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Abstract:

This paper deals with a very common problem in the home-textile industry. Given a set of orders of small
rectangles of fabric the problem consists of determining the lengths and widths of a set of large rectangles
of fabric to be produced and the corresponding cutting patterns. The objective is to minimize the total
quantity of fabric necessary to satisfy all orders. The approach proposed uses a biased random-key
genetic algorithm for generating sets of cutting patterns which are the input to a sequential heuristic
procedure which generates a solution. Experimental tests based on a set of 100 random generated
problems with known optimal solution validate quality of the approach.
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1. INTRODUCTION

In this paper, we consider a real-life 2-dimensional cutting
stock problem arising in a home textile make-to-order
company specializing in producing large rectangles of fabric
stock sheets (cloth produced by weaving or knitting textile
fibres) and cutting them into smaller rectangular pieces (see
Fig. 1).

The Problem

Orders Production and

Q cutting pattern

Fig. 1. Example of a problem.

According to the typology by Wiéscher et al. (2007) the
problem presented falls into the input minimization

assignment kind and belongs to the problem type 2D
Rectangular Open Dimension — MHLOPP or MHKP.

Johnson (1979) has shown that the two-dimensional cutting
stock problems are NP-hard. Therefore, solving exactly
practical problems of the type considered in this paper it is
quite time consuming.

Metaheuristic techniques are a frequently used tool for
finding approximate solutions of hard combinatorial
optimization problems. Several authors have used
methaherusitics to find practical solution to problems which
are too complex to be solved efficiently with other heuristics
(Dowsland (1993), Jakobs(1996), Lodi et al. (1998, 1999a,
b), and Faero et al. (2003))

The paper is organized as follows: In Section 2, we formulate
the problem. In Section 3, a novel biased random-key based
genetic algorithm approach is presented. Then in Section 4
some computation experiments and results are provided.

2. THE PROBLEM

Formally the problem can be formulated as an integer
program over all the efficient patterns as follows:
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where,
i= Index of product i (i=1, ..., N)
j= Index of pattern j (j=1, ..., P)
D;=  Demand of product i
L;=  Length of product i
W; = Width of pattern j
X;=  Length of fabric produced with pattern j
a;;=  Number of products 7 included along the width

of pattern j

A product is a small rectangle of fabric with width and length
specified in the order placed by the customers. A pattern is a
combination of product along the width of the fabric.

Gilmore and Gomory (1961) have given a solution with the
Linear Programming relaxation and a column generation
technique. However, for practical applications, their approach
has the drawback that many different patterns are generated
that are not easily managed in the production process and that
leads to high setup costs. A review of the solutions
techniques is given by Haessler and Sweeny (1991).

In the next section we propose a novel hybrid biased random-
key genetic algorithm (BRKGA) which solves the problem
extremely well even for large instances.

3. THE NEW APPROACH

We begin this section with an overview of the proposed
solution approach. This is followed by a discussion of the
biased random-key genetic algorithm (Gongalves and
Resende, 2011), including detailed descriptions of the
solution encoding, the sequential heuristic procedure solution
and the evolutionary process.

3.1 Overview

The new approach is based on a constructive sequential
heuristic procedure (SHP) which, given a set of ordered
cutting patterns, finds a solution to the problem.

The role of the genetic algorithm is to evolve the set of
cutting patterns used by the SHP. The following phases are
applied to each chromosome:

1. Pattern generation: This first phase decodes the
chromosome into a set of cutting patterns, i.e.,
the width of the patterns and the corresponding
products included on each of them.

2. Solution construction: The second phase uses
the cutting patterns produced by the BRKGA in
the previous phase and produces a solution
using the sequential heuristic procedure, SHP.

3. 3. Fitness evaluation: The final phase computes
the fitness of the solution obtained in phase 2 (a
measure of quality of solution, i.e. the total area
of the fabric used).

Figure 2 illustrates the sequence of steps applied to each
chromosome generated by the BRKGA.

Chromosome

Phase

A4

Definition of

Widths and Patterns Decoding of Genes

A

Construction of
a Solution

Construction of a solution using a
sequential heuristic procedure (SHP)

Evolutionary Process of the Genetic Algorithm

A 4

< Feedback of the Quality of the Chromosome
(Total Area Used)

Fig. 2. Architecture of the approach.

3.2 Solution Encoding

A solution is represented by a vector of random keys (Bean,
1994). Since the maximum number of patterns in an optimal
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solution will equal the number of different products we will
encode the solution as a set of N patterns. Let NPW be the
maximum number of products that can be included in a
pattern width then a chromosome will have the structure
depicted in Figure 3.

(T -5 Tpw

F(N-1) x NPW + 15 =+ » TN x NPW )

Fig. 3. Chromosome structure.

3.3 Solution Construction

A solution is constructed using the patterns generated by the
BRKGA. These patterns are used sequentially by the SHP to
determine the length to be produced using each pattern. The
basic idea of the SHP is to use each pattern until an order
runs out. Figure 4 presents a flowchart for the SHP.

Sequential Heuristic Procedure

\

1) - Generate Pattern using chromosome
(include only products with remaining Qt. > 0)

Until all
orders are
satisfied

3) — Determine Length to produce for Pattern obtained in 2)
(use pattern until an order runs out)

4) — Update Qt’s for orders remaining
(according to Qt. Produced in 3) )

Fig. 4. Sequential heuristic procedure.

3.4 Evolutionary Process

The evolutionary process used follows the evolutionary
strategy proposed for BRKGA's by Gongalves and Resende
(2011) and is summarized in Figure 5.

4. COMPUTATIONAL EXPERIMENTS

To evaluate the performance and the capabilities of the
BRKGA approach presented in this paper we performed a
series of computational experiments. The numerical
experiments were conducted on a computer with a Intel Xeon
E5-2630 @2.30GHz CPU and 16 GB of physical memory
running the Linux operating system with Fedora release 18.
The BRKGA approach was coded using the C++
programming language a single-thread version of the
executable was used.

Current Population

Best Elitist Selection
TOP ~

One Chromosome
from TOP

AN

Crossover (———

One Chromosome
from entire population

\ - BOT

Worst /
Mutation
(Immigration)

Fig. 5. Evolutionary strategy used by BRKGA’s.

Next Population

4.1 BRKGA configuration

The BRKGA configuration used for all tests was the one
presented in Figure 6.

Population Size: 3 x the number of products.
Crossover: The probability of tossing heads was made equal to 0.7.

Selection: Copies to the next generation the top 10% of the previous

population chromosomes.

Mutation: Substitutes with randomly generated chromosomes the

bottom 20% of the population chromosemes.
Fitness: Total Area Used (to minimize)
N° of Populations: 3
Exchange Frequency: Every 15 generations
N° of Seeds: 1

Stopping Criterion: Stops after 250 generations.

Fig. 6. BRKGA configuration.

The configuration presented in Figure 6 was the best
configuration obtained using a small group of instances
(instances =1, 11, 21, ..., 91). The intervals used for the
parameters are given in Table 2.
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Table 2. Parameters Interval.

Parameter Interval

1, 2, 3, 5, 10 times the
number of products

Population Size

Selection 0.05, 0.10, 0.15, 0.20
Crossover 0.7, 0.8, 0.9
Mutation 0.10, 0.20, 0.30

4.2 Benchmark Instances

Since there are no benchmark instances available for this type
of problem we generated 100 random instances with known
optimal solution (with zero waste).

4.3 Results

We compare the performance of the BRKGA approach
against the optimal solutions of the bench mark instances.

Table 1 presents the number of instances within a % interval
deviation from the optimal solution.

Table 1. BRKGA Results.

% Deviation from Number of
Optimal instances
0-0.1 57
0.1-0.5 34
0.5-1.0 8
1.0 -1.5 1
> 1.5 0

As can be seen the performance of the BRKGA is excellent
since all the instances have less than 1.5% waste and for 91%
of the instances the waste was less than 0.5 %.

Figure 7 depicts a detailed solution found by the BRKGA
approach for an instance with 26 products.

Pattern N°  Width Pattern Waste Length
1 4 1x Bx83 - 6 x6x39 - 1x6x70 0 78
2 6 1 x6x105 - 3x 17x39 - 1x 7x9 4 819
3 8 I x47x182 - 3 x 9x42 - 1x8x66 - 1x 6x33 0 4368
4 83 Hx14x21 - 1x6x105 - 6x9x42 - 1x 333 0 825
5 98 1 x29x10 - 1x 8x70 - 7 x9x11 0 980
6 48 1x 38x77 - 1x9x11 1 2156
7 73 1x683x35 - 1x14x21 - 1x6x105 0 2415
8 53 1x6x105 - 1x38x77 - 1x8x77 1 11550
9 78 2x 21x91 - B x6x33 0 4290
10 68 1x6x105 - 1x38x77 - 3 x8x33 0 1309
11 48 6 x 8x33 0 166
12 88 8x9x42 - 2 x 8x66 0 13886
13 48 1 x47x50 1 1050
14 63 TxBx105 - 3x17x11 - 1x6x63 0 5005
15 98 1x86x76 - 2x 21x91 1 6733
16 63 1x29x10 - 2 x 17x39 0 7098
17 78 1x48x78 - 1 x6x105 - 4 x 6x63 0 2730
18 103 1x40x42 - 1 x51x65 - 1 x6x105 - 1 x 0 30030

6x63
19 48 6 x Bx66 0 594
20 63 1Tx29x10 - 1 x14x21 - 2 x8x105 - 1x 0 3480
8x33
21 63 1x51x65 - 1 x6x105 - 1 x6x63 0 15015
22 83 1x85x76 - 2x 14x21 0 6675
23 48 1x14x21 - 3 x6x105 - 2 x 8x33 0 4095
24 78 1x6x63 - 9x 8x33 0 2376
25 73 3 x 14x21 - 5 x 6x63 1 630
26 78 13 x 6x63 0 4851

Fig. 7. Example of a solution found by the BRKGA.

5. CONCLUSION

In this paper we presented a hybrid biased random key
genetic algorithm to solve a problem very common in the
home-textile industry. Patterns are generated by the BRKGA
and a sequential heuristic procedure is used to construct a
solution. The approach quality was validated by
experimental tests on a set of 100 random generated problems
with known optimal solution.
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