Delay Accounting Optimization Procedure
to Enhance End-to-End Delay
Estimation in WSNs

Pedro Pinto! ™9, Anténio Pinto?, and Manuel Ricardo®

L ESTG, Instituto Politécnico de Viana do Castelo and INESC TEC,
Viana do Castelo and Porto, Portugal
pedropinto@estg.ipvc.pt
2 CIICESI, ESTGF, Politécnico do Porto and INESC TEC, Porto, Portugal
apinto@inescporto.pt
3 INESC TEC, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
mricardo@inescporto.pt

Abstract. Real-time monitoring applications may generate delay sensi-
tive traffic that is expected to be delivered within a firm delay boundary
in order to be useful. In this context, a previous work proposed an End-
to-End Delay (EED) estimation mechanism for Wireless Sensor Networks
(WSNs) to preview potential useless packets, and to early discard them
in order to save processing and energy resources. Such estimation mech-
anism accounts delays using timers that make use of an Exponentially
Weighted Moving Average (EWMA) function where the smoothing fac-
tor is a constant defined prior to the WSN deployment. Later experiments
showed that, in order to enhance the estimation results, such smoothing
factor should be defined as a function of the network load.

The current work proposes an optimization of the previous estimation
mechanism that works by evaluating the network load and by adapting
the smoothing factor of the EWMA function accordingly. Results show
that this optimization leads to a more accurate EED estimation for dif-
ferent network loads.

Keywords: End-to-End Delay - Delay Estimation - EWMA - Smooth-
ing factor

1 Introduction

Real-time applications may generate packet flows requiring specific service levels
from the network. Applications that use delay sensitive flows can assume that
such flows are only useful if received within a strict delay limit and useless other-
wise. The deployment of these applications on top of Wireless Sensor Networks
(WSNs) with scarce energy and processing resources, requires additional efforts
in order to preview and avoid the transmission of potential useless data pack-
ets. Our previous work [1] presents an End-to-End Delay Estimation Mechanism
(EEDEM) for delay sensitive applications deployed on a WSN that tries to accu-
rately classify the usefulness of data packets in real-time. EEDEM estimates the

© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2015
S. Mumtaz et al. (Eds.): WICON 2014, LNICST 146, pp. 14-19, 2015.
DOI: 10.1007/978-3-319-18802-7-3

Delay Accounting Optimization Procedure 15

End-to-End Delay (EED) based on the internal delays experienced by previously
sent packets, and delay information from other nodes through the use of Rout-
ing Protocol for Low-power and Lossy Networks (RPL). All internal delays are
accounted using an Exponentially Weighted Moving Average (EWMA) function,
which defines the weight of the last value in relation to the history value, using
a constant smoothing factor (3) defined a priori. In order to enhance the EED
estimation, the 8 factor should be defined as a function of the network load.
This paper presents a Delay Accounting Optimization Procedure (DAOP)
which dynamically applies, at each node, the best 8 as function of the network
load. Thus, DAOP enables the lowest estimation error for multiple network loads.
The structure of this paper is as follows. Section 2 presents the related work.
Section 3 details the preliminary experiments conducted. Section 4 describes the
current proposal. Section 5 shows the results obtained. Section 6 concludes paper.

2 Related Work

EEDEM [1] assumes that a set of generator/forwarder nodes generate and for-
ward data to a sink node, and that the sink node is the ultimate destination of
all data. Each node accounts for the time elapsed while the packet is processed
within the stack of the generator node, the time elapsed while in the MAC
layer queuing, and the time elapsed in packet transmissions. Delay accounting
is accomplished by using timers that register delays between labels inserted into
parts of the code where the data passes through, ranging from the application
in the generator node to the application in the sink node (see Fig. 1).

APP-send APP-send
L5L3D Label
: . Data Flow
ulP6-in/fwd/out ulP6-in/fwd/out —_—
L3L2D FwdL2L3D N
Processin
MAC-queueing MAC-received)(MAC-queueing MAC-received Delay ’
QueueD
(PHY—received PHY-received) PHY-received PHY-received \Link
Delay
TransD—/ '4 g

Fig. 1. EEDEM overview

The internal delays used are: 1) Generation Internal Delay (GenlntDelay)
registered when packets are generated; 2) Forward Internal Delay (FwdIntDe-
lay) registered when packets are being forwarded; 3) Receiving Internal Delay
(RecIntDelay) registered when packets reach the destination. The GenlntDelay
obtained at a node 7 with a parent p is calculated as follows:

GenlIntDelay;, = L5L3D; + L3L2D; + QueueD; + TransD;, (1)

The FwdIntDelay obtained at a node p with a parent s is calculated as
follows:

16 P. Pinto et al.

FwdIntDelayys = FwdL2L3D, + L3L2D, + QueueD, + TransD,s (2)
The RecIntDelay obtained at the sink s node is calculated as follows:
RecIntDelay, = L2L3D, + L3L5D (3)

where LzLyD is the delay between layer z and layer y, QueueD is the MAC
queuing delay, and TransD is the transmission delay.

Each node calculates the delay of all the path up to the sink node by using a
feedback mechanism that announces back the cumulative delays to other nodes
using RPL [2] with delay-based metrics (RPLMetrics). Each node provides a
real-time EED estimation up to the sink, per generated packet, by combining
the internal delays with the RPLMetrics. In [3] a set of RPL modifications was
proposed to improve EEDEM work. Regarding the internal delay, each compo-
nent (GenlntDelay, FwdIntDelay and RecIntDelay) is obtained by using EWMA.
The last delay and the all delay history values, for a packet n, are calculated
using a [as follows:

Delay™ = 3.Delay'*** + (1 — 8).Delay™* (4)

Our previous EEDEM work estimates delays using a constant value for the [,
defined a priori. Better estimation results are achieved when using different
G values, adapted depending on the network load. Other research efforts use
or adapt EWMA for estimation purposes. In [4] authors present an adaptive
forecast method based on EWMA. In [5] authors propose the use of routing
metrics that are obtained using EWMA.

3 Preliminary Experiments

Preliminary experiments were performed in order to better understand how the
EED estimation error (EED_Error) changes in relation to different 5 values. The
Cooja simulator [6] was used to setup a WSN of 16 nodes plus a sink node, all
nodes were simulated as Tmote Sky [7] and configured with a transmission range
of 30 m using the Unit Disk Graph Medium as physical channel model. The nodes
ran the Contiki OS 2.5 and were deployed in a grid topology within an area of
100m?. The application layer used UDP and it generated packets of 100 Bytes in
a constant rate here defined as Inter-packet Generation Intervals (IGI). Simula-
tions were configured to stop whenever the sink node received 100 packets from
each node, and were repeated 10 times using random seeds. The simulator was
configured to output the instant of time when a packet was generated and when
a packet reached the destination application. For each generated packet, the
estimated EED (estEED) was collected and later compared with the real EED
(realEED). Finally, when the simulation ended, the EED_Error for N samples
was obtained using the difference between est EED and real EED calculated using
the Symmetric Mean Absolute Percentage Error (SMAPE) according to Eq. 5,
expressed in a value between 0% and 200 %. SMAPE compares the difference

Delay Accounting Optimization Procedure 17

between estEED and realEED with the mean of these two values, thus treating
over and under estimations equally, avoiding distortion on the average value.

()

The results obtained for the EED_Error and its confidence interval are shown
in Fig. 2. Different 8 values were used for IGIs of 1, 2.5, 5, and 10s. The results
show that for high network loads (lower IGIs) a high § provided the lowest
EED _Error, while for low network loads (IGI above 2.5s) a lower (8 should be
used. Whenever a node is experiencing a high network load, the EED values will
vary with a higher amplitude, thus, in order to enhance EED estimation, the
last EED sample must have a higher weight than the EED history. In short, a
high 8 value should be used in high network loads.

N
1 lestEED,, — real EED,,|
FED E = —
TTOT(S]\/IAPE)(%) NT; (eStEEDn"’TealEEDn)/Q

EED_Error (%)
90 = T T
asi 86 T EEDEM with B=10% —+— _|
EEDEM with B=30% —%— |
80 84 3
— e A EEDEM with B=50%
< 75 F o EEDEM with B=70% —>— |
g 7 X EEDEM with B=90% —e— 7]
S 65 78
@ g N\ 76 =
a N 1
w 55 * f
Wy ¥ I 4
S S m—— -
45
20 7 ; :
35 T |] r
1 2 3 4 5 6 7 8 9 10

Inter-packet Generation Interval (s)

Fig. 2. EED_Error using 3 varying from 10 % to 90 %

4 Delay Accounting Optimization Procedure

The preliminary experiments demonstrated that, in order to minimize the EED_
Error, each node must be aware of its network load. Our proposal Delay Account-
ing Optimization Procedure (DAOP) infers the network load by monitoring the
real-time usage of the MAC queue and then, based on the size of the queue,
selects the best 3 value and applies it in all internal timers. Figure 3 shows how
the DAOP is integrated within the EEDEM. The DAOP assumes 4 intervals
within the MAC-queueing block: i1, i2, i3, and i4. In interval i1 (from 0 up to 2
packets in the MAC queue) the DAOP assumes a low network load, in interval
i2 (3 or 4 packets) and i3 (5 or 6 packets) the DAOP assumes a medium network
load, and in interval i4 (from 7 up to the queue limit, i.e. 8 packets) it assumes
a high network load. When a node sends a packet the queue usage is monitored
and for intervals i1, 2, i3, or i4, a 8 value of 10 %, 30 %, 50 % or 70 % is applied,
respectively, in all internal timers (8 of 90 % was not used since it introduces
higher EED_Error using DAOP). Since 3 values are calculated when packets are
sent, the computational cost of DAOP will grow linearly with the sent packets,
i.e., the procedure complexity is O(n).

18 P. Pinto et al.

Data Flow
Generator/Forwarder node
Application EED RPL RPL Info
Send Mechanism Internal Delays Delay Info
EED Est. Info,
—
ulP6-in/fwd/out DAOP MAC-queueing DAOP info
g5\ 3
- S |3 | Send
— sl L R
PHY & MAC Ls 71654321
44— le—iT—Pi—i2— P i1

Fig. 3. DAOP integration in EEDEM

5 Results

The proposed solution monitors the MAC queue usage to infer the network
load in real-time. Figure4 shows the usage of the MAC queue for two cases:
when the IGI is equal to 1, and when the IGI is equal to 5. The values were
obtained in a node one hop away from to the sink, whenever a packet is to be
sent. The results show that, for lower IGIs, the MAC queue has roughly 6 or

MAC queue size (packets) in node 7 (IGI=1) MAC queue size (packets) in node 7 (IGI=5)

o T T T T Q\ T (IG\| 1 T o T T T T Q\ T \(IGI \5)
U ueue usage =1) —— | L ueue usage =2) — |
- 11 W AT Ty
E u I 1 5.
g s | S s
Qo Qo
S L] S
g | g,
] ‘]
= 2 4N I
= o
g ! g’
=z 9 ‘ I I I 1 I I I I) ‘\ I I I I I I L L L

20 30 40 50 60 70 80 90 100 110 0 50 100 150 200 250 300 350 400 450 500 550

Simulation time (seconds) Simulation time (seconds)

Fig. 4. MAC queue usage. Left: IGI=1 Right: IGI=5

EED_Error (%)

20 - -
as‘t 86] EEDEM with B=10% |
aok 84 EEDEM with B=30% —*— |
s O\ — e \ EEDEM with B=50% —=— |
% N EEDEM with B=70% —<—
£ 70 80 EEDEM with B=90% —e— |
S 65 78 EEDEM using DAOP —e— |
& 60 \ 5 76 = -
a 1
B s i
50 3 e —— -
45 R S S— —
40 e
35 -
1 2 3 4 5 6 7 8 9 10

Inter-packet Generation Interval (s)

Fig. 5. EED_Error for EEDEM using different 8 and using DAOP

Delay Accounting Optimization Procedure 19

more packets, on average, and for an IGI equal to 5, the MAC queue has roughly
1 packet during all the simulated time.

Figure 5 compares the EED_Error obtained using the proposed solution with
those obtained with constant 3 values of 10 %, 30 %, 50 %, 70 % and 90 %, for
different IGI values. The results show that, by monitoring the MAC queue usage,
the proposed DAOP dynamically infers network load and applies a 8 value that
matches the best ones for each IGI in the preliminary experiments. Thus, DAOP
presents the lowest EED _Error for all the different network loads.

6 Conclusions

Our previous proposal to estimate EED accounts for internal delays and uses
RPL to feedback delays to the remaining nodes. The internal delays are
accounted using an EWMA function, where the smoothing factor § is constant
and defined a priori. Experimentation showed that the best EED estimation
error results are obtained by varying the 8 value as a function of the network load.

This paper proposes a delay accounting procedure that dynamically adapts
the § value inferring the network load by actively monitoring the node’s MAC
queue size. The results obtained show that the current solution provides a more
accurate EED estimation for different network loads than our previous solution.

References

1. Pinto, P., Pinto, A., Ricardo, M.: End-to-end delay estimation using RPL metrics
in WSN. In: IFIP Wireless Days (WD), pp. 1-6 (2013)

2. Winter, E.T., Thubert, E.P., Brandt, A., Hui, J., Kelsey, R., Levis, P., Struik, R.,
Vasseur, E.J.P., Alexander, R.: RPL: IPv6 Routing Protocol for Low-Power and
Lossy Networks. RFC 6550, March 2012

3. Pinto, P., Pinto, A., Ricardo, M.: RPL modifications to improve the end-to-end
delay estimation in WSN, In: Proceedings of the 11th International Symposium on
Wireless Communication Systems (ISWCS), Barcelona, Spain, August 2014

4. Nembharda, H.B., Kaoa, M.S.: Adaptive forecast-based monitoring for dynamic
systems. Technometrics 45(3), 208-219 (2003)

5. Li, H., Cheng, Y., Zhou, C., Zhuang, W.: Routing metrics for minimizing end-to-end
delay in multiradio multichannel wireless networks. IEEE Trans. Parallel Distrib.
Syst. 24(11), 2293-2303 (2013)

6. Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., Voigt, T.: Cross-level sensor
network simulation with COOJA. In: Proceedings of 31st IEEE Conference on Local
Computer Networks, pp. 641-648 (2006)

7. Tmote Sky Project. http://www.snm.ethz.ch/Projects/ TmoteSky

8. Contiki OS. http://www.contiki-os.org

http://www.snm.ethz.ch/Projects/TmoteSky
http://www.contiki-os.org

