Variability, Scalability and Stability of Microgrids
Other volumes in this series:

Volume 1 **Power Circuit Breaker Theory and Design** C.H. Flurscheim (Editor)
Volume 4 **Industrial Microwave Heating** A.C. Metaxas and R.J. Meredith
Volume 7 **Insulators for High Voltages** J.S.T. Looms
Volume 8 **Variable Frequency AC Motor Drive Systems** D. Finney
Volume 10 **SF₆ Switchgear** H.M. Ryan and G.R. Jones
Volume 11 **Conduction and Induction Heating** E.J. Davies
Volume 13 **Statistical Techniques for High Voltage Engineering** W. Hauschild and W. Mosch
Volume 14 **Uninterruptible Power Supplies** J. Platts and J.D. St Aubyn (Editors)
Volume 16 **Electricity Economics and Planning** T.W. Berrie
Volume 18 **Vacuum Switchgear** A. Greenwood
Volume 19 **Electrical Safety: A guide to causes and prevention of hazards** J. Maxwell Adams
Volume 21 **Electricity Distribution Network Design, 2nd Edition** E. Lakervi and E.J. Holmes
Volume 22 **Artificial Intelligence Techniques in Power Systems** K. Warwick, A.O. Ekwue and R. Aggarwal (Editors)
Volume 24 **Power System Commissioning and Maintenance Practice** K. Harker
Volume 25 **Engineers’ Handbook of Industrial Microwave Heating** R.J. Meredith
Volume 26 **Small Electric Motors** H. Moczala et al.
Volume 27 **AC–DC Power System Analysis** J. Arrillaga and B.C. Smith
Volume 29 **High Voltage Direct Current Transmission, 2nd Edition** J. Arrillaga
Volume 30 **Flexible AC Transmission Systems (FACTS)** Y.-H. Song (Editor)
Volume 31 **Embedded Generation** N. Jenkins et al.
Volume 32 **High Voltage Engineering and Testing, 2nd Edition** H.M. Ryan (Editor)
Volume 33 **Overvoltage Protection of Low-Voltage Systems, Revised Edition** P. Hasse
Volume 36 **Voltage Quality in Electrical Power Systems** J. Schlabbach et al.
Volume 37 **Electrical Steels for Rotating Machines** P. Beckley
Volume 38 **The Electric Car: Development and future of battery, hybrid and fuel-cell cars** M. Westbrook
Volume 39 **Power Systems Electromagnetic Transients Simulation** J. Arrillaga and N. Watson
Volume 40 **Advances in High Voltage Engineering** M. Haddad and D. Warne
Volume 41 **Electrical Operation of Electrostatic Precipitators** K. Parker
Volume 43 **Thermal Power Plant Simulation and Control** D. Flynn
Volume 44 **Economic Evaluation of Projects in the Electricity Supply Industry** H. Khatib
Volume 45 **Propulsion Systems for Hybrid Vehicles** J. Miller
Volume 46 **Distribution Switchgear** S. Stewart
Volume 47 **Protection of Electricity Distribution Networks, 2nd Edition** J. Gers and E. Holmes
Volume 48 **Wood Pole Overhead Lines** B. Wareing
Volume 49 **Electric Fuses, 3rd Edition** A. Wright and G. Newbery
Volume 50 **Wind Power Integration: Connection and system operational aspects** B. Fox et al.
Volume 51 **Short Circuit Currents** J. Schlabbach
Volume 52 **Nuclear Power** J. Wood
Volume 53 **Condition Assessment of High Voltage Insulation in Power System Equipment** R.E. James and Q. Su
Volume 55 **Local Energy: Distributed generation of heat and power** J. Wood
Volume 56 **Condition Monitoring of Rotating Electrical Machines** P. Tavner, L. Ran, J. Penman and H. Sedding
Volume 58 **Lightning Protection** V. Cooray (Editor)
Volume 59 **Ultracapacitor Applications** J.M. Miller
Volume 62 Lightning Electromagnetics V. Cooray
Volume 65 Protection of Electricity Distribution Networks, 3rd Edition J. Gers
Volume 66 High Voltage Engineering Testing, 3rd Edition H. Ryan (Editor)
Volume 67 Multicore Simulation of Power System Transients F.M. Uriate
Volume 68 Distribution System Analysis and Automation J. Gers
Volume 69 The Lightening Flash, 2nd Edition V. Cooray (Editor)
Volume 70 Economic Evaluation of Projects in the Electricity Supply Industry, 3rd Edition H. Khatib
Volume 72 Control Circuits in Power Electronics: Practical issues in design and implementation M. Castilla (Editor)
Volume 73 Wide Area Monitoring, Protection and Control Systems: The enabler for smarter grids A. Vaccaro and A. Zobaa (Editors)
Volume 74 Power Electronic Converters and Systems: Frontiers and applications A.M. Trzynadlowski (Editor)
Volume 75 Power Distribution Automation B. Das (Editor)
Volume 76 Power System Stability: Modelling, analysis and control B. Om P. Malik
Volume 77 Numerical Analysis of Power System Transients and Dynamics A. Ametani (Editor)
Volume 79 Vehicle-to-Grid: Linking electric vehicles to the smart grid J. Lu and J. Hossain (Editors)
Volume 81 Cyber-Physical-Social Systems and Constructs in Electric Power Engineering S. Suryanarayanan, R. Roche and T.M. Hansen (Editors)
Volume 82 Periodic Control of Power Electronic Converters F. Blaabjerg, K. Zhou, D. Wang and Y. Yang
Volume 86 Advances in Power System Modelling, Control and Stability Analysis F. Milano (Editor)
Volume 87 Cogeneration: Technologies, optimisation and implementation C.A. Frangopoulos (Editor)
Volume 88 Smarter Energy: From smart metering to the smart grid H. Sun, N. Hatzigiargyriou, H.V. Poor, L. Carpanini and M.A. Sánchez Fornié (Editors)
Volume 89 Hydrogen Production, Separation and Purification for Energy A. Basile, F. Dalena, J. Tong and T.N. Veziroğlu (Editors)
Volume 90 Clean Energy Microgrids S. Obara and J. Morel (Editors)
Volume 91 Fuzzy Logic Control in Energy Systems with Design Applications in MATLAB®/Simulink® I.H. Altas
Volume 93 Cogeneration and District Energy Systems: Modelling, analysis and optimization M.A. Rosen and S. Koohi-Fayegh
Volume 94 Introduction to the Smart Grid: Concepts, technologies and evolution S.K. Salman
Volume 95 Communication, Control and Security Challenges for the Smart Grid S.M. Muyeen and S. Rahman (Editors)
Volume 96 Industrial Power Systems with Distributed and Embedded Generation R. Belu
Volume 97 Synchronized Phasor Measurements for Smart Grids M.J.B. Reddy and D.K. Mohanta (Editors)
Volume 98 Large Scale Grid Integration of Renewable Energy Sources A. Moreno-Munoz (Editor)
Volume 100 Modeling and Dynamic Behaviour of Hydropower Plants N. Kishor and J. Fraile-Ardanuy (Editors)
Volume 101 Methane and Hydrogen for Energy Storage R. Carrièveau and D.S.-K. Ting (Editor)
Volume 104 Power Transformer Condition Monitoring and Diagnosis A. Abu-Siada (Editor)
Volume 106 Surface Passivation of Industrial Crystalline Silicon Solar Cells J. John (Editor)
Volume 107 Bifacial Photovoltaics: Technology, applications and economics J. Libal and R. Kopecek (Editors)
Volume 108	**Fault Diagnosis of Induction Motors** J. Faiz, V. Ghorbanian and G. Joksimović
Volume 110	**High Voltage Power Network Construction** K. Harker
Volume 111	**Energy Storage at Different Voltage Levels: Technology, integration, and market aspects** A.F. Zobaa, P.F. Ribeiro, S.H.A. Aleem and S.N. Afifi (Editors)
Volume 112	**Wireless Power Transfer: Theory, technology and application** N. Shinohara
Volume 115	**DC Distribution Systems and Microgrids** T. Dragićević, F. Blaabjerg and P. Wheeler
Volume 117	**Structural Control and Fault Detection of Wind Turbine Systems** H.R. Karimi
Volume 119	**Thermal Power Plant Control and Instrumentation: The control of boilers and HRSGs, 2nd Edition** D. Lindsley, J. Grist and D. Parker
Volume 120	**Fault Diagnosis for Robust Inverter Power Drives** A. Ginart (Editor)
Volume 124	**Power Market Transformation** B. Murray
Volume 126	**Diagnosis and Fault Tolerance of Electrical Machines, Power Electronics and Drives** A.J.M. Cardoso
Volume 128	**Characterization of Wide Bandgap Power Semiconductor Devices** F. Wang, Z. Zhang and E.A. Jones
Volume 130	**Wind and Solar Based Energy Systems for Communities** R. Carriveau and D.S.-K. Ting (Editors)
Volume 131	**Metaheuristic Optimization in Power Engineering** J. Radosavljević
Volume 132	**Power Line Communication Systems for Smart Grids** I.R.S Casella and A. Anpalagan
Volume 155	**Energy Generation and Efficiency Technologies for Green Residential Buildings** D. Ting and R. Carriveau (Editors)
Volume 157	**Electrical Steels, 2 Volumes** A. Moses, K. Jenkins, Philip Anderson and H. Stanbury
Volume 905	**Power System Protection, 4 volumes**
Variability, Scalability and Stability of Microgrids

Edited by
S.M. Muyeen, Syed Mofizul Islam and Frede Blaabjerg
This book is dedicated to
Lipy and Arisha
Masuma, Muntasser and Rashmi
Anja, Jakob and Ina
This page intentionally left blank
Contents

Preface xix
Contributors xxi

1 Introduction 1
S.M. Muyeen, Syed Islam, and Frede Blaabjerg

1.1 Microgrid fundamentals and its anatomy 1
1.2 Microgrid technical aspects 2
 1.2.1 Microgrid control issues 2
 1.2.2 Power electronics in microgrid 3
 1.2.3 Addressing power electronics reliability in microgrid 4
 1.2.4 Use of energy storage systems in microgrid 5
 1.2.5 Microgrid information and communication technology 6
 1.2.6 Stability and protection issues of microgrid 7
1.3 Microgrid future form 8
 1.3.1 Addressing scalability and variability 8
 1.3.2 Transformation of microgrid to virtual power plant 8
 1.3.3 Future trends of power electronics and its adaptation in microgrid 9
 1.3.4 Future trends of energy storage technology 10
 1.3.5 Future form of microgrid communication 10
1.4 What is in this book? 11
1.5 Conclusions 13
References 14

2 Microgrid control overview 15
S. Ali Pourmousavi Kani, Farhad Shahnia, M Imran Azim,
Md Asaduzzaman Shoeb, and GM Shafiullah

2.1 Introduction 16
2.2 Uncertainty of the generation and demand 17
 2.2.1 Application of grid-tied MGs 18
2.3 MG control hierarchy 20
 2.3.1 Primary control 20
 2.3.2 Secondary control 22
 2.3.3 Tertiary control 25
5 Operations of a clustered microgrid
Munira Batool, Syed Islam, and Farhad Shahnia

5.1 Overview of clustered microgrid
5.2 Modeling of clustered microgrid
5.3 Control and operation of clustered microgrid
 5.3.1 Droop-regulated strategy
 5.3.2 Optimization solver
 5.3.3 Modeling of non-dispatchable DERs
5.4 Optimization problem formulation and technical constraints
5.5 Case studies
 5.5.1 Study case I (an overloaded MG with primary and secondary actions only)
 5.5.2 Study case II (an overloaded MG with all actions)
 5.5.3 Study case III (an overloaded MG with primary and tertiary actions only)
 5.5.4 Study case IV (an overgenerating MG with primary and secondary actions only)
 5.5.5 Study case V (an overgenerating MG with all actions)
 5.5.6 Study case VI (an overgenerating MG with primary and tertiary actions only)
 5.5.7 Study case VII (multiple PMGs and HMGs with all actions)
5.6 Concluding remarks
Nomenclature
References

6 Distributed energy network using nanogrid
Xiaofeng Sun, Wei Zhao, and Lei Qi

6.1 Overview of nanogrid
 6.1.1 Concept of nanogrid
 6.1.2 Architecture of nanogrid
 6.1.3 Converters used in nanogrid
6.2 Energy management in nanogrid

6.2.1 Battery-mastered control of a simple photovoltaic/battery system

6.2.2 Decentralized control for multiple battery-based nanogrid

6.2.3 Decentralized control for multiple distributed generation units based nanogrid

6.2.4 Decentralized control for multiple energy storage units based nanogrid

6.2.5 Parameter design for a centralized hierarchical control for AC nanogrid

6.3 Case study

6.3.1 Large-scaled intelligent nanogrid

6.3.2 Small-scaled intelligent nanogrid

6.3.3 Nanogrid installed in remote villages

6.3.4 Nanogrid based on cogeneration system

6.4 Conclusion

References

7 Sizing of microgrid components

Ghulam Mohy-ud-din, Kashem M. Muttaqi, and Danny Sutanto

7.1 Microgrid components

7.2 Microgrid sizing and profit maximization

7.3 Models of distributed energy resources

7.3.1 Probabilistic wind power output model

7.3.2 Probabilistic photovoltaic power output model

7.3.3 Dynamic battery energy storage power output model

7.3.4 Micro-turbine power output model

7.4 Optimal sizing of microgrid components

7.4.1 Mathematical formulation

7.4.2 Backtracking search optimization (BSO) algorithm

7.4.3 Solution approach

7.5 Case studies

7.5.1 Case study 1

7.5.2 Case study 2

7.6 Summary

References

8 Optimal sizing of energy storage system

Kamran Jalilpoor, Rahmat Khezri, Amin Mahmoudi, and Arman Oshnoei

8.1 Introduction

8.2 Energy storage technologies in microgrids: types and characteristics

8.2.1 Battery energy storage systems
10 Voltage stability of microgrids
Nasser Hosseinzadeh, Saheb Khanabdal, Yousuf Al-Jabri, Rashid Al-Abri, Amer Al-Hinai, and Mahdi Banejad

10.1 Introduction
 10.1.1 Concept of voltage stability
 10.1.2 Voltage stability issues of microgrid
 10.1.3 Microgrid voltage stability assessment

10.2 Small-signal model of a microgrid for voltage stability analysis

10.3 Voltage stability enhancement

10.4 Case studies
 10.4.1 Case study 1
 10.4.2 Case study 2
 10.4.3 Case study 3
 10.4.4 Case study 4

10.5 Concluding remarks

References
Further reading

11 Frequency stability and synthetic inertia
Nasim Ullah, Anwar Ali, Haider Ali, and Khalid Mahmood

11.1 Frequency stability issues of microgrid

11.2 Effect of low inertia on the frequency stability of microgrid

11.3 Frequency stability enhancement
 11.3.1 Synchronous generator (SG) model-based topologies
 11.3.2 Swing equation based
 11.3.3 Frequency–power-response-based topologies
 11.3.4 Droop-based approach

11.4 Case study

11.5 Concluding remarks

References
Further reading

12 Microgrid protection
Robert M. Cuzner, Siavash Beheshtaein, and Farzad Banihashemi

12.1 Protective system design objectives

12.2 Conventional protective system design practice
 12.2.1 Fault characterization
 12.2.2 Protective equipment and scheme components
 12.2.3 Fault coordination analysis and protective relaying
12.3 Microgrid protection challenges
 12.3.1 Impact of distributed energy resources on power flow 411
 12.3.2 Impact of distributed energy resources on fault current magnitude 411
 12.3.3 Impact of microgrid connection modes and changing configurations 412
 12.3.4 Earthing considerations 415
 12.3.5 Cyberattacks 420

12.4 Promising solutions for microgrid protection
 12.4.1 Limiting maximum DER capacity 421
 12.4.2 Evolving communication standards 421
 12.4.3 Fault current limiters 423
 12.4.4 Utilization of the ESS for fault discrimination 423
 12.4.5 Distributed generation control modifications 424
 12.4.6 Protective system design process for microgrids 424
 12.4.7 Addressing cybersecurity 430

12.5 DC microgrid considerations
 12.5.1 DC fault characteristics 434
 12.5.2 DC protective system approaches 438
 12.5.3 DC protective devices 445
 12.5.4 DC system grounding 450

12.6 Conclusion: future of microgrid protection 451

References 453

13 Black start and islanding operations of microgrid
 Clara Gouveia, Carlos Moreira, André G. Madureira, José Gouveia, Diego Issicaba, and João Abel Peças Lopes

13.1 Microgrid operational modes 463
 13.1.1 The microgrid 464
 13.1.2 Microgrid hierarchical control for emergency operation 468
 13.1.3 Extending the concept – the multi-microgrid 469

13.2 Microgrid islanding and reconnection 471
 13.2.1 Microgrid primary frequency and voltage control 471
 13.2.2 Electric vehicles contribution to primary frequency support 472
 13.2.3 Secondary control and emergency dispatch strategies 473
 13.2.4 Black start strategies in multi microgrids 476
 13.2.5 Black start procedure 478

13.3 Case study 481
 13.3.1 Microgrid islanding case study 481
 13.3.2 Multi Microgrid black start case study 485

13.4 Concluding remarks 491

References 492
14 Microgrid feasibility study and economics

Alessandra Parisio, Luigi Glielmo and Evangelos Rikos

14.1 Overview
14.1.1 Outline of the chapter
14.2 Theoretical background
14.2.1 Model-predictive control
14.2.2 Two-stage stochastic programming
14.3 Microgrid component modelling and constraints
14.3.1 Nomenclature
14.3.2 Loads
14.3.3 Distributed generators
14.3.4 Energy storage systems
14.3.5 Multi-energy components
14.3.6 Electrical and thermal balance
14.3.7 Interaction with the utility grid
14.4 Microgrid operational strategies
14.4.1 MPC-based energy-management system for operational optimization
14.4.2 MPC-based multi-objective AC optimal power flow
14.5 Feasibility study aspects
14.5.1 Design and operation
14.5.2 Components and topology
14.5.3 Active and reactive control strategies
14.5.4 Data collection and processing
14.5.5 Costing of microgrid components
14.6 Case studies
14.6.1 Experimental evaluation in Athens, Greece
14.6.2 Steinkjer microgrid
14.7 Conclusions
Appendix A
A.1 Matrices
References

15 Power electronics—microgrid interfacing

Saeed Peyghami, Mohammed Alhasheem, and Frede Blaabjerg

15.1 Importance of power electronics in a microgrid
15.2 Classifications of microgrids
15.2.1 AC microgrids
15.2.2 DC microgrids
15.3 Power electronic converters
15.3.1 General power conversation concept
15.3.2 DC–DC converters
15.3.3 DC–AC converters
15.4 Power converter switching schemes 547
 15.4.1 Pulse width modulation 547
 15.4.2 Carrier-based pulse width modulation 547
 15.4.3 Zero-sequence injection 548
 15.4.4 Space vector modulation 549
15.5 Power converter basic control schemes 550
 15.5.1 Electrical model of converters 550
 15.5.2 Control of converters in ac grids 553
 15.5.3 Control of converters in dc grids 556
15.6 Filters for power converters—active and passive 558
 15.6.1 Passive filters 559
 15.6.2 Active filters 562
15.7 Case studies 564
 15.7.1 Case I: MPC-controlled converters in ac microgrids 564
 15.7.2 Case II: Power-sharing control in a dc grid 566
15.8 Conclusions 569
References 570

Index 573
Preface

The core theme and foundation of the traditional power system is going through a major transformation, nowadays. Small, medium, and large-scale renewable sources, often called as wind farm or photovoltaic park, are becoming the part and parcel of modern power system and distributed in a scattered way all over the power network. This introduces the term ‘microgrid’ which is a group of distributed energy resources and interconnected loads within a defined electrical boundary, appearing as a single controllable entity with or without being connected to the grid. This transformation needs to address many different technical, tactical, and political challenges which we need to handle collectively and carefully. The technical challenges are multifold; therefore, researchers from electrical, electronic, computer, communication, mechanical, aerospace engineering, and many other science disciplines are contributing in this domain, both from academia and industry, and writing the scripts of microgrid success.

In this book, three different mainstream technical challenges of microgrid are addressed – variability, scalability, and stability. With the term ‘variability’, the voltage and frequency fluctuations inside and outside microgrid boundaries are referred. On the other hand, ‘stability’ term includes voltage and frequency instabilities but also covers low voltage or zero voltage ride through problems. The ‘scalability’ part, in general, covers the optimization aspects of microgrid. The present development status and future trends of microgrid covering from generation, transmission, and distribution are presented based on the contributions from well-known researchers and academics from various disciplines. On this occasion, we the Editors sincerely acknowledge the cordial supports from all the chapter authors in this book along with their valuable contributions.

A general overview and essence of the different chapters available in this book can be obtained from introductory chapter. The microgrid topologies, its hierarchical control schemes, control of its various components along with optimal sizing, and location of microgrid components are presented in different chapters of the book. The power electronics are a mandatory component used by various components of the microgrid. This book presents various power electronic topologies used in microgrid and discusses its control and reliability issues. The microgrid protection and reliability features, black starts, economic aspects, and operations are presented in detail. The recent transformation of microgrid into the virtual power plant is another salient feature of this book.
The renewable sources of microgrid create many power system challenges when interconnected with the main grid. The challenges reach to another level when the penetration level of the renewable sources increases and the distribution system strength weakens further. This book covers all variability related issues of a microgrid, provides solutions on how to handle the scalability problems, and also discusses microgrid protection and stability augmentation methods. The Editors hope that the book will be useful for students, researchers, and engineering practitioners.

Editors
S M Muyeen
The Department of Electrical and Computer Engineering
Faculty of Science & Engineering, Curtin University
Bentley, Australia

Syed Islam
School of Science, Engineering and Information Technology
Federation University
Ballarat, Australia

Frede Blaabjerg
Department of Energy Technology
Aalborg University
Aalborg, Denmark
December 15, 2018
Contributors

S.M. Muyeen received his B.Sc. Eng. degree from Rajshahi University of Engineering and Technology (RUET), Bangladesh formerly known as Rajshahi Institute of Technology, in 2000 and M. Eng. and Ph.D. degrees from Kitami Institute of Technology, Japan, in 2005 and 2008, respectively, all in Electrical and Electronic Engineering. At the present, he is working as an associate professor in the Electrical and Computer Engineering Department at Curtin University, Perth, Australia. He is serving as Editor/Associate Editor for many prestigious Journals from IEEE, IET, and other publishers, e.g., IEEE Transactions of Sustainable Energy, IEEE Power Engineering Letters, IET Renewable Power Generation, and IET Generation, Transmission & Distribution. He is the Editor-in-Chief for Smart Grid Section of Frontier in Energy Research. He has served as guest editor-in-chief/leading editor for many special issues. He was the recipient of many awards including the Petroleum Institute Research/Scholarship Award 2012, which was the only research award for the entire university until 2013. He is the author/coauthor of about 200 scientific articles including 80+ journals and 6 books as an author/editor. In his short career, he has secured many prestigious research grant at national and international levels. He has given many keynotes and been invited for speeches to international conferences. His research interests are renewable energy, smart grid, and power system stability. Muyeen is the senior member of IEEE and Fellow of Engineers Australia (FIEAust).

Syed Mofizul Islam received the B.Sc. degree in electrical engineering from Bangladesh University of Engineering and Technology, Bangladesh in 1979, the M.Sc. and Ph.D. degree in electrical power engineering from the King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, in 1983, and 1988 respectively. He is currently the Executive Dean for the School of Science Engineering and Information Technology at Federation University Australia. Prior to joining Federation University, he was the John Curtin Distinguished Professor in Electrical Power Engineering and the Director of Centre for Smart Grid and Sustainable Power Systems at Curtin University, Perth, Australia. He has published over 270 technical papers in his area of expertise. His research interests are in condition monitoring of transformers, wind energy conversion, and smart power systems. He has been a keynote speaker and invited speaker at many international workshops and conferences. Islam was also the Dean International for the Faculty of Science and Engineering at Curtin University (2011–18). He is a Fellow of the Engineers Australia and an Engineering Executive, a Fellow of the IEEE, a Fellow of the IET
and a chartered engineer in the United Kingdom, and a chartered professional Engineer in Australia. He is a founding editor of the IEEE Transaction on Sustainable Energy and an associate editor of the IET Renewable Power Generation.

Frede Blaabjerg was with ABB-Scandia, Randers, Denmark, from 1987 to 1988. From 1988 to 1992, he got the Ph.D. degree in electrical engineering at Aalborg University in 1995. He became an assistant professor in 1992, an associate professor in 1996, and a full professor of power electronics and drives in 1998. From 2017, he became a Villum Investigator. He is honoris causa at University Politehnica Timisoara (UPT), Romania and Tallinn Technical University (TTU) in Estonia. His current research interests include power electronics and its applications such as in wind turbines, PV systems, reliability, harmonics, and adjustable speed drives. He has published more than 600 journal papers in the fields of power electronics and its applications. He is the coauthor of four monographs and editor of ten books in power electronics and its applications. He has received 29 IEEE Prize Paper Awards, the IEEE PELS Distinguished Service Award in 2009, the EPE-PEMC Council Award in 2010, the IEEE William E. Newell Power Electronics Award 2014 and the Villum Kann Rasmussen Research Award 2014. He was the Editor-in-Chief of the IEEE TRANSACTIONS ON POWER ELECTRONICS from 2006 to 2012. He has been the Distinguished Lecturer for the IEEE Power Electronics Society from 2005 to 2007 and for the IEEE Industry Applications Society from 2010 to 2011 as well as 2017 to 2018. In 2019–20, he serves as President of IEEE Power Electronics Society. He serves as the vice president of the Danish Academy of Technical Sciences. He is nominated in 2014, 2015, 2016, and 2017 by Thomson Reuters to be between the most 250 cited researchers in engineering in the world. Prof. Blaabjerg is laureate of the Global Energy Prize, 2019.

Seyyed Ali Pourmousavi Kani received the B.Sc., M.Sc., and Ph.D. degrees with honors in 2005, 2008, and 2014, respectively, in electrical engineering. He worked for California ISO (CAISO), NEC Laboratories America Inc. (NECLA), and Denmark Technical University (DTU) from 2014 to 2017. He is currently a research fellow at the University of Queensland (UQ), Brisbane, Australia. He (co)authored 30+ journal and conference papers, and 5 U.S. patents and applications. His current research interests include battery integration to the grid for different applications, control-based ancillary services, and microgrids’ energy-management systems.

Farhad Shahnia received his Ph.D. in Electrical Engineering from Queensland University of Technology (QUT), Brisbane, in 2012. He is currently a Senior Lecturer at Murdoch University. Before that, he was a Lecturer at Curtin University (2012–15), a research scholar at QUT (2008-11), and an R&D engineer at the Eastern Azarbayjan Electric Power Distribution Company, Iran (2005–08). He is currently a senior member of IEEE, National Council Member of the Electric Energy Society of Australia and the member of the Australasian Association for Engineering Education. Shahnia’s research falls under distribution networks, smart
grids, and microgrid concepts. He has authored 1 book and 11 book chapters and 100+ scholarly articles in international conferences and journals, as well as editing 6 books.

M Imran Azim has completed Bachelor of Science in Electrical and Electronic Engineering from Rajshahi University of Engineering and Technology, Bangladesh in 2013 with first class honors. He has also achieved Master of Engineering in Electrical Engineering from the University of New South Wales, Sydney, Australia in 2017 with Research Satisfactory grade. Prior to commencing Ph.D., he worked as a Graduate Electrical Engineer at RCR Tomlinson Limited. Currently, he is pursuing Ph.D. in Electrical Engineering at the University of Queensland, Brisbane, Australia. He is passionate about power and energy systems, and his research interest includes microgrids, renewable energy management, and solar PV systems.

Md Asaduzzaman Shoeb received the Master of Science degree jointly from Royal Institute of Technology, Sweden and Eindhoven University of Technology, Netherlands, in 2013. He is the recipient of the prestigious Erasmus Mundus Category-A scholarship by the European Commission and Education for Sustainable Energy Development Scholarship in 2011. He was a lecturer at Stamford University, Bangladesh (2009–11) and an assistant professor at the American International University Bangladesh (2013–15). Currently, he is a Ph.D. student at Murdoch University. His research interest includes optimal operation of microgrid and renewable energy integration.

G.M. Shafiullah received his Ph.D. in Electrical Engineering from the Central Queensland University, Australia. After completing Ph.D., he joined as a post-doctoral research fellow to Deakin University, Australia. He is currently a Senior Lecturer at Murdoch University, Australia. His research interests include power systems, smart grid, renewable energy, and its enabling technologies. He is the author of 90+ book chapters, journal articles, and conference papers. GM is a senior member of IEEE and the member of the Australasian Association for Engineering Education.

Sreenithya Sumesh graduated Master’s degree in Faculty of Science and Engineering in Computing from the Curtin University and currently doing Ph.D. in Computing from the same university. Her main areas of research include data mining, grid computing, smart grids, networking, power distribution, requirements engineering.

Aneesh Krishna is currently an associate professor with the School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Australia. He holds a Ph.D. in computer science from the University of Wollongong, Australia. His research interests include software engineering, requirements engineering, conceptual modeling, agent systems, formal methods, data-driven software
engineering, data mining, bioinformatics, and renewable energy systems. He has published more than 120 articles in different journals and international conferences. His research is (or has been) funded by the Australian Research Council (ARC) and various Australian government agencies (like NSW State Emergency Service) as well as companies such as Woodside Energy, Amristar Solutions, Autism West Support Incorporated, BW Solar Australia, Dementia Training Australia, and Andrew Corporation (attracted over $1.2 million in research funding in Australia). He serves as an assessor (Ozreader) for the ARC. He has been on the organising committee, served as invited technical program committee member of many conferences and workshop in the areas related to his research.

Chitra M. Subramanian is currently an adjunct research fellow and casual academic in the Department of Computing, Curtin University, Australia. She holds a Ph.D. in Computing from Curtin University, Australia, an M.E. degree in computer science and engineering from Anna University, India and a B.E. degree in computer science and engineering from Madurai Kamaraj University, India. Her research interests include software engineering, requirements engineering, and agent systems.

Robert Lis received the Ph.D. and D.Sc. Eng. degrees in electrical engineering (electric power system) from Wroclaw University of Science and Technology (WUST) in 1996 and 2014, respectively. Since 1996, he has been with Faculty of Electrical Engineering, Department of Electrical Power Engineering, WUST as an assistant professor to 2014, and as an associate professor since 2015. His research interests include analysis and modeling of electrical power system, integration of a large number of decentralized renewable energy sources into the electric power system, power system wide-area monitoring, and control. He has published over 90 scientific articles in journal and international conferences. He has successfully accomplished several research projects at national and international levels.

Robert Czechowski received the Ph.D. degrees in electrical engineering (electric power system) in 2018. In 2011, he graduated postgraduate studies—security management of information systems on Computer Science and Management Department of WUST. He received his M.Sc. degree in computer science from the WUST in 2009 and also received the Eng. degree and Rector’s award in 2007 for the best engineering thesis with a topic in the specialization: computer engineering. Presently, he is an assistant professor from 2018. His research interest are Communication and Security of Smart Grid, Data Flow in Smart Metering, ICT system dedicated Power Systems, automatics using AVR Microcontrollers and Optoelectronics. Actually he Cooperating within Polish Smart Power Grids Section. Author of many publications on the field of Smart Grids Cybersecurity.

Munira Batool received the B.Sc. and MS degrees in electrical engineering from Bahauddin Zakariya University (BZU), Multan, Pakistan and University of Engineering and Technology (UET), Taxila, Pakistan in 2007 and 2012, respectively.
Currently she is pursuing her Ph.D. degree in electrical engineering from Curtin University, Perth Australia. She is also working as Sessional Academic in the Department of Electrical Engineering of Curtin University, Australia. Before that, she was a lecturer at UET Taxila Pakistan (2013-15), lead Electrical Engineer in Power System Lab of UET Taxila (2009–13) and Demonstrator in Wah Engineering College, Pakistan (2008). Her research interest includes power system operation and microgrid system optimization.

Xiaofeng Sun M’11 received the B.S. degree in electrical engineering from Northeast Heavy Machinery Institute in 1993, Heilongjiang, China, and the M.S. and Ph.D. degrees in power electronics from Yanshan University, Hebei, China in 1999 and 2005, respectively. From 2003 to 2007, he was an associate professor with Yanshan University, where since 2008, he has been a professor and also the Director at the Key Laboratory of Power Electronics for Energy Conservation and Motor Drive of Hebei Province. He has authored or coauthored more than 70 transactions and conference papers. His current research interests include dc–dc converters, multiple-input converters, hybrid electric vehicles, microgrids, and power-quality control.

Wei Zhao received the B.S. degree and the M.S. degree in electrical engineering and Power Electronics and Power Drives from Yanshan University, Qinhuangdao, China, in 2006 and 2009. He was a Lecturer with Yanshan University, where he is currently working toward the Ph.D. degree in power electronics. His current research interests include the stability analysis of microgrid and power quality.

Lei Qi received the B.S. degree and the M.S. degree in electrical engineering from Yanshan University, Qinhuangdao, China, in 2014 and 2017. He was an Assistant Lecturer with Yanshan University, where he is currently working toward the Ph.D. degree in power electronics. His current research interests include the energy management, nanogrids, and stability analysis.

Ghulam Mohy-ud-din S’17 received the B.Sc. and M.Sc. degree in electrical engineering from the University of Engineering and Technology, Taxila, Pakistan, in 2013 and 2015, respectively. He is currently pursuing the Ph.D. degree in electrical engineering at University of Wollongong, New South Wales, Australia. He is also a lecturer with COMSATS Institute of Information Technology, Pakistan. His research interests are power system planning and operation with renewable energy resources.

Kashem M. Muttaqi M’01, SM’05 received the B.Sc. degree in electrical and electronic engineering from Bangladesh University of Engineering and Technology (BUET), Dhaka, Bangladesh in 1993, the M.Eng.Sc. degree in electrical engineering from University of Malaya, Kuala Lumpur, Malaysia in 1996 and the Ph.D. degree in electrical engineering from Multimedia University, Selangor, Malaysia in 2001. Currently, he is a professor at the School of Electrical, Computer, and Telecommunications Engineering, and member of Australian Power
Quality and Reliability (APQRC) at the University of Wollongong, Wollongong, Australia. He was associated with the University of Tasmania, Hobart, Australia as a research fellow/lecturer/senior lecturer from 2002 to 2007, and with the Queensland University of Technology, Brisbane, Australia as a research fellow from 2000 to 2002. Previously, he also worked for Multimedia University as a Lecturer for 3 years. He has more than 21 years of academic experience and authored or coauthored 300 papers in international journals and conference proceedings. His research interests include distributed generation, renewable energy, electrical vehicles, smart-grid, power system planning, and emergency control.

Danny Sutanto SM'89 received the B.Eng. (Hons.) and Ph.D. degrees from the University of Western Australia, Perth, W.A., Australia, in 1978 and 1981, respectively. He is currently a professor of power engineering with the University of Wollongong, Wollongong, N.S.W., Australia. His research interests include power system planning, power system emergency, analysis and harmonics, flexible alternating current transmission system, and battery energy storage systems. He was the IEEE Industry Applications Society Area Chair for Region 10 (Asia Pacific) from 2014 to 2017.

Kamran Jalilpoor received the B.S. degree in from Urmia University of Technology (UUT), Urmia, Iran in 2016, and the M.S. degree in from the Shahid Beheshti University (SBU), Tehran, Iran in 2018. His research interests include microgrids planning, power system resilience, power distribution systems, and optimization theories.

Rahmat Khezri received his B.Sc. degree in electrical engineering from Urmia University, Iran and M.Sc. degree in electrical engineering from University of Kurdistan, Iran. He is currently pursuing his Ph.D. degree in College of Science and Engineering at Flinders University, Adelaide, Australia. He is the recipient of Australian Government Research Training Program Scholarship (AGRTPS), Flinders University, Australia (2018). His research interest includes wind-farm optimization, battery-storage integration in renewable energy systems, load frequency control, power system, stability and intelligent control applications.

Amin Mahmoudi S’11–M’13 received his bachelor degree in electrical engineering from Shiraz University, Shiraz, Iran, in 2005, Master degree in Electrical Power Engineering from Amirkabir University of Technology, Tehran, Iran, in 2008, and the Ph.D. degree from the University of Malaya, Kuala Lumpur, Malaysia, in 2013. He is interested in research areas where energy conversion and transmission play a major role, such as hybrid power networks, renewable energy systems, transmission and distribution networks, electrical machines and drives. He currently is working as a lecturer at Flinders University. Mahmoudi is a Chartered Engineer and member of the Institution of Engineering and Technology (CEng) and Engineers Australia (CPEng).
Arman Oshnoei received the B.Sc. degree from Urmia University of Technology, Iran in 2015 and M.Sc. degree from Tabriz University, Iran in 2017 both in electrical engineering. He is currently pursuing his Ph.D. in Shahid Beheshti University, Iran. His research interest includes power system control, automatic generation control, and probabilistic load flow.

Shantanu Kumar received bachelor of engineering degree in electrical from Bangalore University, India in 1990. He obtained his MBA degree from Indore University, India in 1996 and completed his postgraduate research in power engineering leading to M.Sc.Eng. from The University of Western Australia, Perth, Australia in 2014. Currently, he is pursuing his postgraduate research work on IEC 61850 in protection, control and automation at Curtin University, Perth, WA, Australia. He has over 29 years of experience as a power engineer in diversified utilities, resources and heavy industries spanning from Asia to Australia. Currently, he is working as a power system engineer in a large consultancy in WA. He has a track record of successfully designing, engineering, and commissioning many utilities and resources HV substation projects in Asia and Australia. He is a fellow and chartered engineer of Engineers Australia (EA) and is in the interview panel to assess potential power engineering candidates to achieve CP Eng. status of EA. He also has a CAMA certificate in Asset Management Council of Australia and regularly contributes research papers on automation and control in reputed journals, conferences, and symposiums based on IEC 61850.

Alireza Jolfaei received the Ph.D. degree in Applied Cryptography from Griffith University, Gold Coast, Australia. He is a lecturer in Cyber Security at Macquarie University, Sydney, Australia. Prior to this appointment, he worked as a lecturer in Cyber Security at Federation University Australia and as an assistant professor of Computer Science at Temple University in Philadelphia, USA. His current research areas include cyber security, cyber physical systems security, AI and machine learning for cyber security. He has authored over 40 peer-reviewed articles on topics related to cyber security. He has received multiple awards for Academic Excellence, University Contribution, and Inclusion and Diversity Support. He received the prestigious IEEE Australian council award for his research paper published in the *IEEE Transactions on Information Forensics and Security*. He received a recognition diploma with cash award from the IEEE Industrial Electronics Society for his publication at the 2019 IEEE IES International Conference on Industrial Technology. He is a founding member of IEEE Northern Territory Section and Federation University IEEE Student Branch. He served as the Chairman of Computational Intelligence Society in IEEE Victoria Section and also as the Chairman of Professional and Career Activities for IEEE Queensland Section. He has served as the guest associate editor of IEEE journals and transactions, including *IEEE Internet of Things Journal* and *IEEE Transactions on Industrial Applications*. He has served over 10 conferences in leadership capacities including program co-chair, track chair, session chair, and technical program committee member, including *IEEE TrustCom* and *DependSys*. He is a senior member of the IEEE.
Nasser Hosseinzadeh received his B.Sc. degree in electrical and electronics engineering from Shiraz University in 1986, M.Sc. degree from Iran University of Science and Technology in Electronics in 1992, and his Ph.D. degree in electrical engineering from Victoria University, Melbourne, Australia, in 1998. He worked as a faculty member at Shiraz University in Iran, Monash University, Malaysia, Central Queensland University and Swinburne University of Technology, Australia, consecutively, during 1998–2011 before moving to Sultan Qaboos University in Oman. He served as the discipline leader of electrical engineering from 2005 to 2006, Head of Department of Systems from 2007 to 2008 at CQuniversity, and Head of Department of Electrical and Computer Engineering from 2014 to 2018. At SQU, he is the theme leader of Integrated Energy Systems, microgrids, and smart grid. He is also an advocate for student-centered, cooperative, and active-learning methods in engineering education. Hosseinzadeh is a senior member of IEEE. Previously, he was a member of CIGRE Australia and worked with the panel on power system developments and economics.

Saheb Khanabd received his B.Sc. degree from Khaje Nasir Toosi University of Technology (KNTU), Tehran, Iran, in 2011 and the M.Sc. degree from University of Tabriz, Tabriz, Iran in 2013, both in electrical engineering. He is currently working toward his Ph.D. degree with the Department of Electrical Engineering, Shahrood University of Technology, Shahrood, Iran.

From June 2018 to September 2018, he was with Sustainable Energy Research Center at Sultan Qaboos University, as a research assistant in Muscat, Oman.

His research interest areas include control of microgrid and power converters, electric vehicles, and fault current limiters.

Yousuf AL-Jabri was born in Rustaq, Oman, in 1986.

Received the B.Eng. degree in electrical and computer engineering—power systems and energy at Sultan Qaboos University, Muscat, Sultanate of Oman, in 2009. He received his Master degree in power system stability at Sultan Qaboos University in 2015. He is currently a power system concept engineer at Petroleum Development Oman (PDO).

His research interests include integration of renewable energy with microgrids and stability issues related to those fields. In addition, his practical interest is on power system dynamic testing and related stability studies.

Rashid Al-Abri received the B.Sc. in electrical engineering from Sultan Qaboos University, Oman, in 2002 and M.Sc. in electrical engineering from Curtin University of Technology, Western Australia, in 2004. Then, he completed the Ph.D. degree in the Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada in 2012. Currently, Rashid is assistant professor at Sultan Qaboos University, at ECE department. His research interests are power electronics application, renewable energy, power quality, power systems and smart-grid application, power system stability.
Amer Al-Hinai is the director of the Sustainable Energy Research Center (SERC) and associate professor of electrical engineering at Sultan Qaboos University. He has carried out more than 33 industry-funded research projects, with total funds exceeding 3 million USD, related to energy savings, power system analysis, power system quality, and transient stability of power systems. His research output has been recognized as a value-added research by the industry, engineering societies, and the academia. This is proved by the continuity of research funding from industry and academia, the awards received, and professional appointments. During 2012–16, Amer did his sabbatical leave followed by secondment to Masdar Institute (MI). The Institute is a postgraduate and research academic institution focused on sustainability, water, and renewable energy resources. In 2011, Amer was appointed as Authority for Electricity Regulation (AER) board member and then the Chairman of AER during 2014–17. The authority is an independent electricity regulatory body in Oman. Amer published over 80 articles in reputable journals and refereed international conferences and book chapters. He received several awards such as His Majesty Trust Fund research award, “One of the Pioneers in the Engineering Practice in the Gulf,” Fulbright Research Scholarship, and first prize for the technical competence paper at the 39th IECON. Amer Al-Hinai is an IEEE senior member and a former Chairman of IEEE Oman Section.

Mahdi Banejad received B.Eng. degree from Ferdowsi University in Mashhad, Iran, in 1989; M.Sc. degree from Tarbiat Modarres University, Tehran, Iran in 1994; and Ph.D. degree from Queensland University of Technology, Australia in 2004 all in Electrical Engineering. After finishing his Ph.D., he undertook a research program for 1 year at QUT (QUT). He was the manager of the Section of the Relation between University and Industry of Shahrood University of Technology in 2006–08. Currently, he is a senior member of IEEE and associate professor of faculty of Electrical and Robotic Engineering at Shahrood University of Technology, Iran. His main research interests are voltage and frequency control of microgrids, decentralized state estimation in distribution system, and small signal stability of microgrids.

Nasim Ullah received the Ph.D. degree in mechatronic engineering from Beihang University, Beijing, China, in 2013. From 2006 to 2010, he was a senior design engineer with IICS, Pakistan. He is currently an associate professor of electrical engineering with the CECOS University of Emerging Science and Information Technology, Peshawar, Pakistan. His research interests include renewable energy, flight control systems, integer and fractional order modeling of dynamic systems, integer/fractional order adaptive robust control methods, fuzzy/NN, hydraulic and electrical servos, epidemic, and vaccination control strategies.

Anwar Ali was born in Mardan, Pakistan, in 1981. He received his B.E. degree in electronics engineering from NED UET Karachi, Pakistan, in 2004. He completed his M.S. degree in electronics engineering and Ph.D. degree in electronics and communication engineering from Politecnico di Torino, Italy in 2010 and 2014, respectively. From 2014 to 2017, he was an assistant professor with the
Electrical Engineering Department, Foundation for Advancement of Science and Technology (FAST) NUCES, Peshawar, Pakistan. Since August 2017, he has been an assistant professor with the Electrical Engineering Technology Department, University of Technology (UoT), Nowshera, Pakistan. His research interests include design and development of power management, attitude determination and control subsystems of small satellites. He is also working in the area of thermal analysis and thermal modeling of aerospace systems, power electronics applications and renewable energy systems.

Haider Ali was born in 1984. He completed his B.Sc. degree in telecom engineering from NUCES, Pakistan, in 2007. He received his doctorate and an M.S. degree in electronics engineering from Politecnico Di Torino, Italy, in 2010 and completed his Ph.D. in electronics and communication engineering also from there in 2014. He is currently working as an assistant professor at the department of Electrical Engineering, and Technology, University of Technology, Nowshera, Pakistan. His research interests include data-acquisition systems, power electronics systems, design and development of antenna, radio frequency (RF) front end and telecommunication subsystem for small satellites.

Khalid Mahmood received the B.S. degree in electrical engineering from UET Peshawar, Pakistan, the M.S. degree from University of Western Ontario Canada, and Ph.D. degree in electrical engineering from De Montfort University, Leicester, UK, in 1992, 2008, and 2014, respectively. Currently, he is head of department of electrical and electronics engineering technology Nowshera Pakistan. His research interests include adaptive filtering, wireless communications, and signal processing for communications.

Robert M. Cuzner received the B.S. degree from Brigham Young University, Provo, UT, USA, and M.S. and Ph.D. degrees from the University of Wisconsin–Madison, Madison, WI, USA, all in electrical and computer engineering. In 1990, his professional work began with Miller Electric Manufacturing Company, Appleton, WI, USA, designing generators for engine-driven welders. He worked at Eaton Corporation, Milwaukee, WI, USA, from 1993 to 2002 and then DRS Power and Control Technologies, Inc., from 2002 to 2014 as a designer of power conversion systems for Navy shipboard applications. He is presently associate professor in the Department of Electrical Engineering and Computer Science at the University of Wisconsin–Milwaukee. He has over 25 years of experience working in power generation, power conversion and power distribution of both military and industrial applications. A principal focus of his work has been shipboard electrification, with focus on achieving energy secure systems. His interests include microgrid protection, distributed generation, power electronics for power distribution and drive systems, low- and medium-voltage power conversion system design, high power-density packaging of power electronics, and electric machine design.
Siavash Beheshtaein received the B.Sc. and M.Sc. degrees from Shiraz University, Iran, and his Ph.D. degree from Aalborg University, Denmark, in 2011, 2013, and 2018, respectively, all in Electrical Engineering. He has also worked as a visiting scholar and post-doctoral research fellow at the University of Wisconsin–Milwaukee where he developed protective relaying approaches for microgrids, medium voltage hybrid solid-state circuit breaker for 12–35 kV systems and extreme charging stations for electric vehicles. He has also developed artificial intelligence schemes for the improvement of power quality and resilience of microgrids and grid connected power electronic converters, and various approaches to fault current limiting, fault detection and discrimination and protective relaying in microgrids based upon harmonic injection and machine learning techniques. His research interests include microgrid protection, adaptive protection, solid-state transformer, and DC circuit breakers.

Farzad Banihashemi is a Ph.D. student at University of Wisconsin—Milwaukee. He received his B.Sc. degree from the University of Guilan, Iran in Electronics in 2007. He holds an M.Sc. degree from University of Tehran, Iran and graduated in 2010, in Power Systems and High Voltage. His work was an optimization of the location and size of the distributed generation in meshed and radial AC systems. He is an expert in control and protection systems. He had been working in high voltage and medium voltage systems for 6 years. He dealt with protection design, setting calculation and relay mapping and configuration. He also has the experience of LV systems design. He moved to the US in 2017 to pursue his study at UWM. His main research focus is on protection of AC microgrids. He is developing a novel method of protection scheme, independent coordination, for meshed AC microgrids using commercial devices. His research interests also include power electronics, grid converters, and motor drives.

Clara Gouveia received her M.Sc. and Ph.D. degrees in electrical engineering from the Faculty of Engineering, University of Porto (FEUP) in 2008 and 2015 respectively. Since 2011 she is a member of the Centre for Power and Energy Systems of INESC TEC—Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, where she currently holds a Senior Researcher position. She is also the leader of DMS/EMS and network automation. Since 2015, she has been involved in H2020 European projects SENSIBLE and UpGRid where her work is focused on the fields of distributed electrical energy storage control for supporting the operation of distribution networks, namely, in islanded conditions, considering deployment microgrid concepts. Her research interests are focused on the development of the microgrid concept in the context of smart grids integrating plugged-in electrical vehicles, distributed storage, and microgeneration units. She published several papers in international scientific journals.

Carlos Moreira received the licentiate degree (5-year program) in electrical engineering at the Faculty of Engineering of the University of Porto (FEUP) in 2003 and completed his Ph.D. in Power Systems in November 2008 also at the
Andre´ G. Madureira was born in Oporto, Portugal, in 1980. He earned his licentiate degree (5-year program), an M.Sc. (2-year program) and a Ph.D. in electrical and computer engineering from the Faculty of Engineering of the University of Porto, Portugal in 2003, 2005, and 2010, respectively. He is currently a senior researcher at the Centre for Power and Energy Systems of INESC Technology and Science (INESC TEC) and assistant professor at the Lusófona University of Porto in Oporto, Portugal. He is author of more than 45 papers published in international journals and conferences with peer reviewing, as well as author of a book (Ph.D. thesis edition) and coauthor of four book chapters. His research interests have been directed towards the integration of distributed generation in distribution grids as well as to the development of advanced functionalities for smart grids involving renewable energy Sources, storage devices, and demand response. More recently, he has been working in energy efficiency topics.

José Gouveia received her M.Sc. completed in electrical engineering from the Faculty of Engineering, University of Porto (FEUP) in 2015 and is currently pursuing the Ph.D. degree in sustainable energy systems from University of Porto, under the MIT Portugal Program. He is currently a Researcher at the Centre for Power and Energy Systems of the INESC Technology and Science (INESC TEC), where he has been involved in scientific projects and consulting in the area of integration of renewable sources in the electrical system as well as in the dynamic analysis of electrical systems. From the work developed during its master thesis, he has won an honorable mention in the PREMIO REN 2016.

Diego Issicaba M’07 received the Ph.D. degree on sustainable energy systems from the Faculty of Engineering, University of Porto, Portugal, in association with the MIT Portugal Doctoral Program, in 2013. His research activities were hosted by
João Abel Peças Lopes is full professor at the Faculty of Engineering of Porto University (FEUP) where he teaches in the graduation and postgraduation areas. He is presently the associate director of INESC TEC, one of the largest R&D interface institutions of the University of Porto. His main domains of research are related with large-scale integration of renewable power sources, power system dynamics, microgeneration and microgrids, smart metering and electric vehicle grid integration. He is author or coauthor of more than 400 papers and coeditor and coauthor of the book “Electric Vehicle Integration into Modern Power Networks” edited by Springer. He is fellow from IEEE.

Alessandra Parisio SM’18 received her Ph.D. in automatic control from the University of Sannio, Italy, which included a year at Swiss Federal Institute of Technology (ETH), Switzerland, where she worked on building climate control within the research project “Use of weather and occupancy forecasts for optimal building climate control (OptiControl).” She undertook postdoctoral research at the Automatic Control Laboratory at the Royal Institute of Technology (KTH), Sweden, where she led the KTH-EES Smart Building Lab project and coordinated the European project EIT ICT Labs “Microgrid Operation and ICT Solutions.” Since September 2015, she is a lecturer in the School of Electrical and Electronic Engineering at The University of Manchester, United Kingdom, where she is an investigator in two innovate UK projects and one H2020 EU project, focusing on energy-management systems for intelligent buildings including battery storage systems and large-scale control of multiple-distributed storage systems. Her research interests include the areas of large-scale energy-management systems and stochastic constrained control, where she has over 30 publications.

Luigi Glielmo SM’05 received the Laurea degree in electronic engineering and the Research Doctorate degree in automatic control, both from Universita di Napoli Federico II, in 1986 and 1990, respectively. He taught at the University of Palermo, the University of Naples Federico II, and the University of Sannio, Benevento, Italy, where he is currently a professor of automatic control. From 2001 to 2007, he was the head of the Department of Engineering, University of Sannio, where he is currently the rector’s delegate for technology transfer and the coordinator of the Ph.D. course on information.
technologies for engineering. He coauthored more than 130 papers on international archival journals or proceedings of international conferences, coedited two books, and holds three patents. His research interests over the years have included singular perturbation methods, Lyapunov-based methods, model-predictive control methods, automotive controls, deep brain stimulation modeling and control, and energy-grid and water-grid control. Glielmo is on the Editorial Boards of archival journals of the area, such as the IEEE TRANSACTIONS ON AUTOMATIC CONTROL. He is an associate editor of Control Systems Letters. He is the chair of the IEEE Control Systems Society Technical Committee on Automotive Controls and the general cochair of the European Control Conference 2019.

Evangelos Rikos received his Dipl.-Eng. and Ph.D. degrees in electrical and computer engineering, from the University of Patras, Greece, in 1998 and 2005, respectively. He has been working with the Centre for Renewable Energy Sources and Saving, Department of Photovoltaics and DG since 2007. He also worked as lecturer at the University of Patras during the academic year 2006–07. His research interests are focused on the fields of renewable energy sources and especially photovoltaics, distributed generation, microgrids, energy efficiency, power electronics and electromotion systems in electric vehicles. He has participated in several EU funded projects such as ELECTRA IRP, ERIGrid, DERri, MIRABEL, EU-DEEP, MoreMicrogrids, SEESGEN-ICT, SmartGrids-ERA Net. Rikos is the author or coauthor of over 40 scientific publications in international journals and conferences.

Saeed Peyghami received the B.Sc., M.Sc., and Ph.D. degrees all in electrical engineering from the Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran, in 2010, 2012, 2017, respectively. He was a visiting Ph.D. Scholar with the Department of Energy Technology, Aalborg University, Denmark in 2015–16, where he is currently a postdoctoral researcher. His research interests include control, stability and reliability of power-electronic-based power systems.

Mohammed Alhasheem received the B.Sc. and M.Sc. degrees in electrical and control engineering from the Department of Electrical and Control Engineering, Arab Academy for Science, Technology and Maritime Transport, Cairo, Egypt, in 2012 and 2015, respectively. He is pursuing a Ph.D. degree at the Energy Department, Aalborg University, Aalborg, Denmark, where he is currently a visiting Ph.D. scholar with the Department of Information Engineering, Padua, Italy. His current research interests include predictive control for the power converter, microgrids, renewable energy.