
COMPARING TEXTURAL FEATURES FOR
MUSIC GENRE CLASSIFICATION

Yandre M. G. Costa∗, Luiz S. Oliveira†, Alessandro L. Koerich‡, and Fabien Gouyon§
∗State University of Maringá

Maringá, Brazil
Email: yandre@din.uem.br
†Federal University of Paraná

Curitiba, Brazil
‡Pontifical Catholic University of Paraná

Curitiba, Brazil
§INESC Porto
Porto, Portugal

Abstract—In this paper we compare two different textural
feature sets for automatic music genre classification. The idea
is to convert the audio signal into spectrograms and then extract
features from this visual representation. Two textural descriptors
are explored in this work: the Gray Level Co-Occurrence Matrix
(GLCM) and Local Binary Patterns (LBP). Besides, two different
strategies of extracting features are considered: a global approach
where the features are extracted from the entire spectrogram
image and then classified by a single classifier; a local approach
where the spectrogram image is split into several zones which
are classified independently and final decision is then obtained
by combining all the partial results.

The database used in our experiments was the Latin Music
Database, which contains music pieces categorized into 10 mu-
sical genres, and has been used for MIREX (Music Information
Retrieval Evaluation eXchange) competitions. After a compre-
hensive series of experiments we show that the SVM classifier
trained with LBP is able to achieve a recognition rate of 80%.
This rate not only outperforms the GLCM by a fair margin but
also is slightly better than the results reported in the literature.

I. INTRODUCTION

From 2002, when Tzanetakis and Cook [1] introduced music
genre classification as a pattern recognition task, many other
works has been developed for this purpose [2], [3], [4], [5], [6],
[7]. According to Lidy et al.[8], most of the works rely on the
content-based approach, which extracts representative features
from the digital audio signal. Among the most common
features used we can mention for example, timbral texture,
beat-related, pitch-related, and rhythm histograms.

In spite of all efforts done so far, the automatic music
genre classification still remains an open problem. McKay and
Fujinaga [9] pointed out some problematic aspects of genre
and refer to some experiments where human beings were not
able to correctly classify more than 76% of the musics. In
spite of the fact that more experimental evidence is needed,
these experiments give some insights about the upper bounds
on software performance. McKay and Fujinaga also suggest
that different approaches should be proposed to achieve further
improvements.

In light of this, Costa et al [10] proposed an alternative
approach for automatic genre classification. It converted the
audio signal into spectrograms [11] (short-time Fourier repre-
sentation) and then extracted textural features from the visual
representation. The experiments reported in [10], using the
Latin Music Database, took into account the Gray Level Co-
Ocurrence Matrix (GLCM) textural descriptors and achieved
similar results to those methods based on traditional fea-
tures. However, the authors have shown that the classifiers
based on textures carry some complementary information
when compared to the traditional ones. When both strategies
were combined, a significant improvement of about 10% was
achieved.

The GLCM and its descriptors were proposed by Haralick
[12] almost 40 years ago. Since then other textural descriptors
have been developed and successfully applied into different
areas, but one of them, the Local Binary Pattern (LBP) has
gained a lot of attention because of its performance and
simplicity of implementation. The concept of LBP was first
proposed by Ojala et al. in [13] as a simple and robust
approach in terms of grayscale variations. It was proved to
discriminate a large range of rotated textures efficiently. Later,
they extend their work [14] to be a gray-scale and rotation
invariant texture operator.

With this in mind, in this work we pursue the investigation
initiated in [10] by comparing both GLCM and LBP as textural
descriptors to perform music genre classification. By analyzing
the spectrogram images one can notice that different patterns
of texture may occur in the same image. To deal with this, two
strategies for feature extraction were considered. The first one
is a local approach where the spectrogram image is divided
into several zones that are independently classified and the
final result is achieved by combining all the partial decisions.
The second strategy, on the other hand, is a holistic one. In
this case the features are extracted from the entire spectrogram
image.

Our experiments were carried out on the Latin Music
Database [15], a very challenging dataset of 900 music pieces
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divided among 10 music genres. The results reported in this
work show that the SVM classifier trained with LBP is able
to achieve a recognition rate of 80%. This rate not only
outperforms the GLCM by a fair margin but also is slightly
better than the results reported in the literature. Taking into
account the best results obtained in MIREX 2009 and MIREX
2010 [16] competitions, the improvement was about six and
one percentage points, respectively.

This paper is organized as follows: Section II describes
some basic aspects about the LMD. Section III describes
details about feature extraction performed in this work. Section
IV introduces the methodology used for classification while
Section V reports the experimental results. Finally, Section VI
concludes this work.

II. LATIN MUSIC DATABASE

Presented by Silla et al. [15], the LMD is a digital mu-
sic database created for support research in music infor-
mation retrieval. This database is composed of 3,227 full-
length music samples in MP3 format originated from music
pieces of 501 artists. The database is uniformly distributed
along 10 music genres: Axé, Bachata, Bolero, Forró, Gaúcha,
Merengue, Pagode, Salsa, Sertaneja, and Tango. One of the
main characteristics of the LMD dataset is the fact of bringing
together many genres with a significant similarity among
themselves with regard to instrumentation, rhythmic structure,
and harmonic content. This happens because many genres
present in the database are from the same country or countries
with strong similarities regarding cultural aspects. Hence, the
attempt to discriminate these genres automatically is particu-
larly challenging.

In this database, music genre assignment was manually
made by a group of human experts, based on the human
perception on how each music is danced. The genre labeling
was performed by two professional teachers with over ten
years of experience in teaching ballroom Latin and Brazilian
dances. The project team did a second verification in order
to avoid mistakes. The professionals classified around 300
music pieces per month, and the development of the complete
database took around one year.

In our experiments we have used 900 music pieces from
the LMD, which are split into 3 folds of equal size (30 music
pieces per class). The splitting is done using an artist filter [17],
which places the music pieces of an specific artist exclusively
in one, and only one, fold of the dataset. The use of the artist
filter does not allow us to employ the whole dataset since the
distribution of music pieces per artist is far from uniform.
Furthermore, in our particular implementation of the artist
filter we added the constraint of the same number of artists per
fold. In order to compare the results obtained with other, the
folds splitting taken was exactly the same used by Lopes et
al. [7] and by Costa et al. [10]. It is worth of mention that the
artist filter makes the classification task much more difficult.
This database and experimental protocol has been used in the
audio genre classification competition organized by the Music
Information Retrieval Evaluation eXchange (MIREX) [16].

III. FEATURE EXTRACTION

Before proceed the generation of the visual representation,
we performed a time decomposition based on the idea pre-
sented by Costa et al. [18] in which an audio signal S is
decomposed into n different sub-signals. Each sub-signal is
simply a projection of S on the interval [p, q] of samples, or
Spq =< sp, . . . , sq >. In the generic case, one may extract
K (overlapping or non-overlapping) sub-signals and obtain
a sequence of spectrograms Υ1,Υ2, . . . ,ΥK . We have used
the strategy proposed by Silla et al. [15] which considers
three 10-second segments from the beginning (Υbeg), middle
(Υmid), and end (Υend) parts of the original music. In order
to avoid segments that do not provide good discrimination
among genres, we decided to ignore the first ten seconds and
the last ten seconds of the music pieces. The rationale behind
this strategy is that some common effects present in these parts
of the music signal, like fade in and fade out, as well as kinds
of noise, like those produced by the audience, could turn these
signal samples less discriminant than the others.

After the signal decomposition, the next step consists in
converting the audio signal into a spectrogram. The spectro-
grams were created using a bit rate = 352kbps, audio sample
size = 16 bits, one channel, and audio sample rate = 22.05
kHz. Figure 1 depicts the signal segmentation and spectrogram
generation.

Figure 1. Creating spectrograms using time decomposition.

Once the spectrograms were generated we proceeded the
texture feature extraction from these images. As stated before,
the approach proposed in this work considers that the main
visual content present in the spectrogram images is the texture.
With this in mind, we used the GLCM and LBP texture
operators, described respectivelly in Sections III-A and III-B,
to get features.

A. Gray Level Co-occurencce Matrix

Among the statistical techniques of texture recognition, the
GLCM has been one of the most used and successful ones.
This technique consists of statistical experiments conducted
on how a certain level of gray occurs on other levels of
gray. It intuitively provides measures of properties such as
smoothness, coarseness, and regularity. By definition, a GLCM
is the joint probability occurrence of gray level i and j within
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a defined spatial relation in an image. That spatial relation
is defined in terms of a distance d and an angle θ. Given a
GLCM, some statistical information can be extracted from it.

Haralick [19], the precursor of this technique, suggested
a set of 14 characteristics, but most of the works in the
literature consider a subset of these descriptors. In our case,
we have used the following seven descriptors, which have pro-
duced interesting results for other texture problems: Entropy,
Correlation, Homogeneity, 3rd Order Momentum, Maximum
Likelihood, Contrast, and Energy. Those readers interested in
the mathematical formulation can refer to [19].

In our experiments we have tried different values for d as
well as different angles. The best setup we have found is d = 1
and θ = [0, 45, 90, 135]. Considering the seven descriptors
aforementioned, in the end we have a feature vector of 28
components for each image zone.

B. Local Binary Pattern

Presented by Ojala et al. [14], LBP is a model that describes
the texture taking into account for each pixel C, a set of
neighbors P, equally spaced at a distance of R, as shown in
Figure 2.

Figure 2. The LBP operator. A pixel C, dark circle in the middle, and its
neighbors Pn, lighter circles.

An histogram h is defined by the texture intensity dif-
ferences of C and its neighbors P. When the neighbors do
not correspond to an image pixel integer value, its value is
obtained by interpolation. An important characteristic of this
descriptor is its invariance to changes in the value of the central
pixels, when comparing with its neighbors.

Considering the resulting sign of the difference between C
and each neighbor P, it is defined that: if the sign is positive
the result is 1, otherwise 0. Thus, it is possible to obtain this
invariance of the intensity value of pixels in gray-scale format.
With this, the LBP value can be obtained by multiplying the
binary elements for a binomial coefficient. So, it is generated
a value 0 ≤ C’ ≤ 2P (corresponding to the vector).

Observing the non-uniformity of the vector obtained, Ojala
et al. [14] introduced a concept based on the transition between
0’s and 1’s in the LBP image. A binary LBP code is considered
uniform if the number of transitions is less than or equal
to 2, also considering that the code is seen as a circular
list. That is, the code 00100100 is not considered uniform,
because it contains four transitions. But the code 00100000 is

characterized as uniform because it has only two transitions.
Figure 3 illustrates this idea.

Figure 3. LBP uniform pattern. (a) the two transitions showed identifies the
pattern as uniform. (b) with four transitions, it is not considered a uniform
pattern.

So, instead of using the whole histogram, which size is
2P , it is possible to use only the uniform values, constituting
a smaller feature vector, with only 59 features. This version
of the descriptor was called “u2”, a label accompanying the
values of the radius R and the neighborhood size P, making
the LBP definition as follows: LBP label

P,R .
During the experiments, we observed that the feature extrac-

tion with LBPu2
8,2 is fast and accurate enough for the proposed

application. Then, we choose to use P=8 and R=2 on the tests
described in this paper.

C. Global and Local Feature Extraction

The global approach is the simplest way to perform feature
extraction of a given spectrogram image. This is a holistic by
nature where the features are extracted from the entire image
and the final decision is produced by a single classifier.

However, by analyzing the spectrogram images one can
notice that different patterns of texture may occur in the same
image. This can be observed in the spectrogram depicted in
Figure 4. To deal with that, in our previous work [10] we
proposed a zoning mechanism to obtain local information
rather than a global one. The idea was to take advantage
of these different texture patterns by processing them in
an independent way. Differently from [10], where only one
classifier was created with feature vectors from all zones, here
we train one classifier for each zone and the final decision is
obtained using traditional combination rules as described in
Section IV.

In order to proceed the local feature extraction, we have
evaluated six different number of linear zones (1, 3, 5, 10, 15,
and 20), which were applied to the spectrogram image before
extracting textural features.

Thus, considering that three spectrogram images were
generated from each music piece, since we extracted three
segments, the number of total zones, and consequently the
number of classifiers is 3n. The rationale behind the zoning
and combining scheme is that music signals may include
similar instruments and similar rhythmic patterns which leads
to similar areas in the spectrogram images. By zoning the
images we can extract local information and try to highlight
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the specificities of each music genre. In some cases we can
notice that at low frequencies the textures are quite similar
but they get different as the frequency increases. The opposite
can happen as well and for this reason the zoning mechanism
becomes an interesting alternative.

Figure 4. Zoning with n = 10.

In the next Section we show some details about the method-
ology used for classification.

IV. METHODOLOGY USED FOR CLASSIFICATION

The classifier used in this work was the Support Vector
Machine (SVM) introduced by Vapnik in [20]. Normalization
was performed by linearly scaling each attribute to the range
[-1,+1]. The Gaussian kernel was used, with parameters C and
γ tuned using a grid search.

The classification process is done as follows: as afore-
mentioned, the three 10-second segments of the music are
converted to the spectrograms (Υbeg , Υmid, and Υend). Each
of them is divided into n zones, according to the values
of n described in subsection III-C. Then, a 28-dimensional
GLCM feature vector and a 59-dimensional LBP feature
vector are extracted from each zone. Next, each one of these
feature vectors is sent to a specific classifier, which assigns a
prediction to each one of the ten possible classes. Training
and classification were carried out using the 3-fold cross-
validation: 1 fold used for training a N-class SVM classifier, 1
fold for testing, 3 permutations of the training fold (i.e. 1×2+3,
2×1+3, 3×1+2). For each specific zoning scheme, we created
3n classifiers with 600 and 300 feature vectors for training
and testing, respectively.

With this amount of classifiers, we used estimation of
probabilities to proceed the combination of outputs in order
to get a final decision. In this situation, is very useful to have
a classifier producing a posterior probability P (class|input).
Here, we are interested in estimation of probabilities because
we want to try different fusion strategies like Max, Min,
Product, and Sum. The following equations, presented by
Kittler et al. [21], describe how the outputs are combined with
these four decision rules in order to get a final decision:

Max Rule(x) =
c

max
k=1

m
max
i=1

P (ωk|yi(x)) (1)

Min Rule(x) =
c

max
k=1

m
min
i=1

P (ωk|yi(x)) (2)

Product Rule(x) =
c

max
k=1

m∏
i=1

P (ωk|yi(x)) (3)

Sum Rule(x) =
c

max
k=1

m∑
i=1

P (ωk|yi(x)) (4)

where x represents the pattern to be classified, m is the number
of classifiers (in this case 3 times n, the number of zones), yi
represents the output label of the i− th classifier in a problem
in which the possible class labels are Ω = ω1, ω2, ..., ωc,
and P (ωk|yi(x)) is the estimation of probability of pattern x
belong to class ωk according to i− th classifier.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The results presented here refer to the average recognition
rate considering the three folds aforementioned. Subsection
V-A presents the results obtained with GLCM features, while
subsection V-B presents the results obtained with LBP fea-
tures. Finally, subsection V-C presents a brief discussion about
all the obtained results.

A. Results with GLCM features

Table I reports the results obtained when GLCM features
were used with four different combination rules and with six
different zoning configurations for each spectrogram generated
from a music piece. The results achieved using the holistic
approach (no zoning) compare to the results reported by Lopes
et al [7]. On the other hand, by increasing the number of zones
up to a certain point we observe an important improvement. In
this experiment, using a local approach with five zones brought
us an improvement of more than five percentage points.

Table I
RECOGNITION RATES (%) OBTAINED WHEN DIFFERENT NUMBER OF

ZONES AND DIFFERENT COMBINATION RULES ARE USED WITH GLCM
FEATURES.

Number of zones Max. rule Min. rule Product rule Sum rule
No zoning 59.56 60.78 64.67 63.44

3 57.56 61.56 69.89 69.22
5 57.11 60.44 70.78 69.33

10 55.56 58.00 69.78 68.22
15 53.22 58.78 69.11 68.22
20 47.22 54.78 41.56 67.22

Table II shows the confusion matrix produced by the by the
combination of classifiers trained with GLCM features using
five zones. The results are very similar to those reported in [7]
where the highest confusions are related to classes Gaúcha (4)
and Sertaneja (8).
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Table II
CONFUSION MATRIX (%) GLCM

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9)
(0) 70.0 0.0 4.4 0.0 6.7 1.1 11.1 1.1 5.6 0.0
(1) 1.1 85.6 4.4 0.0 4.4 1.1 0.0 3.3 0.0 0.0
(2) 0.0 1.1 82.2 3.3 2.2 0.0 3.3 1.1 3.3 3.3
(3) 2.2 1.1 1.1 65.6 8.9 1.1 1.1 3.3 5.6 0.0
(4) 18.9 1.1 1.1 8.9 50.0 2.2 1.1 0.0 5.6 1.1
(5) 0.0 1.1 0.0 2.2 2.2 85.6 2.2 6.7 0.0 0.0
(6) 12.2 0.0 12.2 3.3 6.7 0.0 55.6 5.6 4.4 0.0
(7) 2.2 0.0 2.2 7.8 3.3 8.9 6.7 66.67 2.2 0.0
(8) 20.0 0.0 12.2 7.8 0.0 0.0 4.4 0.00 55.6 0.0
(9) 0.0 0.0 6.7 0.0 1.1 0.0 1.1 0.00 0.00 91.1

(0) Axé,(1) Bachata, (2)Bolero, (3) Forró, (4) Gaúcha, (5) Merengue,
(6) Pagode, (7) Salsa, (8) Sertaneja (9) Tango

B. Results with LBP features

Table III shows the results obtained with LBP features.
Differently from the previous experiments where the local
approach produces a remarkable improvement relative to the
global one, here, of both approaches achieve similar results. Of
course, in this context the global approach is more appealing
since it uses only one classifier. In the top of that, the best
result achieved by the classifier trained with the LBP feature
set is about 10 percentage points better than the best results
achieved with the GLCM features.

Table III
RECOGNITION RATES (%) OBTAINED WHEN DIFFERENT NUMBER OF
ZONES AND DIFFERENT COMBINATION RULES ARE USED WITH LBP

FEATURES.

Number of zones Max. rule Min. rule Product rule Sum rule
No Zoning 76.56 75.67 78.78 79.22

3 73.44 74.56 78.67 79.00
5 72.89 74.78 80.33 80.11

10 72.33 72.11 78.44 78.67
15 70.89 73.89 79.33 77.78
20 69.00 72.67 63.89 76.78

In Table IV we can visualize the confusion matrix produced
by the combination of classifiers trained with LBP features
using a local approach with five zones. It shows that the
classifier trained with LBP is able to reduce several confusions
perceived in Table II, except for class Tango (9) where the
GLCM performs well.

C. Discussion

When comparing the performance of GLCM features with
the LBP features in this application, one can notice that
the classifiers trained with LBP achieved recognition rates
significantly better than that achieved with the GLCM features.
In the best case, the recognition rate with the LBP feature was
about 10 percentage points greater than the recognition rate
achieved with the GLCM features.

Regarding the local and global approaches, it is easy to
observe that the local strategy pays off when dealing with the
GLCM features. This feature set is not able to deal with the
great variability of the spectrogram image, therefore training
different classifiers for specific parts of the image is better

Table IV
CONFUSION MATRIX (%) LBP

(0) (1) (2) (3) (4) (5) (6) (7) (8) (9)
(0) 74.4 0.0 2.2 0.0 0.0 0.0 11.1 3.3 8.9 0.0
(1) 1.1 92.2 2.2 1.1 0.0 1.1 0.0 1.1 1.1 0.0
(2) 0.0 1.1 91.1 0.0 1.1 0.0 1.1 0.0 4.4 1.1
(3) 0.0 1.1 4.4 77.8 5.5 3.3 3.3 2.2 2.2 0.0
(4) 11.1 1.1 5.5 6.7 67.8 0.0 0.0 0.0 7.8 0.0
(5) 1.1 3.3 0.0 1.1 0.0 92.2 0.0 2.2 0.0 0.0
(6) 6.7 0.0 13.3 1.1 1.1 0.0 64.4 7.8 5.6 0.0
(7) 2.2 0.0 2.2 0.0 3.3 1.1 3.3 86.7 1.1 0.0
(8) 11.1 1.1 7.8 2.2 10.0 0.0 2.2 0.0 65.6 0.0
(9) 1.1 0.0 5.6 1.1 1.1 0.0 0.0 0.0 0.0 91.1

(0) Axé,(1) Bachata, (2)Bolero, (3) Forró, (4) Gaúcha, (5) Merengue,
(6) Pagode, (7) Salsa, (8) Sertaneja (9) Tango

than using just one classifier for the whole spectrogram image.
However, the experiments have shown, however, that after
five zones there is no further improvement. In the case of
the LBP features, both local and global approaches perform
almost evenly. The local approach using five zones yields
slightly better results. As explained earlier, the global approach
could be more interesting in this case since it requires a single
classifier.

The relevance of the results achieved by the LBP feature set
is clear when compared with the literature. Table V reports
recent results on the LMD using artist filter. Such results
can be directly compared since all of them use exactly the
same experimental protocol. In addition, we have access to
the performance for each class. Lopes et al. [7] presented
an approach based on an instance selection method, where a
music piece was represented by 646 instances. The instances
consist of feature vectors representing short-term, low-level
characteristics of music audio signal. The classifier used was
an SVM and the final decision was done through majority
voting. Costa et al. [10], presented a classification scheme
similar to some experiments presented in this work, based on
GLCM features extracted from spectrograms, but using only
a single classifier for the feature vectors extracted from all the
zones. The final decision was taken simply through majority
voting.

Table V
COMPARISON OF DIFFERENT STRATEGIES ON LMD WITH ARTIST FILTER.

Genre LBP GLCM GLCM Instance GLCM +Inst.
5 zones 5 zones [10] Selection Selection

[7] [10]
Axé 74.44 70.00 73.33 61.11 76.67

Bachata 92.22 85.56 82.22 91.11 87.78
Bolero 91.11 82.22 64.44 72.22 83.33
Forró 77.78 65.56 65.56 17.76 52.22

Gaúcha 67.78 50.00 35.56 44.00 48.78
Merengue 92.22 85.56 80.00 78.78 87.78

Pagode 64.44 55.56 46.67 61.11 61.11
Salsa 86.67 66.67 42.22 40.00 50.00

Sertaneja 65.56 55.56 17.78 41.11 34.44
Tango 91.11 91.11 93.33 88.89 90.00

Average 80.33 70.78 60.11 59.67 67.20
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From Table V it is easy to see that the LBP-based system
surpasses the others by a large margin. For some classes,
such as Gaúcha and Sertaneja, which are quite difficult to
discriminate, this strategy is able to get recognition rates of
around 65%, while others stay below 50%. Besides, it provides
the best performance for 8 out of 10 classes. In spite of
that, there is room for some improvement. Other strategies
have good results for some classes which could be combined
somehow to improve the classification rates. This will be
subject of future works.

As mentioned before, the Latin Music Database has been
used in the competitions organized by the MIREX (Music
Information Retrieval Evaluation eXchange). From Table VI
we can notice the outstanding improvement over the last few
years. As we can see, our result using the LBP-based system
compares favorably to best results reported in the literature.

Table VI
RECOGNITION RATES (%) OBTAINED IN THIS WORK, BY HUMANS AND IN

THE LAST AUTOMATIC MUSIC GENRE RECOGNITION CONTESTS.

Work reference Recognition rate (%)
MIREX 2008 - LMD [22] 65.1
MIREX 2009 - LMD [23] 74.6
MIREX 2010 - LMD [16] 79.8
This work (GLCM) 70.7
This work (LBP) 80.3

VI. CONCLUSION
In this paper we have compared two different textural

descriptors to perform music genre classification. The idea
was to convert the music signal into a spectrogram image and
them extract textural features from it. Two textural features,
GLCM and LBP, were evaluated in this paper as well as
two different feature extraction approaches to deal with the
intra-class variability of the spectrogram image. The local
approach divided the image into several different zones which
are independently classified by different classifiers. The second
one is holistic by nature since it process the entire spectrogram
image as a whole.

The experimental results have shown that the local approach
performs very well when the classifier is trained with the
GLCM feature set. We have also seen that after a certain
number of zones (five in our experiments) there is no fur-
ther improvements in terms of correct classification. For the
classifier trained with LBP, both local and global approach
achieve similar results. In such a case, the holistic approach
is more attractive because it requires only one classifier.

Our experiments also have shown that the LPB-based
system achieves a overall recognition rate of 80%, which
compares to the best results reported in MIREX 2010 for the
Latin Music Database. In the light of this promising results,
in future work we plan to combine them with other traditional
strategies to enhance the final recognition rates.
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