of the Gaussian distribution in (6). This value must agree with
the maximum time between beats measured by the hidden state
variable ¢, which is N, — 1. Therefore, the total number of
states of the proposed beat tracking model is given by

N, =7+ 30+ 1. 7

As shown in Fig. 4, if there are A = n frames between
two consecutive beats, the state transition probabilities a;; =
P(¢: = jl¢t—1 = i) and the distribution of the time between
beats P(A) in (6) can be related as

P(A=n

Un—1,0 = # ®)
k=0 Pk,k+1

Up—1,n = 1- an—1,0 &)

withn € {1,..., N, }. Note that (9) reflects that the only pos-
sible transitions allowed by our model are the transitions from
state ¢, 1 = n to the following non-beat state ¢; = n + 1 or to
the beat state ¢, = 0.

In summary, the estimates of the observation likelihoods
P(o4 | ¢¢), the initial probabilities P(¢1) and the transition
probabilities P(¢; | ¢+ 1) define the proposed beat tracking
model and the sequence of beats, B*, can be obtained using a
Viterbi algorithm as described in Section II-C1.

D. Beat Tracking Quality Assessment

Beat tracking accuracy is determined by the musical and
physical properties of a performance [10], [11] but also by the
specific limitations of the beat tracking algorithm. In particular,
the behavior of the probabilistic framework proposed here
relies on the correctness of the beat period estimation. In some
cases, the quality of the beat period salience observations used
for period estimation can be poor. For example, the time—fre-
quency analysis may not be appropriate to the characteristics
of the musical signal or the signal does not show any clear
periodicity.

In order to characterize the quality of the feature signals used
for beat period estimation, three measures are calculated. First, a
peak-to-average ratio, gpar, that relates the maximum amplitude
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Fig. 5. Time average of the beat period salience observation s(t, 7) showing
(a) a clear rhythmic structure and (b) noisy beat period salience observation.

of the beat period salience observation signal with its root-mean-
square value is computed as

max, |5(7)|

Jpar = (10)
Ly s(r)?

Tmax

where T,,,x 1 the maximum beat period (in time frames). The
signal 5(7) denotes the time average of the beat period salience
observation s(¢, 7) used for tempo estimation

s(r) = %Zs(tﬂ').

t=1

(11)

The second quality value ¢,.x measures the maximum of the
beat period salience observation time average and it is simply
calculated as

Gmax = max |3(7)]- (12)
Finally, the third quality measure gy, calculates the minimum
value of kurtosis of s(¢,7) along time as

Qkur = HltiIl ks(t,r) (13)
where k,(; - is the sample kurtosis of s(¢,7) in the variable 7.
This quality measure gy, measures how outlier-prone the beat
period salience observation sample distribution is.

The vector of quality measures is defined as q =
[dpar Qmax Qkur)- Large values of these quality measures
are expected for beat period salience observations s(¢,7) that
reflect a clear periodic structure. As an example, Fig. 5 shows
the time average of the beat period salience observation signal
s(t, ) used for tempo estimation in two audio excerpts of the
database described in Section III-A. While a clear periodic
structure can be seen in Fig. 5(a), the beat period salience
observation shown in Fig. 5(b) is noisy and therefore we do not
expect to obtain a good beat period estimate.

E. Reliability Estimation

Based on the quality measure vector q, a quantity that reflects
the reliability of the set of beat estimates 3* obtained by the
beat tracking algorithm is calculated. This reliability measure,
denoted as 7y, is determined by using a k-Nearest Neighbor
(k-NN) regression algorithm [30]. The reliability value of the
tracking algorithm for a given musical signal is assigned to be
the average of the values of its k nearest neighbors which are
calculated using the Euclidean distance. Informal tests show that
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the Euclidean distance provides slightly better accuracy results
than other metric spaces, including Mahalanobis and standard-
ized Euclidean distances.

Let p represent a measure of performance of the beat esti-
mates. The performance measure p can be any of the evaluation
criteria discussed in [31] and introduced in Section III-A, e.g.,
the AMLc criterion. Let Z = {1,...,1} be a set of training
audio signals, {q’ : i € Z} the set of quality vectors and
{p’ : i € I} the set of performance measures for each of the
training samples. Given a new audio signal with quality q, the
distance to the quality measures of the training set is calculated
as

d'=llq—q'll2 (14)
where || -||2 denotes the euclidean norm. Then, the set of indexes
of the k nearest neighbors can be easily calculated by sorting the
set of distances {d’ : i € 7} and it is denoted as K. Finally, the
reliability under the performance criteria p of its beat estimates
B* is calculated as the mean performance of its k nearest neigh-
bors as

15)

=30

JjEK

In summary, the system learns the relationship between the
quality measures {q’ : i € Z} and the beat tracking perfor-
mance {p’ : i € Z} and predicts the performance of a new
audio signal r, based on the measured quality q using a k-NN.
Therefore, the beat tracking reliability measure 7, can be
interpreted as the expected performance accuracy in terms of
the evaluation criteria p. Although these quality measures are
specifically designed to address the limitations of the proposed
beat tracking algorithm, the reliability analysis presented here
defines a general framework that can be potentially applied
to any beat tracking method. First the limitations of the new
beat tracker have to be identified, then a suitable set of quality
measures should be defined and finally a regression method
like the one presented here can be used to predict the accuracy
of the new beat estimates.

The proposed reliability-informed beat tracking algorithm in-
cludes both a set of beat estimates 3* and a measure of the re-
liability of those beat estimates 7,. Thus, the user of the beat
tracker is additionally informed with the reliability of the beat
estimates provided by the automatic beat tracking algorithm. As
shown in Section IV-D, we will be able to successfully predict
the performance of the beat tracking algorithm and, introducing
an innovative evaluation framework, show how the performance
of the proposed beat tracker can be increased by identifying and
removing musical excerpts where the beat tracker has very low
confidence.

III. EXPERIMENTAL SETUP

This section describes the database and the performance mea-
sures used to evaluate the proposed beat tracking system. In ad-
dition, we detail the systems used for comparison and describe
how the methods are compared.

295

A. Database and Evaluation

For the evaluation of the proposed beat tracking method, the
database described in [18] and studied in [32], [19], and [3] is
used. The database has been designed for beat tracking evalu-
ation and consists of 222 musical audio files, divided into six
categories: Dance (40), Rock/Pop (68), Jazz (40), Folk (22),
Classical (30), and Choral (22). The database includes a reason-
able number of styles, tempos and time signatures. Audio files
are around 60 seconds in length with time-variable tempo. The
files were annotated by a trained musician, recording a human
clapping signal and using the claps as beat locations. Difficult
examples were manually corrected by moving beat locations
interactively.

Evaluating a beat tracking system is not trivial. A manually
annotated beat is an estimate of the actual beat location and
an exact match between the estimated beat position given by
an algorithm and the annotated beat is unlikely. In addition,
there is an ambiguity associated to the metrical level annota-
tion since human tapping responses to the same musical excerpt
can be very different [33]. The most common situations are the
anti-phase tapping (a set of annotations on the on-beat and the
other set on the off-beat) and the half and double tapping rate
(the rate of an annotation set is half or twice the other set).
Therefore, many methods have been proposed to evaluate the
performance of beat trackers: the well-known F-measure [24],
the mean Gaussian error accuracy presented by Cemgil et al.
[34], the cross-correlation based P-score [1], the binary accu-
racy measure of Goto et al. [35], the information gain measure
presented in [36] and the continuity-based evaluation methods
[18], [20]. A detailed description and comparison of the dif-
ferent evaluation methods can be found in [31].

To evaluate the performance of the proposed beat tracking al-
gorithm, the continuity-based measures have been chosen. This
allows us to analyze both the ambiguity associated to the anno-
tated metrical level and continuity in the beat estimates. These
accuracy measures consider regions of continuously correct beat
estimates relative to the length of the audio signal analyzed.
Continuity is enforced by defining a tolerance window of 17.5%
relative to the current inter-annotation-interval [31]. Also, to
allow initializations, events within the first five seconds of the
input audio signal are discarded. The continuity-based criteria
used for performance evaluation are the following:

* CMLc (Correct Metrical Level with continuity required)
which gives information about the longest segment of con-
tinuously correct beat tracking;

* CMLt (Correct Metrical Level with no continuity required)
which accounts for the total number of correct beats at the
correct metrical level;

* AMLc (Allowed Metrical Level with continuity required)
the same as CMLc but it accounts for ambiguity in the
metrical level,

* AMLt (Allowed Metrical Level with no continuity re-
quired) the same as CMLt but it accounts for ambiguity in
the metrical level.

For the AML measures, the annotations are resampled to allow
tapping at half and double the correct metrical level and tapping
at the off-beat. As in the MIREX beat tracking evaluation task
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[2], we use the beat tracking evaluation toolbox3 presented in
[31].

In [20], the impact of beat estimation errors is analyzed from
a human perspective. It was found that continuity is very impor-
tant and that metrical ambiguity is not very disturbing. There-
fore, it seems that a relevant evaluation criterion is the AMLc
measure. In our discussion, we will pay special attention to this
performance criterion.

B. Reference Systems

The performance of the proposed model is compared with
four beat tracking algorithms: the publicly available beat
tracking algorithms of Dixon [13] and Ellis [16], the con-
text-dependent beat tracker of Davies et al. [19] and the
probabilistic beat tracker of Klapuri et al. [20]. To informally
analyze the behavior of our automatic system with respect to a
human tapper, the human tap times from [19] are also included.
These taps were recorded by a human tapper with some musical
experience using a computer keyboard but, contrary to the
ground truth annotations, no manual correction was applied.

To compare the different systems, the mean values of the
performance measures across all the audio files of the test
database are presented. For a more detailed analysis, box
plots showing the median and 25th and 75th percentiles are
also presented. Following [37], statistical significant differ-
ence on the mean values is also checked. We use an analysis
of variance test (ANOVA) [38] and a multiple comparison
procedure [39] when comparing with the reference systems.
A multiple comparison procedure is useful to compare the
mean of several groups and determine which pairs of means
are significantly different. A pairwise comparison could lead
to spurious statistical difference appearances due to the large
number of pairs to be compared. To overcome this situation,
multiple comparison methods provide an upper bound on the
probability that any comparison will be incorrectly declared
significant. A significance level of 5% is chosen to declare the
difference statistically meaningful. This value is commonly
used in hypothesis testing.

IV. RESULTS

In this section, the performance of the proposed and publicly
available# beat tracking system is analyzed. We evaluate the rel-
evance of the different elements of the phase observation model
and analyze the convenience of using a Baum—Welch algorithm
[25] to automatically determine the parameters of the HMM
model. Also, the performance of the proposed beat tracker is
compared with state-of-the-art systems. Finally, a new perspec-
tive on beat tracking evaluation is presented. The beat reliability
measure is used to discuss how to improve the performance of
the algorithm and how far automatic beat tracking is from a
human performance example.

A. Phase Observation Model Relevance

Table I shows the results of the proposed probabilistic system
under different model assumptions. The proposed model is the

3http://www.elec.qmul.ac.uk/digitalmusic/downloads/beateval/

4http://www.gts.uvigo.es/~ndegara/Publications.html

TABLE I
BEAT TRACKING PERFORMANCE ANALYSIS (%) FOR DIFFERENT
MODEL SIMPLIFICATIONS

Evaluation measure

Model assumptions CMLc CMLt AMLc AMLt
1. Non-beat states disabled 56.5 62.9 71.5 80.6
2. Beat state disabled 55.0 60.8 70.3 79.5
Proposed model 56.1 62.9 71.9 81.5

one described in Section II-C, which exploits both the beat and
the non-beat state information. The relevance of the different
elements of the model is evaluated by selecting the informa-
tion the model uses. The first model assumption disables the
non-beat state information by setting the phase observation like-
lihood for the non-beat states to a non-informative uniform dis-
tribution, P(o; |7 = n) = 1 for n # 0. Thus, this model
looks for the sequence of time instants where the phase obser-
vation likelihood P(o; |7 = 0) in (4) is large. This assump-
tion slightly degrades the performance of the proposed model
in AML. The assumption used in this experiment is then analo-
gous to the probabilistic beat tracking approach of Klapuri et al.
[20] and Peeters [21]. These methods decode, respectively, the
time instants where a beat occurs looking at the beat “strength”
at that time instant. The second assumption, instead disables the
beat information state by setting the phase observation likeli-
hood for the beat state to a flat distribution, P(o; | 7+ = 0) = 1.
In this case, the model looks for a sequence of time instants
where the phase observation between beats is low as given in
(5). The system is still competitive. This is interesting consid-
ering that the approach does not use the observations at beat
time instants and only accounts for the observations between
beat times to be low. Although we only find statistically signifi-
cant differences in AMLt when comparing the proposed model
with the first model assumption, these experiments suggest that
both the beat and non-beat state observations can be exploited
for beat tracking.

The model proposed in this paper is somewhat related to the
beat tracking algorithms presented by Peeters [21] and Laroche
[15]. In these works, only the beat information is considered
and a beat-template is used to estimate the beat likelihood from
the observations. In short, this beat template reflects that large
observation values are expected at multiples of the beat period.
However, our system also exploits non-beat information by ex-
plicitly modeling non-beat states.

B. Training the Beat Model

An alternative to determining the parameters of the beat
tracking model is to automatically learn the transition probabil-
ities and observation likelihoods from a set of training samples.
In order to evaluate the convenience of the simplifications
introduced in Section II-C2, a learning experiment has been
conducted. For each audio file, the parameters of the HMM
are determined using the Baum—Welch algorithm [25] where
the phase observations constitute the training samples. The
observation-likelihood distributions are modeled with a GMM.

Table II shows the performance of the beat tracking algorithm
for a different number of mixtures in the GMM and the pro-
posed model in the last row. The performance increases with
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TABLE II
BEAT TRACKING MEAN PERFORMANCE ANALYSIS (%) FOR DIFFERENT
NUMBER OF MIXTURES IN THE GMM

Evaluation measure

Mixtures CMLc CMLt AMLc AMLt
1 532 61.3 67.0 78.0
2 54.1 61.6 69.0 79.0
4 54.6 62.2 70.0 80.4
8 55.5 62.0 712 80.7
16 452 57.7 59.9 76.0
Proposed model 56.1 62.9 71.9 81.5
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Fig. 6. Observation likelihood P(o, | ¢;) estimates using a GMM with four
mixtures for (a) the beat state 0, (b) half the beat period, 26 samples, and (c) a
state not related with the beat period, in this example 33. The audio excerpt is
the first file of the database and the annotated beat period is 52 samples.

the number of mixtures and for 16 mixtures performance de-
creases, likely due to overfitting problems. The best AMLc and
AMLt mean performance values are obtained with a GMM with
eight mixtures but these values are still smaller than the corre-
sponding performance values of the proposed model. This result
supports the validity of the observation likelihood simplification
introduced in Section II-C2. Although it is found that the mean
accuracies are not significantly different, it seems reasonable to
choose this simplification because it is much less demanding
in computational terms and its generalization ability is demon-
strated in terms of performance.

To analyze the learned observation likelihood distributions,
Fig. 6 shows estimates of the observation likelihood P(o; | 7+)
using a GMM with four mixtures for: 1) the beat state, 2) half
the beat period, and 3) a state not related with the beat period.
The annotated beat period of the audio example is 52 samples.
As shown by the distribution of the beat state and half the beat
period state, large observations are more likely for beat period
related states. On the contrary, smaller observation values are
obtained for states that are not related with the beat period. This
agrees with the rhythmic nature of music since events are more
likely to happen at beat-period related instants.

As shown in Table II, modeling each state individually does
not lead to better performance results. A HMM is a genera-
tive model and the Baum—Welch algorithm learns the param-
eters that best explain the observations. Thus, this learning ap-
proach does not imply that a beat-tracking performance mea-
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TABLE III
BEAT TRACKING MEAN PERFORMANCE (%) OF THE DIFFERENT METHODS

Evaluation measure

Method CMLc CMLt AMLc AMLt
Proposed model 56.1 62.9 71.9 81.5
Klapuri et al. [20] 55.6 62.0 69.7 79.3
Davies et al. [19] 54.7 60.9 67.1 76.3
Ellis [16] 45.6 51.0 67.8 76.6
Dixon [13] 36.8 479 52.0 723
Human tapper 52.6 80.5 57.2 87.0

sure is maximized. In fact, the state-tying model simplification
introduced in Section II-C2 assumes that all non-beat states
{¢+ : ¢ # 0} are identically distributed and, as shown in
Table II, its mean performance is higher than any of the GMM
models. Therefore, it is reasonable to choose this simpler model
where all non-beat states are tied together.

C. Comparison to Other Systems

We turn now to compare the performance of the proposed
beat tracker with a human tapper and the systems introduced
in Section III-B. The same complex domain detection function
was used for the proposed reference model, Davies et al. [19]
and Ellis [16] methods. The Klapuri et al. [20] algorithm uses a
more elaborate sub-band based detection function and a joint es-
timation of the beat, tatum, and measure pulse periods. Dixon’s
method [13] uses the spectral flux detection function described
in [24].

In Table III, the mean accuracy of the different beat tracking
algorithms is compared. The original implementations of the
reference systems have been used to evaluate their performance
on the selected database. The performance of the human tapper
introduced in [19] is also included.

Relatively low performance of the automatic beat trackers
is observed when continuity at the correct metrical level is re-
quired (CMLc). The reason for this low performance is that
beat estimates must agree with the metrical level chosen by
the human annotator. Interestingly, the human tapper performs
worse in terms of CMLc than the two best performing auto-
matic approach but this difference is not statistically signifi-
cant. When correct metrical level is required but not continuity
(CMLt), the human tapper performs statistically better than au-
tomatic trackers. These results suggest that the human tapper
agreed more often with the annotator in terms of the metrical
level, but was prone to isolated tapping errors which adversely
affected the performance scores where temporal continuity of
beats was enforced.

When comparing accuracy results with allowed metrical
levels (AML), we find statistically significant differences
between the performance of automatic trackers and human
tappers. On the one hand, the AMLc performance of the human
tapper, 57.2%, is substantially lower than the proposed beat
tracker, 71.9%. On the other hand, if continuity is not required,
the human tapper outperforms any of the automatic approaches
and these differences are statistically significant.

To analyze the influence of annotations, it is interesting to
compare CML and AML criteria. Larger values for the AML
measures are found. This suggests that, unlike the human tapper,
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the automatic tempo induction methods fail to accurately esti-
mate the metrical level chosen by the annotator. Therefore, low
performance shown in terms of CML is imposed by the tempo
induction method that informs the beat tracker and not by the
beat tracking algorithm itself. We expect that improvements in
tempo induction should lead to improvements under the CML
criteria.

Finally, we compare the proposed beat tracking algorithm
with the reference systems. As shown in Table III, the proposed
method outperforms the reference methods in the mean value
for all of the evaluation criteria. However, not all the differences
are statistically significant. We find statistically significant dif-
ferences between the proposed algorithm and the following ref-
erence methods for the evaluation criteria specified next:

¢ CMLc, Ellis and Dixon methods;

e CMLt, Ellis and Dixon methods;

¢ AMLc, Davies et al. and Dixon methods;

¢ AMLLt, Davies et al., Ellis and Dixon methods.

We do not find statistically significant differences between the
proposed beat tracker and Klapuri et al. system. Both methods
define a probabilistic framework based on a hidden Markov
model and the number of states is equivalent in both systems
since it is determined by the length of the beat period. Whereas
the number of transitions from each state is two in our system
(from one state to the next state or the beat state), the number of
transitions per state in Klapuri et al. method is potentially equal
to the number of states.

For a more detailed analysis of the results, box plots for the
AML performance measures are also presented in Fig. 7(a) and
(b). The central mark is the median, the edges of the box are the
25th and 75th percentiles and the lines extend to the most ex-
treme data points not considered outliers. The 25th AMLt per-
centile is 79.5% for the proposed algorithm (Prop.) and 63% for
Klapuri et al. (Klap.) approach. This means that the AMLt per-
formance of the proposed algorithm is above 79.5% in 75% of
the input files. On the contrary, the 75th percentile of Klapuri et
al. (Klap.) is 99.0%, slightly larger than the 75th percentile of
the proposed system which is 98.2%. It can be also observed that
the interquartile range (the difference between the 75th and 25th
percentiles) for the proposed system are the smallest in both fig-
ures, suggesting a more robust behavior of the proposed proba-
bilistic model.

D. Reliability Analysis

The risk of focusing our analysis in performance averages is
to neglect the reason a beat tracker is not able to correctly esti-
mate the beat positions for a particular audio signal. As shown
in Section II-D, the observations used to extract the beat period
can be very noisy because either the signal analysis is not appro-
priate to the characteristics of the signal or the signal does not
show any clear periodicity. This can potentially lead to a wrong
tempo estimation and, as a result, to an erroneous determination
of the beat positions.

But, is it possible to automatically predict a poor behavior
of the proposed beat tracking algorithm? To answer this ques-
tion we analyze the relation between the quality measures intro-
duced in Section II-D and the performance of the proposed beat
tracking algorithm on the test database. Fig. 8(a) and (b) show an
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Fig.7. Box plot for the AML (%) measures. (a) AMLc. (b) AMLLt. Each column
represents an algorithm: the proposed algorithm (Prop.), Klapuri et al. [20]
(Klap.), Davies et al. [19] (Dav.), Ellis [16] (Ell.), and Dixon [13] (Dix.). The
central mark is the median, the edges of the box are the 25th and 75th percentiles
and the lines extend to the most extreme data points not considered outliers.

scatter plot of the AMLc and AMLt measures. Each circle rep-
resents a test audio signal and the color of each marker is based
on the values of the performance criteria, low performance is
mapped to black and high performance to white. The circles are
displayed at the locations specified by two of the quality mea-
sures introduced in Section II-D: the kurtosis, gx.r, and the max-
imum, g¢max. Looking at these figures, it is clear that there is a
strong correlation between these quality measures and the per-
formance of the algorithm for both the AMLc and AMLt perfor-
mance measures. In fact, low accuracy results can be expected
when the beat period salience observation quality measures are
low. Any other pair combination of the quality measures would
show a similar correlation between quality and performance.

The system presented in this paper learns the relationship be-
tween the quality measures and the expected beat tracking per-
formance r,, using a k-NN as defined in (15). As in [40], evalu-
ation is done using a leave-one-out strategy: the reliability of a
musical signal is estimated using all the other musical signals in
the test set as training samples. Informal tests show that k£ = 3
nearest neighbors are enough to correctly estimate the reliability
measure 7p,.

This reliability-informed approach opens a new perspective
in beat tracking. Just as humans often have some insight into
how difficult it is to tap along to an audio signal, the beat
tracking reliability measure r, represents the expected per-
formance accuracy (in terms of the evaluation criteria p, for
example AMLc) of the beat tracking algorithm on the input
musical signal. Therefore, the output of our reliability-informed
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Fig. 8. Scatter plot of the performance measure versus the kurtosis ratio and
the maximum beat period salience observation. (a) AMLc criterion. (b) AMLt
criterion. Each circle represents a test audio signal and the color of each marker
are based on the values of the performance criteria, low performance is mapped
to the black color and large performance to white.

beat tracking algorithm includes both a set of beat estimates
and a measure of the reliability of those beat estimates. The
user of the beat tracker is then informed with the reliability
of the beat estimates provided by the automatic beat tracking
algorithm. Therefore, if we sought to annotate the beats of a
musical signal with the assistance of a beat tracking algorithm
the reliability could be used to decide whether to trust the set of
beat estimates or to enter the tap times manually.

Reliability information can be successfully exploited to in-
crease the mean accuracy of the proposed beat tracker if some
files are discarded. Instead of analyzing the performance on
the whole test set as in MIREX [2], a target on the number
of files allowed to be discarded can be defined. Using the re-
liability information to identify the musical excerpts where the
beat tracker has very low confidence in its beat output, we can
re-evaluate overall performance of the beat tracker systemati-
cally discarding these “poorly tracked” files, weakest first. In
this way we can automatically determine a sub-set of the eval-
uation database and, in effect, improve the performance of our
beat tracker.

Fig. 9(a) and (b) shows the mean AMLc and AMLt perfor-
mance for different target values of files to be discarded. The
black solid-line represents the mean performance of the pro-
posed algorithm and the dashed-line the performance of the
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Fig. 9. Mean performance versus discarded number of files. (a) AMLc crite-
rion. (b) AMLt criterion. The black solid-line represents the mean performance
of the proposed quality-based algorithm and the dashed-line the performance
of the human tapper on the files selected according to the reliability measure.
The gray solid-line represents the “oracle” performance which discards files ac-
cording to the actual score.

human tapper on the selected files. The gray solid-line is the
“oracle” mean performance which discards files according to
the actual performance of the proposed beat tracking algorithm
and not the reliability measure. Obviously, we cannot use the
actual score value to automatically discard files but it gives in-
sight on the accuracy of the reliability measure. As can be seen
in the figure, the difference in mean performance of the pro-
posed beat tracking system is smaller than 5% compared to that
of the “oracle” when up to 40% of the files are discarded. For
larger numbers of discarded files, the difference is larger, but we
still have a fair approximation of the “oracle” performance.

As can be seen in Fig. 9(a) and (b), the mean performance
of the proposed algorithm and the human tapper agree with the
mean results presented in Table III when we do not discard any
files. However, as we discard audio files according to the reli-
ability measures’, ranre and ranrt, the mean performance of
the proposed algorithm significantly increases, both in AMLc
and AMLt. For example, the mean AMLc increases from 71.9%
to 85.8% and the mean AMLLt from 81.5% to 92.9% when dis-
carding 25% of the input files. This indicates that the reliability
measure introduced in Section II-D is a good indicator of the
goodness of the beat estimates provided by the beat tracker.

Finally, it is also interesting to compare the accuracy of the
quality-based beat tracking approach with the human tapper. On

SNote that p is replaced by the name of the performance criteria AMLc and
AMLt in (15).
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the one hand, Fig. 9(a) compares the proposed beat tracker and
the human tapper in terms of the rate of files to be decoded using
the AMLc criterion. As can be seen, the performance of the pro-
posed beat tracker is initially superior to the human tapper in
terms of AMLc and the difference increases even more when
using the reliability measure information. On the other hand,
using the AMLt criterion in Fig. 9(b), we see that the human per-
forms better than the automatic approach when all the files have
to be decoded. By automatically selecting files according to the
expected performance of our proposed beat tracker, we can in-
formally demonstrate that it outperforms a typical human tapper
when allowed to choose a subset of 80% (or fewer of) the input
files. This is far from a rigorous comparison between human tap-
ping and computational beat tracking as the human taps used
were entered in real-time and were left unaltered whereas the
presented beat tracking algorithm is non-causal. However we
can use this result to demonstrate that, by removing automati-
cally the files where the beat tracker fails catastrophically, we
can observe a distinct improvement in performance.

V. CONCLUSION

In this paper, a reliability-informed beat tracking method
that analyzes musical signals has been presented. To integrate
musical-knowledge and signal observations, a probabilistic
framework that exploits both beat and non-beat information is
proposed. The influence of the different elements of the pro-
posed probabilistic model has been evaluated and results show
that a significant increment in AMLt performance is obtained
by including non-beat information. In addition, reasonable esti-
mates for the parameters of the model are proposed. To validate
the accuracy of these estimates, a large learning experiment
where the parameters of the model were determined using a
Baum-Welch algorithm has been completed. Results show no
significant differences between the trained approach and the
proposed simplification.

The proposed beat tracking system has been compared with
four reference systems. The method outperforms all the refer-
ence systems in the mean value under all the evaluation criteria
used. We find significant differences in three of the four refer-
ences systems when comparing AML criteria. A more detailed
analysis of the distribution of the performance scores shows that
the proposed system achieves the highest 25th percentile value.
Also, the interquartile range of our probabilistic framework is
the smallest, suggesting a more robust behavior.

We also studied if we are able to predict a poor performance
of the system, finding a strong correlation between the observa-
tion quality measures and the performance of the beat tracker. In
addition, a k-nearest neighbor regression algorithm to automat-
ically measure the reliability of the beat estimates is proposed.
This differs from current beat tracking systems which exclu-
sively estimate beat locations and do not account for the specific
limitations of the algorithm. We show that we can successfully
exploit reliability information by discarding those files where
an unacceptable performance of the algorithm is expected. In
this way, mean accuracy significantly increases, increasing from
71.9% to 85.8% in AMLc and from 81.5% to 92.9% in AMLt
when discarding 25% of the input files. We informally demon-
strated that the beat tracking system can outperform a typical

human tapper (using AMLLt) by exploiting the proposed reli-
ability measure; in effect, allowing the beat tracker to pick a
subset of the evaluation database itself.

The conclusions extracted from our reliability-informed anal-
ysis result in a number of ideas for future work. We plan to
explore the combination of different beat tracking algorithms.
Files discarded for having a low reliability measure could be
handled by a different beat tracking algorithm with a higher pre-
dicted reliability so as the final performance of the global system
is higher. Similarly, multiple input features could be combined
or fused together in order to obtain a better representation of the
rhythmic structure of the musical signal to be analyzed. Future
work will also concentrate on exploiting users’ inputs such as
a human estimate of the actual tempo of an audio signal, the
genre of the signal to be tapped or the estimated difficulty of the
example. Finally, we plan to explore the joint estimation of the
beat phases and periods using a probabilistic framework.
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