
Computers & Operations Research 70 (2016) 115–126
Contents lists available at ScienceDirect
Computers & Operations Research
http://d
0305-05

n Corr
E-m

jvalente
journal homepage: www.elsevier.com/locate/caor
Metaheuristics for the single machine weighted quadratic tardiness
scheduling problem

Tomás C. Gonçalves a, Jorge M.S. Valente b,n, Jeffrey E. Schaller c

a Faculdade de Economia da Universidade do Porto, C/O Jorge Valente, Rua Dr. Roberto Frias, s/n, 4200-464 Porto, Portugal
b LIAAD – INESCTEC LA, Faculdade de Economia da Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-464 Porto, Portugal
c Department of Business Administration, Eastern Connecticut State University, 83 Windham St., Willimantic, CT 06226-2295, USA
a r t i c l e i n f o

Available online 12 January 2016

Keywords:
Scheduling
Single machine
Weighted quadratic tardiness
Metaheuristics
Iterated local search
Variable greedy
Genetic algorithm
x.doi.org/10.1016/j.cor.2016.01.004
48/& 2016 Elsevier Ltd. All rights reserved.

esponding author. Tel.:þ351 225 571 100; fax
ail addresses: tomcabrita@hotmail.com (T.C. G
@fep.up.pt (J.M.S. Valente), schallerj@easternc
a b s t r a c t

This paper considers the single machine scheduling problem with weighted quadratic tardiness costs.
Three metaheuristics are presented, namely iterated local search, variable greedy and steady-state
genetic algorithm procedures. These address a gap in the existing literature, which includes branch-and-
bound algorithms (which can provide optimal solutions for small problems only) and dispatching rules
(which are efficient and capable of providing adequate solutions for even quite large instances). A simple
local search procedure which incorporates problem specific information is also proposed.

The computational results show that the proposed metaheuristics clearly outperform the best of the
existing procedures. Also, they provide an optimal solution for all (or nearly all, in the case of the variable
greedy heuristic) the smaller size problems. The metaheuristics are quite close in what regards solution
quality. Nevertheless, the iterated local search method provides the best solution, though at the expense
of additional computational time. The exact opposite is true for the variable greedy procedure, while the
genetic algorithm is a good all-around performer.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

This paper considers a single machine scheduling problemwith
weighted quadratic tardiness costs. Formally, the problem can be
stated as follows. A set of n independent jobs 1;2;⋯;nf g is to be
scheduled on a single machine that can handle only one job at a
time. The machine is continuously available from time zero
onwards, and preemptions are not allowed. Job j; j¼ 1;2;⋯;n,
requires a processing time pj, has a weight wj and should ideally
be completed by its due date dj. For a given schedule, the tardiness
of job j is defined as Tj ¼max Cj�dj;0

� �
, where Cj is the comple-

tion time of job j. The objective is then to find a schedule that
minimizes the sum of the weighted squared tardiness valuesPn

j ¼ 1 wjT
2
j .

Single machine scheduling environments may appear to arise
infrequently in practice. However, they actually occur in several
practical settings. A specific example, arising in the chemical
industry, is given in [1]. Scheduling models with a single machine
are also useful for problems with multiple processors. Indeed, a
single bottleneck machine is often the source of inefficiency in
many production systems. Therefore, the performance of these
:þ351 225 505 050.
onçalves),
t.edu (J.E. Schaller).
systems will then depend mainly on the quality of the schedules
generated for this single bottleneck processor. Moreover, the study
of single machine problems provides results and insights that
prove valuable for scheduling more complex settings, such as
parallel machines, flow shops or even job shops.

The objective function considers squared tardiness costs. Tar-
diness is a widely used performance measure in scheduling, since
tardy deliveries can result in contractual penalties, lost sales and
loss of customer goodwill. A squared tardiness is used in this
paper, instead of the more usual (in the literature) linear tardiness
or maximum tardiness alternatives. Each of these three measures
has its merits, and neither is intrinsically better. Indeed, every one
of these criteria can be appropriate, depending on the setting and
the goals and preferences of the decision maker.

A maximum tardiness criterion is adequate when the main
objective is to prevent a quite large delay. As detailed in [2],
however, maximum tardiness focuses on the job with the largest
delay, and disregards the tardiness that might be incurred in all
the other jobs. Thus, if the decision maker wishes to take into
account all delays and all customers, measures such as linear or
squared tardiness are preferable. The choice between linear or
quadratic again depends on setting and preferences.

Under a linear tardiness, the distribution of the overall total
tardiness is irrelevant. That is, a sequence in which only one or a
few jobs are quite tardy is equivalent to another sequence where

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2016.01.004
http://dx.doi.org/10.1016/j.cor.2016.01.004
http://dx.doi.org/10.1016/j.cor.2016.01.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.01.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.01.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2016.01.004&domain=pdf
mailto:tomcabrita@hotmail.com
mailto:jvalente@fep.up.pt
mailto:schallerj@easternct.edu
http://dx.doi.org/10.1016/j.cor.2016.01.004
http://dx.doi.org/10.1016/j.cor.2016.01.004


T.C. Gonçalves et al. / Computers & Operations Research 70 (2016) 115–126116
multiple jobs are only a little tardy, as long as the sum of the
tardiness values is the same. A quadratic tardiness objective
function, however, severely penalizes larges values of the tardi-
ness, and will usually avoid schedules in which a single or only a
few jobs contribute the majority of the cost, as described in more
detail in [2].

In the same line, and as highlighted in [3,4], in linear tardiness
the incremental penalty of a job does not change as the tardiness
increases, so two jobs each one time unit late are equivalent to one
job two units late. In contrast, under a squared tardiness measure,
the incremental penalty of a job does increase as the tardiness
increases, so one job two time units late incurs a larger cost than
two jobs each one unit late. Furthermore, the loss function of
Taguchi [5] proposes that a customer's dissatisfaction tends to
increase quadratically with the tardiness, instead of linearly. Thus,
a squared tardiness objective is relevant in practice; indeed, the
scheduling methodology developed by Hoitomt et al. [3] used the
quadratic tardiness objective and was actually implemented as
part of a knowledge-based scheduling system at Pratt and
Whitney.

The considered problem has previously been studied in [6,7].
Schaller and Valente [6] developed several dominance rules, as
well as branch-and-bound procedures which incorporated these
rules. Valente and Schaller [7], on the other hand, proposed and
analyzed several efficient dispatching rules. To the best of our
knowledge, only a limited number of other papers have considered
a weighted quadratic tardiness objective function. Hoitomt et al.
[3] developed a solution procedure based on lagrangean relaxation
for parallel machines problems with simple precedence con-
straints, and demonstrated this procedure using three examples.
Sun et al. [2] analyzed several heuristics for the problem with a
single machine, release dates and sequence dependent setup
times. Finally, a job shop scheduling problem with alternative
processing plans was studied by Thomalla [4], who compared, on
three small examples, a lagrangean relaxation based lower bound
and heuristics with other methods.

The complexity of the single machine weighted quadratic tar-
diness problem is, again to the best of our knowledge, still open.
However, and given existing complexity results, it seems most
likely that the problem is hard. Indeed, the corresponding linear
problem, i.e. the total weighted tardiness problem, is strongly NP-
hard [8,9].

Two streams of research on single machine scheduling that are
related to the considered problem are models with a quadratic
performance measure and the total weighted tardiness problem.
Among tardiness-related quadratic performance measures, the
quadratic lateness problem has been studied by Gupta and Sen
[10], Sen et al. [11], Su and Chang [12], Schaller [13] and Soroush
[14,15]. Also, the linear earliness and squared tardiness problem
was considered by Schaller [16], Valente [17–19], Valente and
Schaller [20], and Behnamian and Zandieh [21]. The problem with
both quadratic earliness and quadratic tardiness costs was studied
by Valente and Alves [22], Valente and Moreira [23], Valente [24],
Valente et al. [25], Singh et al. [26], Kianfar and Moslehi [27], and
Vilà and Pereira [28]. A large number of papers have been pub-
lished on the total weighted tardiness problem. Exact methods
have been surveyed and compared in [29], and several heuristic
methods were analyzed in [30]. Sen et al. [31] provide a more
recent literature review of both exact and heuristic procedures for
this linear problem.

This paper presents three metaheuristics, namely iterated local
search, variable greedy and steady-state genetic algorithm proce-
dures. These heuristics address a gap in the existing literature.
Indeed, and as previously mentioned, the existing procedures
consist of branch-and-bound algorithms, which can provide an
optimal solution for small instances, and efficient dispatching
rules, which are often the only heuristic approach capable of
providing solutions, in reasonable time, for large problems.
Metaheuristics are often quite valuable for medium sized instan-
ces, since they are usually able to provide high quality solutions
(superior to those of dispatching rules) within acceptable com-
putational times. A local search procedure, which is used in the
metaheuristics, is also presented. This proposed local search is
essentially an adjacent pairwise interchange procedure, which
incorporates problem specific information.

The remainder of this paper is organized as follows. The local
search procedure is described in Section 2. Section 3 presents the
three proposed metaheuristics. The computational results are
reported in Section 4. Finally, some concluding remarks are pro-
vided in Section 5.
2. Local search procedure

In this section, the proposed local search procedure is descri-
bed. As previously mentioned, the local search is essentially an
adjacent pairwise interchange improvement procedure. Therefore,
after the application of the local search, no further improvement in
the sequence is possible by swapping any pair of adjacent jobs.
However, the procedure incorporates problem specific informa-
tion. The pseudo-code for the proposed local search is given in
Procedure 1. In this context, let i be a position in a sequence and i½ �
be the job in position i.

Procedure 1. Local search procedure

1. Set i¼ 1.
2. While ion:
2.1. If jobs i½ � and iþ1½ � are early:

2.1.1. If d i½ �4d iþ1½ �:
2.1.1.1. Swap jobs i½ � and iþ1½ �.
2.1.1.2. If i41, set i¼ i�1.

2.1.2. Otherwise, set i¼ iþ1.
2.2. Else if jobs i½ � and iþ1½ � are tardy:

2.2.1. If w i½ � 2T i½ � þ1
� �

p iþ1½ �ow iþ1½ � 2T iþ1½ � þ1
� �

p i½ �:
2.2.1.1. If the objective function value is improved by

swapping jobs i½ � and iþ1½ �:
2.2.1.1.1. Swap jobs i½ � and iþ1½ �.
2.2.1.1.2. If i41, set i¼ i�1.

2.2.1.2. Otherwise, set i¼ iþ1.
2.2.2. Otherwise, set i¼ iþ1.

2.3. Else if job i½ � is early and job iþ1½ � is tardy:
2.3.1. If d i½ �ZC iþ1½ �:
2.3.1.1. Swap jobs i½ � and iþ1½ �.
2.3.1.2. If i41, set i¼ i�1.

2.3.2. Else if w i½ � C iþ1½ � �d i½ �
� �2ow iþ1½ � 2T iþ1½ � þ1

� �
p i½ �:

2.3.2.1. If the objective function value is improved by
swapping jobs i½ � and iþ1½ �:

2.3.2.1.1. Swap jobs i½ � and iþ1½ �.
2.3.2.1.2. If i41, set i¼ i�1.

2.3.2.2. Otherwise, set i¼ iþ1.
2.3.3. Else, set i¼ iþ1.

2.4. Else, set i¼ iþ1.

The procedure starts at the first position in the sequence, and
stops when the final position is reached. At each iteration, the jobs
at the current and next positions are analyzed. If the two jobs are
swapped, the procedure backtracks one position when possible,
since a new comparison can now be made. Otherwise, the pro-
cedure moves forward by one position.



T.C. Gonçalves et al. / Computers & Operations Research 70 (2016) 115–126 117
There are four possibilities regarding the earliness/tardiness of
the jobs at the current and next positions. More specifically, and in
their current positions, those jobs can be both early, both tardy,
early and tardy, and tardy and early.

Step 2.1 considers the situation in which both jobs are currently
early. In this case, a swap is performed only when d i½ �4d iþ1½ �, that
is, if the first job has a larger due date. We remark that the
objective function value is not affected by this move, since both
jobs are early both before and after the swap. However, moving
the job with the largest due date forward in the sequence may
help in future iterations. Indeed, it might be possible to shift that
job further into the sequence, thereby reducing the tardiness of
other jobs.

In step 2.2, both jobs are currently tardy. In this case, a pre-
liminary check on the usefulness of a swap is first performed in
2.2.1. More specifically, and as described in Schaller and Valente
[6], w i½ � 2T i½ � þ1

� �
p iþ1½ � and w iþ1½ � 2T iþ1½ � þ1

� �
p i½ � are a lower bound

for the increase in the cost of job i½ � and an upper bound for the
decrease in the cost of job iþ1½ �, respectively, if the swap is per-
formed. Therefore, if the condition in 2.2 is not satisfied, no swap
is performed, since it certainly would not improve the sequence,
given that the lower bound on the cost increase is larger than the
upper bound on the cost decrease. If the condition is satisfied, the
procedure checks whether the swap indeed reduces the total cost,
and performs the swap when the objective function is in fact
improved.

Step 2.3 considers the situation in which the first job is early
and the second is tardy. If job i½ � remains early after the swap, the
exchange clearly reduces the cost, and the two jobs are swapped;
this is handled in step 2.3.1 and its substeps. Otherwise, a pre-
liminary check on the usefulness of a swap is then performed in
2.3.2. Again, w iþ1½ � 2T iþ1½ � þ1

� �
p i½ � is an upper bound for the

decrease in the cost of job iþ1½ �. The exact cost of job iþ1½ � after
the swap is given by w i½ � C iþ1½ � �d i½ �

� �2. Therefore, and once more, if
the condition in 2.3.2 is not satisfied, no swap is performed, since
it certainly would not improve the sequence. If the condition is
satisfied, the procedure checks whether the swap reduces the total
cost, and performs the swap when the objective function is indeed
improved.

Finally, it is possible that the first job is tardy and the second is
early. In this case, it is clear that a swap should not be performed,
since it would increase the objective function. This situation is
captured by step 2.4.
3. Metaheuristics

In this section, the proposed metaheuristics are presented. A
pseudo-code is given for each procedure, as well as a description
of the various components and implementation choices that
were made.

3.1. Iterated local search

Local search or descent procedures terminate as soon as a local
optimum is reached, since they are unable to escape from local
optima. A simple approach that allows for the exploration of
multiple local optima, with any local search algorithm, is to per-
form multiple runs, each starting from a different initial solution.
The iterated local search (ILS) metaheuristic is based precisely on
this approach.

In ILS, the next starting solution is obtained from the current
solution (usually a local optimum), by applying some sort of pre-
specified type of random move to this current solution. This is
known as perturbing, or kicking, the current solution. In this way,
not all the good characteristics of a previously found solution are
lost when generating the next starting solution, which is a serious
concern when the initial solutions are fully randomly generated.

Some of the basic ideas in ILS were first described by Baxter
[32], though the use of a randomized kick traces back to Baum
[33,34]. Multiple studies [35–40] have shown that ILS can provide
extremely competitive results. For a more detailed description of
ILS, please see [35,38].

The pseudo-code for the proposed ILS implementation is given
in Procedure 2. In the following, (Sbest ; ofvbest) denote the best
solution found so far and its corresponding objective function
value, respectively. Similarly, (S; ofvS) and (Sk; ofvk) provide the
same information for the current solution and the kicked solution
(that is, the solution obtained by performing a kick on the current
solution), respectively.

Procedure 2. Iterated local search
1. Set (Sbest ; ofvbest)¼(∅;1).
2. (S; ofvS)¼Generate_Initial_Solution().
3. If Do_Local_Search(S) ¼¼ TRUE, set (S; ofvS)¼Perform_-
Local_Search(S).
4. If ofvSoofvbest , set (Sbest ; ofvbest)¼(S; ofvS).
5. While stop criterion is not met:

5.1. (Sk; ofvk)¼Perform_Kick(S).
5.2. If Do_Local_Search(Sk) ¼¼ TRUE, set (Sk; ofvk)¼Per-

form_Local_Search(Sk).
5.3. If ofvkoofvbest , set (Sbest ; ofvbest)¼(Sk; ofvk).
5.4. If Perform_Backtrack() ¼¼ TRUE, set (S; ofvS)¼

(Sbest ; ofvbest).
5.5. Else, set (S; ofvS)¼(Sk; ofvk).

Step 1 simply initializes the procedure, by setting the best
solution found so far and the respective objective function value to
an empty sequence and infinity, respectively. The initial solution is
then created in step 2. This solution is generated by the QBack_v6
dispatching rule, which provided the best results among the dis-
patching procedures proposed in [7].

Step 3, and similarly step 5.2, determines whether or not local
search is to be applied to a solution, and performs the local search
when appropriate. In the proposed implementation, local search is
always applied when a solution is better than the best found so far.
Otherwise, the local search is applied with a probability equal to a
user defined parameter 0r ls_probr1. When the local search is to
be performed, the improvement procedure described in the pre-
vious section is then applied in order to try to improve the solu-
tion. Step 4, as well as step 5.3, updates the best solution found so
far when appropriate.

In step 5, and its substeps, the algorithm iterates until a stop-
ping criterion, identical for all proposed metaheuristics, is met.
More specifically, the algorithm terminates either when a user
defined maximum computation time max_rt is reached, or if a
solution with an objective function value of 0 (which is clearly
optimal) is found.

At each iteration, a new solution Sk is obtained by executing a
kick on the current solution S (step 5.1). In this implementation, a
kick consists in performing α random swaps (the swapped jobs
need not be adjacent), where α is a user defined parameter. Steps
5.2 and 5.3, as previously described, are related with the local
search and updating of the best solution found so far.

Finally, a new current solution is set in steps 5.4 and 5.5. If a so-
called backtrack is to be performed, the current solution is set
equal to the best solution found so far. Otherwise, the kicked
solution becomes the new current solution. In the proposed
implementation, a backtrack is performed when β consecutive



T.C. Gonçalves et al. / Computers & Operations Research 70 (2016) 115–126118
iterations have been performed without improving the best solu-
tion found so far, where β is a user defined parameter.

3.2. Variable greedy

The variable greedy (VG) algorithm is a metaheuristic that was
developed recently by Framinan and Leisten [41]. This procedure
combines features of two other metaheuristics, namely iterated
greedy and variable neighborhood search.

Iterated greedy algorithms use a two-phase procedure,
destruction followed by construction, to generate solutions. In the
destruction phase, some components are removed from the cur-
rent solution, yielding a partial solution. The next solution is then
constructed by inserting those removed elements into the partial
solution. Both phases are performed using a greedy procedure.

The variable neighborhood search metaheuristic, on the other
hand, uses a finite set of preselected neighborhood structures,
instead of a single neighborhood. The procedure switches from
one neighborhood to the next when no improvement is made, in
order to try to overcome local optima.

These two features are combined in the VG metaheuristic.
Indeed, and more specifically, the concept of varying the neigh-
borhood is applied to the destruction and construction phases.
Thus, the number of components that are removed and then
reinserted is variable. For a more detailed description of VG, please
see [41]. Also, additional details on the iterated greedy and vari-
able neighborhood search metaheuristics can be found in [42,43]
and [44], respectively.

The pseudo-code for the proposed VG implementation is given
in Procedure 3. The previously undescribed notation is defined as
follows. Let k be the current number of components, which in this
specific problem correspond to jobs, to be removed and then
reinserted in the destruction and construction phases. Also, let
kmax be the maximum allowed value for k, i.e. the maximum
neighborhood size. In the following, (Sdc; ofvdc) denote the solution
that is obtained by applying destruction and construction to the
current solution, and its corresponding objective function value,
respectively. The set of jobs that are removed and then reinserted
in order to obtain the solution Sdc from the current solution S is
denoted by Sr . Finally, 0rns_propr1 is a user defined parameter.

Procedure 3. Variable greedy

1. Set (Sbest ; ofvbest)¼(∅;1), k¼ 1 and kmax ¼ ns_prop
� n�1ð Þ.

2. (S; ofvS)¼Generate_Initial_Solution().
3. If Do_Local_Search(S) ¼¼ TRUE, set (S; ofvS)¼Perform_-
Local_Search (S).

4. If ofvSoofvbest , set (Sbest ; ofvbest)¼(S; ofvS).
5. While stop criterion is not met:

5.1. Sdc¼Perform_Destruction (S, Sr , k).
5.2. (Sdc; ofvdc)¼Perform_Construction (SdcSr ,).
5.3. If Do_Local_Search (Sdc) ¼¼ TRUE, set (Sdc; ofvdc)¼
Perform_Local_Search (Sdc).
5.4. If ofvdcoofvbest , set (Sbest ; ofvbest)¼(Sdc; ofvdc).
5.5. If ofvdcoofvS:
5.5.1. Set (S; ofvS)¼(Sdc; ofvdc).
5.5.2. Set k¼ 1.

5.6. Else:
5.6.1. Set k¼ kþ1.
5.6.2. If krkmax, set (S; ofvS)¼(Sdc; ofvdc).
5.6.3. Else:

5.6.3.1. Set k¼ 1.
5.6.3.2. (S; ofvS)¼Generate_Random_Solution().
5.6.3.3. If Do_Local_Search(S)¼¼TRUE, set (S; ofvS)¼
Perform_Local_Search(S).

5.6.3.4. If ofvSoofvbest , set (Sbest ; ofvbest)¼(S; ofvS).

Step 1 again initializes the procedure. In addition to setting the
best solution found so far and its objective function value, k is
given an initial value of 1. Also, the maximum number of jobs to be
removed and reinserted kmax is set equal to a proportion ns_prop
of the maximum possible neighborhood size n�1ð Þ.

In Framinan and Leisten [41], kmax was simply set equal to the
maximum possible value n�1ð Þ. In this implementation, the user
defined parameter ns_prop is considered, in order to evaluate the
trade-offs between solution quality and computational time that
are likely to occur if a smaller maximum neighborhood size is
chosen. The maximum neighborhood size kmax is then set equal to
a proportion ns_prop of the maximum possible size.

Steps 2–4, which deal with the initial solution, local search and
updating of the best variables, are then identical to those in the ILS
procedure. In step 5, and its substeps, the algorithm again iterates
until the stopping criterion is met.

At each iteration, a new solution Sdc is obtained by executing
the two-phase destruction followed by construction procedure. In
step 5.1 (destruction), Sdc is set equal to the partial solution that
results from removing k jobs from the current solutionS; those
jobs are temporarily stored in Sr . Then, in step 5.2 (construction),
the removed jobs are reinserted, yielding a complete solution.

In the chosen implementation, the destruction step removes
the k jobs with the largest objective function values, with ties
broken by selecting the job with the smallest due date. The con-
struction step then reinserts these jobs one at a time, in decreasing
order of those objective functions values, again with ties broken by
giving preference to the smallest due date. The reinsertion pro-
cedure used for each job is based on the NEH heuristic [45]. More
specifically, each job is inserted at all possible positions in the
current partial solution, and the position that leads to the lowest
objective function value (for the entire partial sequence) is then
selected.

Steps 5.3 and 5.4 again deal with the possible application of the
local search procedure and updating of the best variables. The next
current solution and the value of k are then updated in steps
5.5 and 5.6. If the new solution Sdc is better than the current
solution S, solution Sdc becomes the new current solution, and the
size of the destruction and construction neighborhood k is reset to
the minimum value of 1 (step 5.5 and its substeps). Otherwise
(step 5.6 and its substeps), k is first increased by 1 in step 5.6.1,
thereby enlarging the neighborhood.

If the new neighborhood size k is not larger than the limit kmax,
solution Sdc again becomes the new current solution (step 5.6.2).
However, if the maximum neighborhood size kmax is exceeded
(step 5.6.3 and its substeps), k is reset to the minimum value of
1 and a new current solution is generated at random. The local
search procedure is then possibly applied to this solution, and the
best variables are updated when appropriate.

3.3. Steady-state genetic algorithm

The term genetic algorithm was first used by Holland [46], and
though his work placed little emphasis on optimization, the
majority of the research on genetic algorithms has indeed since
been focused on solving optimization problems. Genetic algo-
rithms are population-based metaheuristics, since at each iteration
(or generation, in the genetic algorithm terminology) they con-
sider a set (population) of solutions (chromosomes), instead of a
single current solution.



T.C. Gonçalves et al. / Computers & Operations Research 70 (2016) 115–126 119
In a genetic algorithm, an initial population is first generated.
Successive populations are then evolved by mimicking the evo-
lution process that occurs in natural biology. More specifically,
new solutions are usually obtained via reproduction/crossover,
which combines information from two current “parent” solutions
in order to obtain an “offspring” chromosome, and/or through
mutation, which creates a chromosome by changing an existing
solution.

A steady-state genetic algorithm (SSGA), using a permutation
encoding, is considered in this paper. In the steady-state popula-
tion replacement method, at each iteration a single solution is
generated, via crossover and/or mutation, and might eventually
replace the current least fit member of the population. This is in
contrast with other evolutionary strategies, such as the genera-
tional approach, which replaces the entire population at each
iteration, and the elitist strategy, which replaces all except a cer-
tain number of the current best solutions. With the steady-state
generational scheme, a new solution becomes immediately avail-
able for crossover and/or mutation, while in the other strategies it
will only become available once the entire new population is
generated. In the permutation encoding, each chromosome is
represented by a permutation of integers. This is appropriate for
the considered problem, since a solution can be quite naturally
represented by a permutation of the jobs’ indexes, representing
the order in which these jobs are processed. For a more detailed
description of genetic algorithm and their components and stra-
tegies, please see [47–49].

The pseudo-code for the proposed SSGA implementation is
given in Procedure 4. The previously undescribed notation is
defined as follows. In the following, (Sworst ; ofvworst) denote the
worst solution in the current population and its corresponding
objective function value, respectively. Similarly, (S1; ofv1) and
(S2; ofv2) are solutions used in the crossover and/or mutation
operations and their respective objective functions values. Also,
(Scm; ofvcm) provide the same information for the offspring solution
generated via crossover or mutation. Finally, let pop denote the set
of solutions/chromosomes in the current population.

Procedure 4. Steady-state genetic algorithm

1. Set (Sbest ; ofvbest)¼(∅;1), (Sworst ; ofvworst)¼(∅; �1) and
pop¼∅.

2. pop¼Generate_Initial_Population().
3. While stop criterion is not met:

3.1. If Do_Crossover() ¼¼ TRUE:
3.1.1. S1¼Select_Parent(pop).
3.1.2. S2¼Select_Parent(pop∖S1 ).
3.1.3. Scm¼Perform_Crossover(S1,S2).

3.2. Else:
3.2.1. S1¼Select_Chrom_Mutation(pop).
3.2.2. Scm¼Perform_Mutation(S1).

3.3. If Do_Local_Search(Scm)¼¼TRUE, set (Scm; ofvcm)¼Per-
form_Local_Search(Scm).
3.4. If ofvcmoofvbest , set (Sbest ; ofvbest)¼(Scm; ofvcm).
3.5. If (Scm =2pop) AND (ofvcmoofvworst):
3.5.1. Replace Sworst with Scm.
3.5.2. Update (Sworst ; ofvworst)

A general outline of the proposed SSGA is first given. Then,
some components and choices are described in more detail.
Step 1 again initializes the procedure, by appropriately setting
the best and worst solutions found so far, and creating a so far
empty population. The initial population is then generated in
step 2; the specifics are described below. In step 3, and its
substeps, the algorithm then iterates until the stopping cri-
terion is met.

At each iteration, a single chromosome is generated via cross-
over (step 3.1 and its substeps) or mutation (step 3.2 and its
substeps). The crossover operation is chosen with a probability
equal to a user defined parameter 0rcross_probr1. Thus, func-
tion Do_Crossover() will return TRUE with probability cross_prob.

When the new solution is obtained via crossover, two differ-
ent parent solutions are first selected from the population. The
new solution is then generated by performing a crossover
operation on the chosen parents. Otherwise, a single solution is
selected from the population, and the new solution is then
obtained via a mutation operation. Details concerning the
selection of solutions and the crossover and mutation operators
are provided below.

Steps 3.3 and 3.4 deal with the possible application of the local
search procedure and updating of the best variables. The repla-
cement strategy is embodied in step 3.5 and its substeps. More
specifically, the new solution replaces the current worst member
of the population if it is unique (that is, no identical solution is
present in the current population) and better than the current
worst solution.

The details concerning the initial population and the crossover
and mutation operations will now be presented. The pseudo-code
for the generation of the initial population is given in Procedure 5.
The previously undescribed notation is defined as follows. In the
following, (Sip; ofvip) denote a solution created during the genera-
tion of the first population and its corresponding objective func-
tion value, respectively. Also, let pop_size be a user defined para-
meter that corresponds to the desired population size. Finally,
init_pop_seeded A {TRUE, FALSE} is a user defined parameter that
indicates whether or not a non-random solution is to be inserted
into the initial population. The pseudo-code for function Shif-
t_Early_Jobs_Forward, which used in the generation of the initial
population, is given in procedure 6.

Procedure 5. Function Generate_Initial_Population()

1. If init_pop_seeded ¼¼ TRUE:
1.1. Sip¼Generate_Seed_Solution().
1.2. If Do_Local_Search(Sip) ¼¼ TRUE, set (Sip; ofvip)¼Per-
form_Local_Search(Sip).
1.3. Set pop¼ pop [ Sip and update (Sbest ; ofvbest) and
(Sworst ; ofvworst).

2. If ofvbest¼0, RETURN.
3. Set i_count¼0.
4. While (#popo pop_size) OR (i_counto3 � pop_size):
4.1. Sip¼Generate_Random_Solution().
4.2. Sip¼Shift_Early_Jobs_Forward(Sip).
4.3. If Do_Local_Search(Sip)¼¼TRUE, set (Sip; ofvip)¼Per-
form_Local_Search(Sip).
4.4. If Sip =2pop, set pop¼ pop [ Sip and update (Sbest ; ofvbest)
or (Sworst ; ofvworst) when appropriate.
4.5. Set i_count¼ i_countþ1.
4.6. If ofvbest¼0, BREAK.

5. If ofvbest¼0, RETURN.
6. While (#popo pop_size):
6.1. Sip¼Generate_Random_Solution().
6.2. If Sip =2pop, set pop¼ pop [ Sip and update (Sbest ; ofvbest)
or (Sworst ; ofvworst) as appropriate.
6.3. If ofvbest¼0, BREAK.

Procedure 6. Function Shift_Early_Jobs_Forward



T.C. Gonçalves et al. / Computers & Operations Research 70 (2016) 115–126120
1. Set i¼ 1.
2. While ion:

2.1. If (d i½ �ZC iþ1½ �) AND (d i½ �4d iþ1½ �):
2.1.1. Swap jobs i½ � and iþ1½ �.
2.1.2. If i41, set i¼ i�1.

2.2. Otherwise, set i¼ iþ1.
parent 1: 1 2 3 6 5 4
parent 2: 4 5 2 3 1 6

p1_copy_prob: 0.79
rand_gen01(): 0.55 0.82 0.43 0.76 0.97 0.14

partial offspring: 1 3 6 4
offspring: 1 5 3 6 2 4

Fig. 1. Crossover example.
Step 1 in Generate_Initial_Population() checks whether the
initial population is to be seeded, that is, if a nonrandom solution
generated by a heuristic procedure is to be inserted in the popu-
lation. When seeding is to be performed, the solution given by the
QBack_v6 dispatching rule is generated in step 1.1. Step 1.2 then
deals with the application of the local search procedure. In step
1.3, the solution is added to the population, and the best and worst
variables are updated.

If a solution with an objective function of 0 (which, as pre-
viously mentioned, is clearly optimal) is obtained, the generation
of the initial population is stopped in step 2. Otherwise, step 4
(and its substeps) then iterates until the initial population has
been fully generated, or a maximum of 3�pop_size iterations
have been performed; the rationale for this maximum number of
iterations is described below.

A random solution is first generated in step 4.1. Step 4.2 tries to
improve this solution by applying the Shift_Early_Jobs_Forward
procedure. This function, as can be seen by the pseudo-code given
in Procedure 6, is essentially a greatly simplified version of the
local search procedure. As implied by the name, this function
simply moves early jobs forward in the sequence as much as
possible without those jobs becoming late. Indeed, as indicated in
step 2.1, a job is swapped with the next when it is still early if
scheduled at the next position, and its due date is larger than that
of the following job. The local search procedure is then possibly
applied in step 4.3. The solution is added to the population if it is
unique, and the best or worst variables are updated when
appropriate. If an optimal solution with an objective function value
of 0 is generated, step 4 is immediately terminated.

The Shift_Early_Jobs_Forward procedure was introduced in
order to try to prevent the generation of a (quite) poor initial
population. Indeed, if this procedure was not used, and in the
presence of a low user defined ls_prob local search probability, the
initial population would consist mostly or fully of randomly gen-
erated solutions, which can be of very low quality. A quite poor
initial population can have a negative effect on the performance of
a genetic algorithm, which can then require a large number of
iterations in order to generate good solutions.

We recall that the VG procedure also uses randomly generated
solutions. However, this metaheuristic has a much stronger
intensification component, since the destruction and construction
phases themselves act as a sort of local search. Therefore, the
Shift_Early_Jobs_Forward is not really required, and the random-
ness is actually needed for diversification and to act as a coun-
terbalance of the intensification provided by the destruction and
construction steps. In a genetic algorithm, however, crossover and
mutation operations would take far more time to evolve good
solutions from a poor initial population.

As previously mentioned, step 4 terminates if a maximum of
3�pop_size iterations have been performed without successfully
filling the initial population. This limit is required in order to avoid,
in some instances, a quite large number of iterations, or even an
endless loop. Indeed, in some instances with loose due dates, the
application of the Shift_Early_Jobs_Forward procedure may lead
systematically to a single or a few solutions in which only a small
number of jobs is tardy. The best of these solutions is likely to be
optimal; however, since its objective function value is positive
(since at least one job is tardy), it is not possible to guarantee that
optimality.

Therefore, in these cases it might take an extremely large
number of iterations, or actually be impossible at all, to fill the
initial population in step 4 and its substeps. Consequently, and
after some experimental tests, the limit of 3 � pop_size iterations
was imposed. When step 4 indeed fails to fill the initial population,
the remaining solutions are generated at random in step 6 and its
substeps. Again, a solution is only added to the population if it is
unique, and step 6 is terminated should an optimal solution with
an objective function value of 0 be generated.

The details concerning the crossover operation will now be
described. Each parent is selected via a probabilistic binary tour-
nament [48]. Thus, in order to choose each parent, two different
candidate solutions C1 and C2 are first selected at random. Then,
one of these is chosen probabilistically. In the proposed imple-
mentation, the selection probability is proportional to the solution
quality. Therefore, the probability of selecting solution C1 is equal
to ofvC2

= ofvC1
þofvC2

� �
, where ofvC1

and ofvC2
are the objective

function values of C1 and C2, respectively.
A unique offspring solution is then obtained via a uniform

order based (UOB) crossover [47]. The UOB crossover considers
each position in the sequence sequentially, and the corresponding
job in the first parent is copied to the offspring with a probability
p1_copy_prob. The vacant positions are then filled with the
missing jobs, in the order in which they appear in the second
parent. In the chosen implementation, p1_copy_prob is set equal
to ofvC2

= ofvC1
þofvC2

� �
. Thus, the probability is again proportional

to solution quality, and the offspring will tend to have more
positions copied from the best parent [50].

The application of the UOB crossover is illustrated in Fig. 1. Let
rand_gen01() be a function that returns a random uniform number
between 0 and 1. The random number generated for positions 1, 3,
4 and 6 is lower than p1_copy_prob, and therefore the corre-
sponding jobs in the offspring are inherited from the first parent.
Jobs 2 and 5 are still missing from the sequence, and these are
then inserted in the empty positions, in the order in which they
appear in the second parent.

Finally, the details concerning the mutation operation are now
presented. A solution is first chosen at random, and a mutated
chromosome is then generated from this solution via a gene by
gene mutation procedure. In gene by gene mutation, each position
in the chromosome is involved in a random move with a given
probability. The pseudo-code for the mutation function is given in
Procedure 7. The previously undescribed notation is defined as
follows. Let 0rgene_mut_probr1 be a user defined parameter
that corresponds to the probability of each position being affected
by a random move. Also, mut_type A {INT, INS} is a user defined
parameter that indicates whether the random move consists of an
interchange (INT) or an insertion (INS) operation.

Procedure 7. Function Perform_Mutation()

1. Set i¼ 1.
2. While ion:



T.C. Gonçalves et al. / Computers & Operations Research 70 (2016) 115–126 121
2.1. If rand_gen01()ogene_mut_prob:
2.1.3. Randomly select a position pa i.
2.1.2. If (mut_type ¼¼ INT), swap jobs i½ � and p½ �.
2.1.3. Otherwise, remove job i½ � from its current position

and insert it at position p.
2.2. Set i¼ iþ1.

In step 2, each position in the sequence is considered sequen-
tially. For each position i, there is a gene_mut_prob probability
that the job in the position will be involved in a random move.
When a random move is to be performed (step 2.1 and its sub-
steps), a different position p is generated at random. If the random
move is of the interchange type, the jobs in the two positions are
swapped. Otherwise, the job in position i is removed from its
current position and reinserted at position p.
Table 1
Metaheuristic parameter values.

Heur Parameter Values

All max_rt 0.5þ0.0001 �n2

ILS α 5, 6, 7
β 5, 10, 20, 25
ls_prob 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

VG ns_prop 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
ls_prob 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

SSGA pop_size 30, 40, 50
init_pop_seeded TRUE, FALSE
cross_prob 0.85, 0.90, 0.95, 0.975
mut_type INT, INS
gene_mut_prob 0.02, 0.03, 0.04
ls_prob 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0
4. Computational results

In this section, the computational experiments and results are
presented. First, the set of test problems used to obtain the com-
putational results is described. Next, the preliminary tests that
were performed in order to determine adequate values for the
parameters required by the metaheuristics are presented.

The proposed metaheuristics are then compared with existing
procedures and solutions. The QBack_v6 dispatching rule, which
provided the best results among the dispatching procedures pro-
posed in [7], is naturally included in this set of comparison pro-
cedures. Also considered is this same dispatching rule, but fol-
lowed by the application of the local search improvement proce-
dure. In the following, let DR and DRþLS denote the QBack_v6
dispatching rule and this same heuristic followed by the applica-
tion of the local search procedure, respectively.

A set of some of the heuristics proposed by Vilà and Pereira
[28] was also considered for comparison purposes. These proce-
dures were developed for the problem with both weighted
quadratic earliness and weighted quadratic tardiness costs. How-
ever, they can also be applied to instances with only tardiness
costs by simply setting the earliness weight hj equal to 0 for all
jobs, thus effectively disregarding earliness.

In the following, VP will denote a procedure that executes four
of the heuristics proposed in [28], and returns the best solution
found. The four heuristics included in VP, and according to the
notation used in [28], are: 1) a NEH-based heuristic, followed by a
local search; 2) APh followed by a local search; 3) APs followed by
a local search; and 4) APdp(t). The APh and APs heuristics use
solutions given by a partition-based lower bound obtained by
solving an assignment problem, while the APdp(t) procedure
employs dynamic programming together with precedence rela-
tions derived from a time-decomposition lower bound obtained by
solving another assignment problem. For further details concern-
ing these procedures, please see Vilà and Pereira [28].

The proposed metaheuristics and the existing procedures were
compared not only amongst themselves, but also with optimal solu-
tions for small problem sizes. Finally, additional information is given
regarding the relative performance of the metaheuristic procedures.

4.1. Experimental design

The computational tests were performed on a set of randomly
generated problems with 10, 15, 20, 25, 30, 40, 50, 75, 100, 250 and
500 jobs. The approach used to generate the problems was the
same as the one that was used to create the linear weighted tar-
diness problem instances available in the OR-Library (http://peo-
ple.brunel.ac.uk/�mastjjb/jeb/orlib/wtinfo.html).
More specifically, the problems were generated as follows. For
each job j, an integer processing time pj was generated from a
uniform distribution between 1 and 100, while an integer weightwj

was obtained from a uniform distribution between 1 and 10. Also,
an integer due date dj was generated from the uniform distribution
P 1�T�R

2

� �
; P 1�TþR

2

� �� �
, where P is the sum of the processing

times of all jobs, T is the tardiness factor and R is the range of due
dates. Both the tardiness factor and the range of due dates para-
meters were set at 0.2, 0.4, 0.6, 0.8 and 1.0. This approach to the
generation of the due dates is the same as the one used to create
the OR-Library instances, as previously mentioned, and has also
consistently been used in the literature since early papers [30,51,52]
on problems with tardiness (or earliness and tardiness) criteria.

For each combination of problem size n, T and R, 50 instances
were randomly generated. Therefore, a total of 1250 instances
were generated for each problem size. The metaheuristics, as well
as the DR and DRþLS procedures, were coded in Cþþ and exe-
cuted on a personal computer with an Intel Core 2 Quad Q6600
2.40 GHz processor. For each instance, 10 independent runs, with
different random number seeds, were performed for the ILS, VG
and SSGA metaheuristics.

The VP procedure was run by professors Vilà and Pereira, in
their current computing facilities. This method was executed on
instances with additional earliness penalties, all set equal to 0, as
previously mentioned. The heuristics included in the VP procedure
were coded in Cþþ , and this procedure was executed on a
computer with an Intel Xeon E5–2670 2.60 GHz processor. The
time limit on the resolution of the assignment problem included in
APdp(t) was set to 3600 seconds. We remark that the use of dif-
ferent machines for the metaheuristics and DR and DRþLS pro-
cedures, on the one hand, and the VP algorithm, on the other hand,
was necessary since they were compiled for and executed under
different operating systems (Windows in the case of the former
and Linux/Mac for the latter).

4.2. Parameter adjustment tests

Extensive preliminary tests were conducted to determine
adequate values for the various parameters required by the pro-
posed metaheuristics. These experiments were performed on a
separate problem set, which included instances with 10, 25, 50,
100, 250 and 500 jobs, and contained 5 instances for each com-
bination of n, T and R. Also, only a single run was performed for
each metaheuristic on each instance.

Table 1 provides the values that were considered for each
parameter; the chosen value is both in bold and underlined. We
remark that some other alternatives were investigated regarding



T.C. Gonçalves et al. / Computers & Operations Research 70 (2016) 115–126122
the maximum allowed runtime max_rt, though they were also all
simple quadratic functions of the problem size. For the sake of
space and brevity, these are omitted.

The chosen parameter values were selected by a thorough
analysis of both the objective function values and the runtime
until the best solution was found. It should be noted that, given
the allotted maximum runtime, the procedures were quite robust
in regard to solution quality. Indeed, and with the exception of
setting ls_prob¼0, which yielded worse solutions, the various
parameter combinations provided similar results. The main dif-
ference, and therefore the major criterion in choosing the para-
meter values, was in the time required to reach that solution. Thus,
the selected values are essentially the ones that allowed the
algorithms to reach their best solution faster.

4.3. Comparison with existing results

In this section, the solutions provided by the various heuristics
(proposed and existing) are compared amongst themselves, on all
instance sizes, as well as with optimal results, for instances with
up to 50 jobs. These optimum results were obtained using the
previously mentioned branch-and-bound algorithms developed
by Schaller and Valente [6]. As described in [6], the branch-and-
bound algorithms are usually not able to solve larger instances
within reasonable computational times.

Table 2 provides the mean relative improvement the optimum
objective function value provides over the heuristic solution (ivh),
as well as the number of times an optimal solution was generated
by the heuristic (n_opt). For a given instance, the relative
improvement of the optimum objective function value versus
heuristic Hi is calculated as follows. Let ofvopt and of vHi

denote the
optimum and heuristic objective function values, respectively,
where Hi¼{DR, DRþLS, VP, ILS, VG, SSGA}. When of vHi ¼ 0, the
relative improvement versus the heuristic solution is set at 0.
Otherwise, the relative improvement provided by the optimum is
calculated as of vHi

�ofvopt
� 	

of vHi
� 100



. The ivh data in Table 2

illustrates the average performance of the ILS, VG and SSGA
metaheuristics, since the average objective function value over the
10 runs was considered in the calculation of this indicator.

We remark that the relative improvement provided by the
optimum when compared with the heuristic solution was chosen
over the more usual relative deviation from the optimum, which is
given by of vHi

�ofvopt
� 	

ofvopt � 100
.

. This is in line, and due to
the same reasons, with the analysis performed in Valente and
Schaller [7], concerning the evaluation of dispatching rules for the
same problem. Indeed, and as described in [7], the optimum
objective function values can be equal to 0 for instances with low T
and high R. Thus, for such instances the relative deviation from the
optimum would be undefined, thereby motivating the use of the
relative improvement versus the heuristic result.

The results in Table 2 show that the simple dispatching rule
itself performs quite well (as indicated in [7]), and its performance
Table 2
Comparison with optimum results.

ivh

n DR DRþLS VP ILS VG SSGA

10 0.5142 0.2626 1.2312 0.0000 0.0000 0.000
15 0.5904 0.3906 1.5570 0.0000 0.0000 0.000
20 0.6522 0.4660 1.9383 0.0000 0.0000 0.000
25 0.7801 0.6217 1.9086 0.0000 0.0002 0.000
30 0.7026 0.5552 1.8814 0.0000 0.0034 0.000
40 0.6591 0.5559 2.0882 0.0080 0.0196 0.008
50 0.7388 0.6453 2.4347 0.0000 0.0210 0.000
is further improved by the application of the local search proce-
dure. Indeed, the mean relative improvement provided by the
optimum is below 0.8%, and even for instances with 50 jobs the
DRþLS procedure provides an optimal solution for over 50% of the
instances. However, it should be noted that the performance of
both the DR and DRþLS procedures deteriorates as the instance
size increases.

The VP heuristic fails to match the performance of the DRþLS
procedure. The number of optimal solutions it provides is quite
similar to that of the DRþLS procedure. However, the non-optimal
results it provides are further away from the optimal solutions, as
shown by the mean relative improvement provided by the opti-
mum. Indeed, while this measure is always below 0.7% for the
DRþLS procedure, it is instead always higher than 1.2% for the VP
heuristic, and it is larger than 2% for instances with 40 and 50 jobs.

The metaheuristics necessarily provide a schedule that is at
least as good as the one given by DRþLS, since their first solution
is generated precisely by the QBack_v6 dispatching rule and then
improved by the local search procedure. Table 2 shows that the
metaheuristics, particularly the ILS and SSGA procedures, actually
do improve, when possible, over the DRþLS results. Indeed, the
ILS and SSGA metaheuristics provide an optimal solution for all
but a single or a couple of instances. The VG procedure also
achieves the optimum for a quite large number of instances, and
its mean relative improvement provided by the optimum solution
is quite low, and clearly superior to that of the DRþLS heuristic.

The difference in performance is, however, much higher for
some types of instance. This is clearly illustrated in Table 3, which
provides the effect of the T and R parameters, for instances with 50
jobs. This table shows that the tardiness factor T and, although to a
lesser degree, the range of due dates R, have a significant effect on
the relative performance of the heuristics. For instances with a
large tardiness factor, most jobs will be tardy, and even the simple
dispatching rule provides results that are quite close to the opti-
mum. However, the DRþLS heuristic still fails to achieve an
optimal solution for several of these instances, while the ILS and
SSGA metaheuristics always provide the optimum schedule, while
the VG procedure is nearly always optimal.

The relative difference in performance is, however, much wider
for instances with a medium and low value of T, i.e. instances
where the number of tardy jobs is not as high. This is particularly
true for instances with the lowest value of both T and R (T¼0.2,
R¼0.2), with a tardiness factor of 0.4 and an intermediate value of
R, and with T¼0.6 and a high range of due dates. For these
instances, the mean relative improvement provided by the opti-
mum is usually over 1% (3%) for the DRþLS (VP) procedure, and in
some cases is close or higher than 3% (10%). The metaheuristics, on
the other hand, are again (nearly) always optimal.

The metaheuristics and the VP algorithmwill now be compared
with the DRþLS procedure. Table 4 provides, for the metaheur-
istics, the mean relative improvement over the solution generated
by DRþLS heuristic (ivdr_ls), as well as the number of times they
n_opt

DR DRþLS VP ILS VG SSGA

0 836 1117 1130 1250.0 1250.0 1250.0
0 670 1036 1021 1250.0 1250.0 1250.0
0 531 935 968 1250.0 1249.8 1250.0
0 485 882 880 1250.0 1248.2 1250.0
0 441 849 822 1250.0 1237.5 1250.0
0 372 744 739 1249.0 1210.0 1249.0
0 330 680 690 1250.0 1142.7 1249.8



T.C. Gonçalves et al. / Computers & Operations Research 70 (2016) 115–126 123
provided a better (n_btr_dr_ls) or equal solution (n_eql_dr_ls). The
number of times the DRþLS procedure generated an optimal
solution (n_opt_dr_ls) is also repeated for convenience. Again, the
mean relative improvement over the DRþLS solution is set at
0 when a metaheuristic and the DRþLS procedure provide iden-
tical objective function values. Otherwise, ivdr_ls is calculated as
ofvDRþ LS�of vHi

� �
ofvDRþLS � 100



. For each metaheuristic, the

objective function value of vHi
is again the average over the

10 runs.
In what regards the VP procedure, Table 4 gives the number of

times it provided a solution that was better, equal and worse
(n_wrs_dr_ls) than the one given by DRþLS. As previously men-
tioned, the VP heuristic fails to match the performance of the
DRþLS procedure. Therefore, in terms of the relative improve-
ment comparison between VP and DRþLS, the reverse measure is
reported in Table 4. More specifically, this table gives the mean
relative improvement the DRþLS heuristic provides over the
Table 4
Comparison with dispatching ruleþ local search results.

dr_ls_iv ivdr_ls_avg n_btr_dr_ls

n VP ILS VG SSGA VP ILS VG S

10 0.9523 0.2626 0.2626 0.2626 117 133.0 133.0 1
15 1.1160 0.3906 0.3906 0.3906 167 214.0 214.0 2
20 1.4165 0.4660 0.4659 0.4660 252 315.0 314.8 3
25 1.2135 0.6217 0.6215 0.6217 266 368.0 367.8 3
30 1.2582 0.5552 0.5520 0.5552 271 401.0 397.6 4
40 1.4888 0.5478 0.5370 0.5478 295 506.0 492.4 5
50 1.7160 0.6453 0.6250 0.6453 306 570.0 531.3 5
75 1.8803 0.6196 0.5849 0.6196 337 719.0 634.2 7

100 1.2884 0.6521 0.5981 0.6521 342 788.0 668.4 7
250 1.0449 0.6023 0.5605 0.6022 340 937.9 800.8 9
500 0.9005 0.5126 0.4774 0.5122 288 959.0 856.2 9

Table 3
Comparison with optimum results for instances with 50 jobs.

ivh

T R DR DRþLS VP ILS VG

0.2 0.2 3.8941 3.6924 3.5117 0.0000 0.1884
0.4 0.1950 0.0000 0.0000 0.0000 0.0000
0.6 0.0000 0.0000 0.0000 0.0000 0.0000
0.8 0.0000 0.0000 0.0000 0.0000 0.0000
1.0 0.0000 0.0000 0.0000 0.0000 0.0000

0.4 0.2 0.9732 0.8626 3.7780 0.0000 0.1706
0.4 3.0774 2.8580 5.1724 0.0000 0.0372
0.6 2.8745 2.5340 4.9816 0.0000 0.0208
0.8 1.7410 1.3009 10.2261 0.0000 0.0000
1.0 0.9766 0.6866 16.5313 0.0000 0.0000

0.6 0.2 0.3319 0.2497 3.3026 0.0000 0.0352
0.4 0.5808 0.5161 4.1741 0.0000 0.0385
0.6 0.6097 0.5492 3.7023 0.0000 0.0110
0.8 1.8316 1.7473 1.8387 0.0000 0.0078
1.0 0.9522 0.8292 1.1302 0.0000 0.0144

0.8 0.2 0.0827 0.0643 1.4210 0.0000 0.0016
0.4 0.1020 0.0828 0.8567 0.0000 0.0002
0.6 0.0477 0.0304 0.0949 0.0000 0.0002
0.8 0.0896 0.0714 0.0773 0.0000 0.0000
1.0 0.0649 0.0434 0.0519 0.0000 0.0001

1.0 0.2 0.0116 0.0030 0.0038 0.0000 0.0000
0.4 0.0085 0.0024 0.0048 0.0000 0.0000
0.6 0.0104 0.0041 0.0048 0.0000 0.0000
0.8 0.0085 0.0041 0.0014 0.0000 0.0000
1.0 0.0059 0.0017 0.0013 0.0000 0.0000
solution generated by the VP procedure (drls_iv). Indeed, calcu-
lating ivdr_ls for the VP procedure would sometimes yield quite
large negative numbers, corresponding to instances with a rela-
tively low objective function value, but where the DRþLS proce-
dure provided a solution with a cost much lower (in relative
terms) than that of the VP heuristic. Thus, the drls_iv measure was
selected for VP, to avoid those quite large negative numbers which
would skew the mean.

The results in Table 4 show that the metaheuristics clearly
outperform the DRþLS procedure. Though the relative improve-
ment is only about 0.5–0.6%, such a value is consistent with the
performance of the DRþLS heuristic, and in line with the results in
Table 2. Therefore, the relative improvement provided by the
metaheuristics is similar to that of the optimal solutions. Fur-
thermore, and in line with the data presented in Table 3, the
relative improvement is actually much larger for instances with a
medium and low value of T, particularly those with (T¼0.2,
n_eql_dr_ls n_wrs_dr_ls

SGA VP ILS VG SSGA n_opt_dr_ls VP

33.0 1026 1117.0 1117.0 1117.0 1117 107
14.0 885 1036.0 1036.0 1036.0 1036 198
15.0 758 935.0 935.2 935.0 935 240
68.0 678 882.0 882.2 882.0 882 306
01.0 631 849.0 852.4 849.0 849 348
06.0 534 744.0 757.6 744.0 744 421
70.0 488 680.0 718.7 680.0 680 456
19.0 375 531.0 615.8 531.0 – 538
88.0 354 462.0 581.6 462.0 – 554
37.6 289 312.1 449.2 312.4 – 621
56.2 284 291.0 393.8 293.8 – 678

n_opt

SSGA DR DRþLS VP ILS VG SSGA

0.0000 22 27 27 50.0 45.0 50.0
0.0000 48 50 50 50.0 50.0 50.0
0.0000 50 50 50 50.0 50.0 50.0
0.0000 50 50 50 50.0 50.0 50.0
0.0000 50 50 50 50.0 50.0 50.0

0.0000 5 18 10 50.0 31.0 50.0
0.0000 3 14 9 50.0 40.9 50.0
0.0000 13 30 14 50.0 47.7 50.0
0.0000 33 43 29 50.0 50.0 50.0
0.0000 40 45 35 50.0 50.0 50.0

0.0000 1 16 3 50.0 32.8 50.0
0.0000 1 10 1 50.0 38.3 50.0
0.0001 3 15 4 50.0 41.6 49.8
0.0000 2 13 14 50.0 43.1 50.0
0.0000 1 14 21 50.0 39.4 50.0

0.0000 0 16 5 50.0 40.0 50.0
0.0000 0 10 19 50.0 47.5 50.0
0.0000 0 17 31 50.0 48.7 50.0
0.0000 0 17 26 50.0 49.4 50.0
0.0000 3 22 30 50.0 48.9 50.0

0.0000 0 25 44 50.0 50.0 50.0
0.0000 3 35 36 50.0 49.0 50.0
0.0000 0 28 41 50.0 49.8 50.0
0.0000 1 32 47 50.0 49.6 50.0
0.0000 1 33 44 50.0 50.0 50.0



Table 5
Comparison with worst metaheuristics result.

ivw n_btr_w

n ILS VG SSGA ILS VG SSGA

10 0.0000 0.0000 0.0000 0.0 0.0 0.0
15 0.0000 0.0000 0.0000 0.0 0.0 0.0
20 0.0002 0.0001 0.0002 1.0 0.8 1.0
25 0.0013 0.0011 0.0013 8.0 6.5 8.0
30 0.0109 0.0076 0.0109 29.0 20.6 29.0
40 0.0204 0.0089 0.0204 73.0 44.1 73.0
50 0.0310 0.0102 0.0310 154.0 71.8 154.0
75 0.0697 0.0341 0.0698 356.3 140.9 357.0

100 0.0676 0.0123 0.0676 480.2 168.8 480.2
250 0.0471 0.0040 0.0469 812.9 192.9 811.4
500 0.0387 0.0024 0.0383 939.1 258.5 922.2

T.C. Gonçalves et al. / Computers & Operations Research 70 (2016) 115–126124
R¼0.2), or with a tardiness factor of 0.4 and an intermediate value
of R. The number of instances for which a better solution is found
is increasing in the problem size. For the largest instances, the ILS
and SSGA heuristics improve upon the DRþLS solution in over 75%
of the cases.

As previously mentioned, the metaheuristics provide an opti-
mal solution for (nearly) all of the instances with up to 50 jobs,
thus improving over the DRþLS procedure whenever possible. For
the larger problem sizes, a significant number of the instances on
which no improvement is achieved correspond to situations
where the DRþLS heuristic already generated an optimal solution
with an objective function value of 0. Indeed, and as previously
mentioned, that is the case for about 200 instances for problems
with 250 or 500 jobs. Thus, the data seem to provide evidence that
the metaheuristics improve upon the DRþLS nearly as often as
possible, and by nearly as much as possible.

The VP procedure, on the other hand, is outperformed by the
DRþLS heuristic. Indeed, the DRþLS procedure usually provides a
relative improvement over 1%, and gives better solutions for a
larger number of instances. It should be remarked that the best
solution generated by the VP heuristic was never achieved via the
APdp(t) procedure, which provided the best performance among
those in Vilà and Pereira [28], but instead through one of the other
three simpler methods.

The APdp(t) heuristic achieved quite small optimality gaps for
the problem with both quadratic earliness and tardiness costs [28];
however, it is usually unable to improve on the solution given by
even the DRþLS procedure for the problem with only quadratic
tardiness costs. This major difference in performance is probably
due, for the most part, to the quite different nature and structure of
the two problems. Indeed, when both earliness and tardiness are
considered, all or nearly all jobs will have a positive cost, regardless
of the position in which they are scheduled. The same is not true
under a tardiness objective function: most jobs in earlier positions
will tend to be early, and therefore have a cost of 0.

This is quite relevant, since APdp(t) and most of the other
heuristics included in the VP procedure require solving an
assignment problem. When jobs have positive costs regardless of
their position in the sequence, the assignment problem can better
differentiate between the various assignment possibilities. How-
ever, under a tardiness objective function, a large number of the
coefficients involved in the assignment problem will be equal to 0
(corresponding to jobs assigned to positions were they will be
early, or on time). This complicates matters for the assignment
problem, and makes it harder for this procedure to provide useful
guidance to the algorithms included in VP. The results in Table 3
actually illustrate this issue. Indeed, VP matches or even exceeds
the performance of DRþLS for instances with both a high tardi-
ness and a large range of due dates (T¼1.0 and R¼0.8, 1.0). In
these instances, most jobs will have positive costs in the assign-
ment problem, since most jobs, even those in the earlier positions,
will indeed be tardy.

Therefore, the strategy used in the algorithms included in the
VP procedure is suited for objective functions where the cost of
each element will be almost always positive (and, as shown in
[28], provided excellent results for one such problem). However, it
does not seem to be a good fit for problems where several or most
of the costs can be equal to 0, such as the weighted quadratic
tardiness problem. In this latter case, it is then natural that it
should be outperformed for methods that are specifically tailored
to such an objective function.

Table 4 also shows that the ILS and SSGA procedures are quite
close in solution quality, and somewhat superior to the VG
metaheuristic. Indeed, the ivdr_ls values are higher for the ILS and
SSGA heuristics, and these procedures also provide a better solu-
tion for a larger number of instances. Further details concerning
the relative performance of the three metaheuristics are given in
the next section.

4.4. Comparison of the metaheuristic procedures

This section presents additional information regarding the
relative performance of the metaheuristic procedures, in regard to
both solution quality and computational time. Table 5 gives the
mean relative improvement versus the worst metaheuristic result
(ivw_avg), as well as the number of times the metaheuristics
provide a solution that is better than this worst result (n_btr_w).

Let ofvworst denotes the worst objective function value given by
the metaheuristics for a specific instance, that is, the highest
objective function value among the 30 metaheuristic solutions (10
seeds for each procedure) generated for that instance. The mean
relative improvement versus the worst provided by metaheuristic
Hi is set at 0 when of vHi ¼ ofvworst , thus avoiding divisions by 0.
Otherwise, ivw_avg is calculated as ofvworst�of vHi

� �
ofvworst � 100= .

For each metaheuristic, the objective function value of vHi
is again

the average over the 10 runs.
The results in Table 5 show that the metaheuristics are close

and robust in what regards solution quality. Indeed, the mean
relative improvement versus the worst result is never larger than
0.07%, so the worst objective function value is quite close to the
average. The data in Table 5 also confirms that the ILS and SSGA
procedures are somewhat similar regarding solution quality, with
a very slight advantage to the ILS heuristic, and are superior to the
VG metaheuristic. Indeed, and on the one hand, the ivw_avg
values are smaller for the VG procedure. Also, and on the other
hand, the ILS and SSGA heuristics provide a solution that is better
than the worst for most of the instances, while the VG procedure
fails to do so in most cases.

The average computational times (in seconds) for the meta-
heuristics are provided in Table 6. More specifically, this table
gives the average runtime required to obtain the best solution
found (rt_best), as well as the maximum allowed runtime
(max_rt). Runtimes are not reported for the DR or DRþLS proce-
dures, since these are extremely efficient. Indeed, and as an
example, the DRþLS heuristic requires, on average, about less
than 1 s for much larger instances with 2000 jobs.

The VP procedure was executed on a different computer, and its
computational times are also not included in Table 6. However, the
results showed that this procedure is substantially more time
consuming than the metaheuristics. Specifically, and for instance,
the average runtimes were larger than 33, 307 and 1313 s for
instances with 100, 250 and 500 jobs, respectively. For these same
instance sizes, the maximum time alloted to the metaheuristics, on
the other hand, was 1.5, 6.75 and 25.5 s, respectively. Furthermore,
the benchmarks available at http://www.cpubenchmark.net



Table 6
Computational times (in seconds).

rt_best

n ILS VG SSGA max_rt

10 0.0000 0.0000 0.0000 0.5100
15 0.0000 0.0001 0.0000 0.5225
20 0.0000 0.0007 0.0001 0.5400
25 0.0000 0.0029 0.0002 0.5625
30 0.0001 0.0069 0.0004 0.5900
40 0.0006 0.0147 0.0012 0.6600
50 0.0021 0.0273 0.0023 0.7500
75 0.0126 0.0607 0.0084 1.0625

100 0.0416 0.0946 0.0225 1.5000
250 0.8114 0.3513 0.5217 6.7500
500 6.3276 1.3465 3.0996 25.5000

T.C. Gonçalves et al. / Computers & Operations Research 70 (2016) 115–126 125
indicate that the computer on which the VP procedure was exe-
cuted has a CPU that is over 4 times faster than the one used to run
the metaheuristics. Thus, the runtimes given above for the VP
procedure would have be multipled by about 4 to be comparable
with the metaheuristic computation times. However, it should be
remarked that the APdp(t) method accounts for most of the VP
procedure’s computation time. The remaining 3 methods included
in the VP heuristic are quite fast and, as previously mentioned, the
solution of the VP procedure was always given by one of these
methods.

These results show that the time required for the VG procedure
to reach its best solution scales better with the problem size.
Indeed, and although it requires a larger time than the ILS and
SSGA procedures for problems with 100 or fewer jobs, it is then
much faster for the larger instances with 250 and 500 jobs. The ILS
procedure, on the other hand, takes the longest to reach its best
solution for these larger problem sizes. The rt_best values are
much smaller than the maximum allowed runtime, so the chosen
stop criterion does not seem to limit, at least in most cases, the
ability of the algorithms to obtain a good solution.

The ILS procedure provides the best performance in what
regards solution quality, albeit by a quite small margin when
compared with the SSGA method. However, it also requires the
longest to reach its best solution for the larger instance sizes. The
VG algorithm is actually on the opposite end, since it is the fastest,
but gives the worst solution quality results. The SSGA metaheur-
istic is a good all-around performer, providing a solution quality
close to that of the ILS procedure, and an acceptable runtime.

When the available runtime is not likely to impair the ILS
procedure, this is then the method of choice. However, if the time
available to generate a solution is expected to be an issue, the VG
algorithm usually reaches its best solution faster. In the face of
uncertainty concerning the suitability of the available time, the
SSGA metaheuristic is a good all-around performer.
5. Conclusion

In this paper, we considered the single machine scheduling
problem with weighted quadratic tardiness costs. Three meta-
heuristics (ILS, VG and SSGA) were proposed, as well as a local
search procedure which incorporates problem specific informa-
tion. These heuristics fill a gap in the existing literature, which
consists of branch-and-bound algorithms, which can provide an
optimal solution for small instances, and efficient dispatching
rules, which are often the only heuristic approach capable of
providing solutions, in reasonable time, for large problems.
Metaheuristics can often be quite useful for medium sized
problems, for which they can usually give high quality solutions
within reasonable computational times.

The proposed heuristics clearly outperform the DR, DRþLS and
VP procedures. Indeed, the ILS and SSGA algorithms provide an
optimal solution for all the smaller size problems, while the VG
heuristic is nearly always optimal. The computational results
provide evidence that the metaheuristics improve upon the
DRþLS procedure both nearly as much as possible, and nearly as
often as possible. Therefore, the proposed heuristics are the new
procedures of choice for medium sized problems. For quite large
instances, on which the metaheuristics are likely to require
excessive computational time, the DRþLS heuristic can now
replace the DR procedure, since the proposed local search method
is both efficient and effective in improving the solution given by
the QBack_v6 dispatching rule.

The ILS algorithm provides the best performance in terms of
solution quality, but is also requires the longest time to reach its
best solution for the larger of the tested instance sizes. The VG
algorithm is exactly on the opposite end of the spectrum, while
the SSGA is a good all-around performer. Thus, the choice of
method is likely to depend on the information, or lack thereof,
concerning the maximum available runtime and the computa-
tional effort required by each procedure.
Acknowledgment

The authors are most grateful to professors Mariona Vilà and
Jordi Pereira for their help. Their willingness to run our instances
on their algorithms made it possible to include a comparison with
the VP procedure, thereby adding a valuable contribution to this
paper. We greatly appreciate their help and effort.
References

[1] Wagner BJ, Davis DJ, Kher HV. The production of several items in a single
facility with linearly changing demand rates. Decis Sci 2002;33(3):317–46.

[2] Sun XQ, Noble JS, Klein CM. Single-machine scheduling with sequence
dependent setup to minimize total weighted squared tardiness. IIE Trans
1999;31(2):113–24.

[3] Hoitomt DJ, Luh PB, Max E, Pattipati KR. Scheduling jobs with simple pre-
cedence constraints on parallel machines. Control Syst Mag IEEE 1990;
10(2):34–40.

[4] Thomalla CS. Job shop scheduling with alternative process plans. Int J Prod
Econ 2001;74(1-3):125–34.

[5] Taguchi G. Introduction to quality engineering: designing quality into products
and processes. Tokio: Japan: Asian Productivity Organization; 1986.

[6] Schaller J, Valente JMS. Minimizing the weighted sum of squared tardiness on
a single machine. Comput Oper Res 2012;39(5):919–28.

[7] Valente JMS, Schaller JE. Dispatching heuristics for the single machine
weighted quadratic tardiness scheduling problem. Comput Oper Res 2012;
39(9):2223–31.

[8] Lawler ELA. "Pseudopolynomial" algorithm for sequencing jobs to minimize
total tardiness. In: Hammer ELJBHK PL, Nemhauser GL, editors. Annals of
discrete mathematics. Elsevier; 1977. p. 331–42.

[9] Lenstra JK, Rinnooy Kan AHG, Brucker P. Complexity of machine scheduling
problems. In: Hammer ELJBHK PL, Nemhauser GL, editors. Annals of discrete
mathematics. Elsevier; 1977. p. 343–62.

[10] Gupta SK, Sen T. Minimizing a quadratic function of job lateness on a single-
machine. Eng Cost Prod Econ 1983;7(3):187–94.

[11] Sen T, Dileepan P, Lind MR. Minimizing a weighted quadratic function of job
lateness in the single machine system. Int J Prod Econ 1995;42(3):237–43.

[12] Su LH, Chang PC. A heuristic to minimize a quadratic function of job lateness
on a single machine. Int J Prod Econ 1998;55(2):169–75.

[13] Schaller J. Minimizing the sum of squares lateness on a single machine. Eur J
Oper Res 2002;143(1):64–79.

[14] Soroush HM. A note on "minimizing a weighted quadratic function of job
lateness in the single machine system". Int J Prod Econ 2009;121(1):296–7.

[15] Soroush HM. Single-machine scheduling with inserted idle time to minimise a
weighted quadratic function of job lateness. Eur J Ind Eng 2010;4(2):131–66.

[16] Schaller J. Single machine scheduling with early and quadratic tardy penalties.
Comput Ind Eng 2004;46(3):511–32.

http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref1
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref1
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref1
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref2
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref2
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref2
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref2
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref3
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref3
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref3
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref3
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref4
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref4
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref4
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref5
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref5
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref6
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref6
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref6
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref7
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref7
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref7
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref7
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref8
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref8
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref8
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref8
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref9
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref9
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref9
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref9
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref10
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref10
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref10
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref11
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref11
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref11
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref12
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref12
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref12
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref13
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref13
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref13
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref14
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref14
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref14
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref15
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref15
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref15
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref16
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref16
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref16


T.C. Gonçalves et al. / Computers & Operations Research 70 (2016) 115–126126
[17] Valente JMS. Beam Search heuristics for the single machine scheduling pro-
blem with linear earliness and quadratic tardiness costs. Asia Pac J Oper Res
2009;26(3):319–39.

[18] Valente JMS. An exact approach for the single machine scheduling problem
with linear early and quadratic tardy penalties. Asia Pac J Oper Res 2008;
25(2):169–86.

[19] Valente JMS. Heuristics for the single machine scheduling problem with early
and quadratic tardy penalties. Eur J Ind Eng 2007;1(4):431–48.

[20] Valente JMS, Schaller JE. Improved heuristics for the single machine sche-
duling problem with linear early and quadratic tardy penalties. Eur J Ind Eng
2010;4(1):99–129.

[21] Behnamian J, Zandieh M. A discrete colonial competitive algorithm for hybrid
flowshop scheduling to minimize earliness and quadratic tardiness penalties.
Expert Syst Appl 2011;38(12):14490–8.

[22] Valente JMS, Alves RAFS. Heuristics for the single machine scheduling pro-
blem with quadratic earliness and tardiness penalties. Comput Oper Res
2008;35(11):3696–713.

[23] Valente JMS, Moreira MRA. Greedy randomised dispatching heuristics for the
single machine scheduling problem with quadratic earliness and tardiness
penalties. Int J Adv Manuf Technol 2009;44(9-10):995–1009.

[24] Valente JMS. Beam search heuristics for quadratic earliness and tardiness
scheduling. J Oper Res Soc 2010;61(4):620–31.

[25] Valente JMS, Moreira MRA, Singh A, Alves RAFS. Genetic algorithms for single
machine scheduling with quadratic earliness and tardiness costs. Int J Adv
Manuf Technol 2011;54(1):251–65.

[26] Singh A, Valente JMS, Moreira MRA. Hybrid heuristics for the single machine
scheduling problem with quadratic earliness and tardiness costs. Int J Mach
Learn Cybern 2012;3(4):327–33.

[27] Kianfar K, Moslehi G. A branch-and-bound algorithm for single machine
scheduling with quadratic earliness and tardiness penalties. Comput Oper Res
2012;39(12):2978–90.

[28] Vila M, Pereira J. Exact and heuristic procedures for single machine scheduling
with quadratic earliness and tardiness penalties. Comput Oper Res 2013;
40(7):1819–28.

[29] Abdul-Razaq TS, Potts CN, van Wassenhove LN. A survey of algorithms for the
single-machine total weighted tardiness scheduling problem. Discret Appl
Math 1990;26(2–3):235–53.

[30] Potts CN, van Wassenhove LN. Single-machine tardiness sequencing heur-
istics. IIE Trans 1991;23(4):346–54.

[31] Sen T, Sulek JM, Dileepan P. Static scheduling research to minimize weighted
and unweighted tardiness: a state-of-the-art survey. Int J Prod Econ 2003;
83(1):1–12.

[32] Baxter J. Local optima avoidance in depot location. J Oper Res Soc 1981;
32(9):815–9.

[33] Baum EB. Iterated descent: a better algorithm for local search in combinatorial
optimization problems (Technical report). Pasadena, CA: Caltech; 1986.
[34] BE, B. Towards practical 'neural' computation for combinatorial optimization
problems. In: Proceedings of AIP Conference 151 on Neural Networks for Com-
puting. Snowbird, Utah, USA: American Institute of Physics Inc.; 1987. p. 53–8.

[35] Congram RK, Potts CN, van de Velde SL. An iterated dynasearch algorithm for
the single-machine total weighted tardiness scheduling problem. INFORMS J
Comput 2002;14(1):52–67.

[36] Johnson DS. Local Optimization and the Traveling Salesman Problem. Lect
Notes Comput Sc 1990;443:446–61.

[37] Lourenco HR. Job-shop scheduling-computational study of local search and
large-step optimization methods. Eur J Oper Res 1995;83(2):347–64.

[38] Lourenço HR, Martin OC, Stützle T. Iterated Local Search. In: Glover F,
Kochenberger GA, editors. Handbook of metaheuristics. Dordrecht: Kluwer
Academic Publishers; 2003. p. 321–53.

[39] Martin O, Otto SW, Felten EW. Large-step Markov chains for the traveling
salesman problem. Complex Syst 1991;5(3):299–326.

[40] Martin OC, Otto SW. Combining simulated annealing with local search heur-
istics. Ann Oper Res 1996;63:57–75.

[41] Framinan JM, Leisten R. Total tardiness minimization in permutation flow
shops: a simple approach based on a variable greedy algorithm. Int J Prod Res
2008;46(22):6479–98.

[42] Ruiz R, Stützle T. A simple and effective iterated greedy algorithm for the per-
mutation flowshop scheduling problem. Eur J Oper Res 2007;177(3):2033–49.

[43] Ruiz R, Stützle T. An Iterated Greedy heuristic for the sequence dependent
setup times flowshop problem with makespan and weighted tardiness
objectives. Eur J Oper Res 2008;187(3):1143–59.

[44] Mladenovic N, Hansen P. Variable neighborhood search. Comput Oper Res
1997;24(11):1097–100.

[45] Nawaz M, Enscore Jr EE, Ham I. A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. Omega 1983;11(1):91–5.

[46] Holland JH. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. Ann
Arbor, Michigan: University of Michigan Press; 1975.

[47] Davis L. Handbook of genetic algorithms. New York: Van Nostrand Reinhold;
1991.

[48] Goldberg DE, Deb K. A comparative analysis of selection schemes used in
genetic algorithms. Found Genet Algorithms 1990:69–93.

[49] Reeves C. Genetic algorithms. In: Glover F, Kochenberger GA, editors. Hand-
book of metaheuristics. Dordrecht: Kluwer Academic Publishers; 2003.
p. 55–82.

[50] Beasley JE, Chu PC. A genetic algorithm for the set covering problem. Eur J
Oper Res 1996;94(2):392–404.

[51] Ow PS, Morton TE. Filtered beam search in scheduling. Int J Prod Res 1988;
26(1):35–62.

[52] Ow PS, Morton TE. The single-machine early tardy problem. Manag Sci
1989;35(2):177–91.

http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref17
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref17
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref17
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref17
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref18
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref18
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref18
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref18
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref19
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref19
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref19
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref20
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref20
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref20
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref20
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref21
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref21
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref21
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref21
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref22
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref22
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref22
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref22
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref23
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref23
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref23
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref23
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref24
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref24
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref24
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref25
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref25
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref25
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref25
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref26
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref26
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref26
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref26
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref27
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref27
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref27
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref27
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref28
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref28
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref28
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref28
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref29
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref29
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref29
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref29
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref30
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref30
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref30
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref31
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref31
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref31
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref31
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref32
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref32
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref32
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref33
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref33
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref34
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref34
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref34
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref34
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref35
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref35
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref35
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref36
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref36
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref36
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref37
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref37
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref37
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref37
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref38
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref38
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref38
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref39
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref39
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref39
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref40
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref40
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref40
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref40
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref41
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref41
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref41
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref42
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref42
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref42
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref42
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref43
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref43
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref43
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref44
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref44
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref44
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref45
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref45
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref45
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref46
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref46
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref47
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref47
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref47
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref48
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref48
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref48
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref48
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref49
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref49
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref49
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref50
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref50
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref50
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref51
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref51
http://refhub.elsevier.com/S0305-0548(16)00006-X/sbref51

	Metaheuristics for the single machine weighted quadratic tardiness scheduling problem
	Introduction
	Local search procedure
	Metaheuristics
	Iterated local search
	Variable greedy
	Steady-state genetic algorithm

	Computational results
	Experimental design
	Parameter adjustment tests
	Comparison with existing results
	Comparison of the metaheuristic procedures

	Conclusion
	Acknowledgment
	References




