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Abstract—It is becoming more and more common to use
Autonomous Underwater Vehicles to perform tasks underwater.
The use of this vehicles is affordable and its use doesn’t raise
any significant risk nor does it requires any human intervention.
The traditional applications for the use of such vehicles were
related with bathymetric tasks. But nowadays AUVs are being
more and more used for variety of missions in open water envi-
ronments, including the inspection of underwater structures and
environmental monitoring in diverse oceanographic expeditions.

Following some previous work, this paper addresses the
problem of bottom following by an Autonomous Underwater
Vehicle in an environment which is not previously known. In
particular, the focus is on integrating a reactive behaviour based
on environment sensing, with the on-board navigation software of
the MARES AUY. For this, a guidance algorithm will provide the
necessary pitch and depth references to the control layer of the
vehicle. While the altitude towards the seabed can be measured
with an altimeter, the pitch reference values are based on realtime
estimation of the slope of the seabed. By doing so, it is possible
to control the vehicle in a way that it will always maintain a
constant attitude towards the bottom, and the trajectory followed
will remain parallel to bottom, regardless of it’s profile.

I. INTRODUCTION

Traditional applications for the use of Autonomous Under-
water Vehicles (AUVs) are mostly related with bathymetric
tasks, where the objective of mapping the bottom of the river
or sea is achieved by using advanced ultrasound equipment.
However, other applications for these vehicles have been
envisioned, with a special focus in open waters environments,
where the benefits of using them are more dramatic. Nowa-
days, AUVs are already being used for variety of missions,
including the inspection of the bottom, inspection of underwa-
ter structures and even remote environmental sensing within
oceanographic expeditions.

Performing visual inspection of the bottom with an AUV ob-
viously requires the vehicles to navigate closely to the bottom.
With poor lighting conditions and turbid water, the bottom of
the sea is usually a quite adverse system for acquiring images.
Whenever this is necessary, the vehicle needs to navigate as
close to the bottom as possible in order to obtain satisfactory
results. Such inspection tasks would also greatly benefit if
the trajectories of the vehicle closely resemble the profile of
the bottom. In this way, bottom features would be depicted
according to their natural size and orientation ratio, decreasing
distortion and other disturbances that otherwise may affect the
final images.

In known environments navigating close to the bottom
doesn’t represent a challenging navigation problem, as it is
easy to plan ahead a given trajectory. In most cases, however,

it is not possible to known in advance the profile of the
bottom and the problem of of having an autonomous vehicle
navigating close to the bottom becomes non-trivial, and could
even put in danger the safety of the vehicle.

Bottom Following, or seabed tracking, has been described as
"maintaining a fixed altitude above an arbitrary surface whose
characteristics may or may not be known" [1], in one of the
initial works on the topic. The problem of bottom following by
an AUV has already been widely addressed in the literature.
A very interesting and detailed study on the use of high-
frequency pencil beam profiling sonars for bottom following
problem was proposed in [2]; the solution, further extended in
[3] is based on a multi-hypothesis Extended Kalman Filter for
motion and environment estimation techniques, and Lyapunov-
based guidance system. Also, a description of a survey where
bottom-following tasks were extensively done to gather high-
precision detailed data from the seabed, with the help of an
acoustic rangefinder, can be found in [4]. Some relevant work
for the topic can also be found in [5], where the problem
of designing high precision bottom following algorithms for
Remotely Operated Vehicles, was addressed. In some recent
work on the topic [6] a new controller based on the potential
field method was presented, to address both the problems
of bottom avoidance and bottom following, and in [7] a
different controller is proposed, that uses the Nonlinear Output
Regulation framework, to address the seabed tracking problem.

The method presented in this article is an extension of
previous work by Melo and Matos [8]. There a basic bottom
following guidance-based approach, responsible for providing
the necessary depth references to the control layer of the
vehicle, was introduced. In this article we further expand those
results in such way that the vehicle, in addition to follow the
bottom at a given distance, also dynamically adjusts its attitude
(pitch) to match the slope of the bottom. By doing so, the
trajectory performed by the AUV will closely resembles the
profile of the bottom. Performing this kind of trajectory is of
particular importance for applications where acquiring images
of the bottom is needed.

The paper is organized as follows. Section II gives a brief
presentation of MARES AUV vehicle and the architecture of
the computational system of the MARES AUYV, the vehicle
we used to validate our results in a open water environment.
In section IV different realtime slope estimation algorithms
are presented and Section V deals with the transformation
of state variables into suitable control variables. The results
obtained with the proposed solution, both by simulation and
in real missions, are presented in Section VI and finally some



conclusions are presented in the last section.

II. SYSTEM ARCHITECTURE

The guidance algorithm proposed in this article is to be
integrated in the on-board control software of the MARES
AUWV. In this context, and for better understanding, this section
presents an overview on the architecture of the control system
implemented in the vehicle.

The MARES AUV has four thrusters, two vertical and two
horizontal, and due to their specific spatial configuration, it is
possible to control the horizontal and vertical movements of
the vehicle in an almost decoupled way. Because of this, the
control layer of MARES is composed by four independent
controllers: surge, heading, pitch and depth. The surge and
heading controllers are responsible for the horizontal motion of
the vehicle, while the pitch and depth controllers are combined
to obtain the actuation in the vertical plane. Each one of the
four basic controllers can operate in either open or closed
loop mode, and a more detailed description of the each of the
controllers can be found in [9].

The control layer of MARES also defines a maneuver as
a set of coordinated control actions by each of the basic
controllers. Four elementary maneuvers - dive, surface, goto,
hover - were defined in the core of the control system, but
it is also possible to define additional maneuvers, as each of
the basic controllers can be controlled externally, accepting
inputs from remote processes. This flexibility of the control
layer allows to define more entangled maneuvers in a very
efficient way. The guidance algorithm to implement will take
advantage of this feature, providing the desired depth and pitch
references to the respective controllers, controlling in this way
the vertical trajectory of the vehicle. A note to the fact that this
implementation is entirely guidance-based and independent of
the already existing four basic controllers, as opposed to some
of the bottom following approaches present int the literature
(61, [71.

In the bottom following maneuver, the vehicle should main-
tain a constant distance towards the seabed, while its pitch
should vary in accordance to the slope of the bottom. The
altitude of the vehicle off the seabed can be easily measured
by using an altimeter - a now very common single beam sonar
sensor that provide range distance measurements. However,
measuring the slope of the bottom is something that is not
so trivial and has to be estimated. Given that the slope of
the bottom is closely related with variation of the relief of
the bottom, the slope of bottom can be estimated from the
altimeter measures. Different techniques for slope estimation
are discussed in Section IV. The control variables, pitch and
depth, are then computed from these estimates and fed the
pitch and depth controllers, respectively.

III. EXPERIMENTAL SETUP

The vehicle used to support the work developed is the AUV
MARES. This vehicle is a torpedo-shaped, highly modular,
small sized AUV, with about 1.5m long, weighting about
32kgs and propelled by 4 thrusters. The configuration of

the thrusters - two horizontal thrusters located at the tail to
control both forward velocity and heading, and two thrusters
in the vertical direction, to control vertical velocity and pitch
angle - allow for an decoupled control of the horizontal and
vertical motion of the vehicle. Therefore, heave and pitch can
both be independently controlled, a feature that is particularly
appreciated in this context. A more detailed description of the
vehicle can be found in [10].

Fig. 2: The MARES AUV

The most reliable way of assessing the distance to the
bottom inside the water is using sonar techniques, mostly due
to the unique characteristics of sound propagation in the water.
The Imagenex Model 862, was integrated in the MARES
hardware to allow to measure the distance of the vehicle to
the bottom. This is a completely self-contained altimeter with
a narrow conical beam of 10°, range resolutions of 20mm and
a maximum range of 30m.

The altimeter, mounted in the vehicle on a downward facing
position, is responsible for providing range measurements of
the distance towards the bottom, and the different parameters
were fine-tuned up to a state on which the altimeter was
providing consistent measurements throughout the time. New
measurements were being provided at a frequency of 4Hz.
Nevertheless, the output of the altimeter needs to be filtered,
to prevent the appearance of eventual spurious measurements
or outliers, frequent when using underwater sonar. The filtering
problem for this configuration was already addressed, and the
work in this article will build up on the results presented in

[8].
IV. SLOPE ESTIMATION

The purpose of the work here presented is the development
of a environment sensing based reactive behaviour, to be
integrated on the on-board navigation software of the MARES
AUV. This algorithm should be able to estimate the slope
of the bottom, and to adjust the vehicle’s pitch and depth
accordingly. The estimation of the slope of the bottom is a
two step process: first, the range measurements output by the
altimeter need to be filtered, and with that data an estimate of
the slope needs to computed. From the estimated slope, a time
variable pitch and depth references are generated, that take into
account a safety distance to the bottom, preventing situations
of bottom collision. Due to safety and general efficiency issues
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Fig. 1: Output of the altimeter: on the left, a situation when excessive gain and pulse length is depicted, with a lot of noisy
measurements; on the right, a situation where the parameters have been correctly set

of the vehicle, the generated depth and pitch control variables
are bounded to limits considered reasonable.

Filtering the altimeter measurements has already been par-
tially covered in [8]. There, a uni-dimensional state Kalman
Filter was used. Given the filtering requirements, a choice for
such filter came naturally, as this filter proved to be not only an
efficient smoother but a robust way to discard outliers from
the set of measurements. An extension to this, namely the
realtime estimation of the slope of the bottom is the subject
of this section.

The estimation of the slope of the seabed is an environment
sensing based process and. In this case, the environment
sensing is made by the altimeter, which is mounted on the
vehicle in a down-facing configuration, and provides range
measurements to the bottom. Considering that this set of
measurements has already been filtered out of outliers, they
can be used freely without any major concerns. For the
realtime estimation of the slope of the bottom, two different
techniques were explored and compared: the first approach,
described on Section IV-A, consists on the use of Linear
Regression and the second approach, on Section IV-B, consists
on extending the Kalman Filter used to filter the measurements
of the altimeter, so that the slope of the bottom can also be
estimated.

The slope, steepness or inclination of the bottom is usually
defined as the rate of change of the bottom relied with
the distance traveled in the horizontal direction and between
every two points in space. However, we want to define the
slope of the bottom as a function of the previous range

measurements gathered throughout the time. The altimeter
provides measurements of the distance to the bottom over time,
and by plotting these data we can have a distorted map of the
profile of the bottom over the direction of the movement of
the vehicle. This map is distorted because it accounts for the
variations of the profile of the seabed over time, and not over
the distance traveled. To obtain a correct profile of the bottom,
the surge velocity of the vehicle must be taken into account.

Calculating the slope of the profile using measurements
from an altimeter has the potential risk of associating vari-
ations of the depth of the vehicle with possible changes in
the slope of the bottom: if a vehicle is moving on a given
location where the bottom is flat but changes its depth - e.g.
when submerging to a given bottom following distance. The
variations on the altitude measurements from the altimeter will
in fact be perceived as a change in the slope of the bottom.
This situation will likely lead to a situation where the pitch
of the vehicle keeps oscilating. To overcome this, the slope
estimation algorithms must only consider actual differences in
the slope of the bottom - between every altimeter measurement
differences in the depth of the vehicle, calculated by the
navigation layer, must be subtracted.

By differentiating these set of data with respect to time, we
arrive to a figure of merit which is simply the rate of change of
the distance to the bottom, for a given time period. To arrive
to an actual slope we need to simply multiply it by the surge
velocity, usually provided by the navigation layer of the on-
board software. However, this figure of merit - a "slope over
time" - by itself is enough to access the performance of the



algorithms.

A. Linear Regression

The only available information regarding how far from the
bottom is the vehicle navigating is provided by the altimeter,
with a constant stream of data containing a time series of
ranges to the bottom. As previously described, estimating the
slope of the can be accomplished by merely differentiating
this time series with respect to time, and scale it afterwards
according to the surge velocity of the vehicle.

The idea behind using a linear regression to estimate the
slope of the bottom arises naturally: as differenciating a time-
series can be tricky at times, being extremely sensitive to
noise, the alternative is to find a curve that best fits to this
time series. Having the analytical expression for this curve, it
is straightforward to calculate it’s derivative, and from there
inferring the "slope over time" of the bottom. From there, and
just by multiplying it by surge velocity of the vehicle, we have
an estimate of the actual slope of the bottom.

WTX:w0+w1x+w2z2+... (D)

The Linear Regression algorithm tries to find the polyno-
mial, which order has to be defined in advance, that best
fits a set of existing data points. Usually this fit is made in
the least-squares sense. The polynomial that best fits the data
can be written as in (1). It can be shown that W, the vector
of coefficients of the polynomial, can be obtained by simple
algebraic manipulation, as in (2), where X, the design matrix,
is built using the input variables, and Y is the matrix of the
independent variables. To apply the linear regression to the
specific problem of estimating the slope of the bottom, there
are two main design choices to be made: the order of the the
approximating polynomial, and the size of data set to use.

W= (XTX)"'xTy )

The order of polynomial is directly related to how the
seabed is to be modeled. The assumptions about the bottom
are that it should be smooth, without sudden variations of the
profile - more than 1 meter. Given this, the bottom could be
modeed whether by a first or a second order model. Whilst
a second order model might seem a good option, due to the
fact that it is curvy and smoother than a linear one, it has
a tendency to overfit - it adapts too closely to the set of
data points - and has a poor performance, specially when in
presence of a very noisy data set.

The second design choice, the size of the data set, has an
important role on the overall performance of the fit: while
increasing the size of the data set makes the fit smoother,
on the other hand, it also increases the delay introduced and,
therefore, the reaction time to significant changes in the slope
of the bottom. The number of measurements to include in
the regression must be a compromise between delay of the
algorithm and performance.

B. Kalman Filter

The slope estimation described in the previous subsection,
by means of a Linear Regression, is a two-step approach: it
requires first a filter, to remove outliers from the measures,
and then a Linear Regression estimator, that predicts the slope
of the bottom. An alternative to this is to try to integrate both
features onto the same algorithm, thus eliminating the extra
delay introduced by the different estimators.

Having in mind the good performance on removing outliers
of the Kalman Filter described in [8], and the bottom follower
presented by Caccia et al in [3], we also developed an Kalman
Filter integrating both the outliers removal and the bottom
estimation features.

The bottom estimator state and measurements equations can
be represented by equations (3) and (4), which represent a
linear systems with a linear measurement, both affected by
random white noise, wy and vy.

dpy1 = di + dkAt
di+1 = di, + wg

(3a)
(3b)

The distance from the AUV to the bottom at time instante &
is represented by dj, and dk is the derivative of this distance,
previously refered as the "slope per time" figure of merit. The
state of the system is continuously estimated by applying the
usual Kalman Filter recursive prediction and update equations.
(3a) expresses the fact that changes in the distance to the
bottom are only affected by the "slope per time" of the bottom
plus a normally distributed noise factor. The rate of change ot
dk is adjusted by the value of wyg, in (3b). In the measurement
update equation (4), pi refers to the raw measurement of the
altimeter at time instant k.

2k = pr + Uk 4)

As usual, the performance of the filter can be tuned by
adjusting the matrix ) and R, respectively the process noise
and measurement noise covariance. While R was set to be
equal to 2.5 times the quantum of the altimeter, values for
@ were empirically set for the best performance having in
consideration both the delay introduced, and the quality of
the tracking of the seabed. As in [8], validation of new
measurements and, hence, outliers removal, can be performed
by evaluating the covariance of the innovation. Recall that S},
is obtained through (5), where Hy is the observation model,
and the validation of new measurements is done according to
(6). The parameter v can be adjusted to fine tune the whole
process.

Sky1 = HLPyH + R )

l2x — Hapl| Syt < v (6)



V. CONTROL VARIABLES

The control layer of the MARES AUV is composed out
of four different controllers, namely surge, heading, pitch and
heave. For the bottom following behaviour, both heave and
pitch need to be properly actuated. This section deals with the
process of converting the estimated state variables, depth and
slope of the bottom, into proper control references, as both the
controllers need to be provided with relative, and not absolute,
reference values.

The heave controller is responsible for the controlling the
depth of the vehicle and, therefore, the distance from which
the vehicle is from the bottom.

The depth reference for this controller, Z% 5, in (7), uses
the estimated distance to the bottom, dy, to generate the
proper reference, but also compensates for the relative position
between the location of the altimeter and the vehicle’s center
of gravity, zarr, and for the actual pitch of the vehicle 6.
Dy is the parameter that sets bottom following distance - the
distance to the bottom that the vehicle should always maintain.

Z;%EF = —dj, + Df =+ a:ALTsin(G) (7

We also want to prevent situations of possible trap or loss
of the vehicle. Therefore, the reference sent to the controllers,
Zrer should be bounded, as in (8). By bounding the calcu-
lated reference, Z% ., the vehicle is not allowed to follow
sudden discontinuities in the slope, as this is not considered
a safe behaviour, nor is under the assumptions for the model
of the bottom. The value on which we wish to bound will
obviously vary according to the environment and the missions
being executed.

ZREF = Zrer
Zymax  otherwise

if ZI*%EF < ZMAX

®)

As for the pitch controller, a suitable pitch reference must
be derived from the previously estimated slope of the bottom,
di. A "slope per time" has already been estimated and, by
multiplying this value by the surge velocity, u, estimated on
the navigation layer of the vehicle, we get the actual the slope
of the bottom.

0" = 0 + atan(dyu) )

In (9) we neglect the effect of water currents might have
on the direction of the vehicle, and assume that u accurately
describes the velocity of the vehicle in the forward direction.
As dju is a slope, or a ratio, to get the equivalent angle it is
enough to simply compute its arc tangent.

VI. RESULTS

In this section we will present results both for the proposed
bottom estimation and bottom following approach. These
results are both simulated and experimentally validated, during
several missions performed during the Summer 2012 in a
location in the Douro river, close to Porto, in Portugal.

A. Simulated Results

The results presented in this section were obtained through
extensive simulation, using for that previously gathered data
from the altimeter on an open-waters environment. Using this
data allowed to recreate an actual profile of the bottom and
compare and tune the different slope-estimation algorithms.

For this simulation tests, we were mainly focused on both
the accuracy and the delay introduced while estimating the
distance to the bottom: this estimate must be accurately esti-
mated and evolve smoothly through time; on the other hand,
the realtime estimation step shouldn’t introduce a significant
delay, otherwise the ability to avoid collisions with the ocean
floor could be compromised. The simulations also allowed to
find the best tradeoff for a number of design parameters: for
the Linear Regression algorithm we were able to establish the
most appropriate number of samples to use in the regression,
while for the Kalman Filter we determined the parameter -y
and the covariance matrix values that best improved the results
obtained.

The results obtained with the Linear Regression and with
the Kalman Filter can both be seen, respectively, of figures 3
and 4, an both of them correspond to the same altimeter data
set, that simulates a given profile of the bottom. The plots
contain points for the raw altimeter data, in blue, estimates of
the depth of the vehicle, in red, and the estimated slope of
the bottom, in green. It can be noted that the estimates for the
slope of the bottom are more smooth when estimated with the
Kalman Filter. Also the Linear Regression estimated slope is
more sensitive to small oscillations in the bottom, which in
this case were caused by the normal overshoot in the heave
controller. This sensitiveness, however, can lead to a behaviour
which is not the desired one.

Distance to bottom (m) / Pitch (deg)
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Fig. 3: Simulation of the Linear Regression algorithm: output
of the altimeter (blue), estimated distance to the bottom (red)
and pitch of the vehicle (green)

On both approaches, the points that correspond to the
estimated distances to the bottom overlap almost entirely
the points corresponding to altimeter measurements, with the
exception of the removed outliers, which are the only points
clearly visible. This is, in fact, a proof of the good behaviour
of two algorithms, in terms of the delay introduced by the
estimators. Both the approaches have a similar and negligible
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Fig. 4: Simulation of the Kalman Filter algorithm: output of
the altimeter (blue), estimated distance to the bottom (red) and
pitch of the vehicle (green)

impact, introducing a very small delay, as this is depicted in
figure 5. There, it can be seen a detailed view of the steepest
region of our simulated altimeter data produced by the Kalman
Filter. Steep regions of the bottom are likely to be the ones
where the delay would have a more visible effect but, as the
plot demonstrates, this delay is small enough to be neglected.

Fig. 5: The delay introduced by both estimators is negligible:
altimeter measurements (blue) and depth estimates (red) are
almost overlapping in the steepest region of the simulation

These simulations results showed that the Kalman Filter
has a better performance, as the Linear Regression estimator
induces noisy estimates for the slope of the bottom. This is in
fact a key reason for the choice of the Kalman Filter as the
algorithm to be actually implemented. The final step of the
simulation results consisted on integrating the Kalman Filter
approach together with the vehicle simulator, in order to access
the behaviour of the controllers and of the trajectory performed
by the the vehicle. Figures 6 and 7 depict, respectively, a
simulation of the depth and pitch of the vehicle while doing a
bottom following task on which the vehicle should follow the
bottom with a distance of 2 meters.

It is clear from figure 6 that the AUV follows the bottom
at the desired 2 meters. The points in blue are relative to a
simulated bottom profile, and the points in red are relative
to depth data given from the navigation layer of the vehicle
simulator. The distance between bottom and the vehicle is
always around 2 meters, as desired, even when there are
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Fig. 6: Simulation of a typical Bottom Following mission:
profile of the bottom (blue) and AUV depth (red)
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Fig. 7: Simulation of a typical Bottom Following mission:
profile of the bottom (blue) and AUV pitch (red)

significant changes in depth of the bottom, as shown in the
begginning and end of mission. The only exception to this
occurs in the end of the mission, when the vehicle is only at
1.5 meters of the bottom, but already at surface level.

In figure 7, on the other hand, there is a plot of the same
profile of the bottom, in blue, against the pitch of the vehicle
given from the navigation layer of the vehicle simulator.
Again, the blue points are relative to the profile of the bottom,
while the red ones are relative to the pitch of the vehicle. In this
plot it is visible the change of pitch over time, in accordance
to the profile of the bottom: when the depth of the bottom
starts increasing the pitch of the AUV is negative, when the
bottom is flat the pitch of the AUV is around zero, and the
depth of the bottom starts decreasing the pitch of the AUV is
positive.

B. Experimental Results

The experimental tests presented in this section are the result
of a series of trials that were carried away in the Summer
of 2012 in the Douro river, in a location close by Porto, in
Portugal. Simulations are never able to entirely model the
dynamics and behaviour of the vehicle, and the complexity
of an open-waters scenario. The challenge with these trials is
to assess if the proposed algorithm is robust enough to be used
in a real mission.
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Fig. 8: Bottom Following mission: depth of the vehicle (blue)
and distance to the bottom (red) over time

The AUV MARES was programmed to perform a number
of different bottom following missions, and the plots depicting
the behaviour of the vehicle during them can be seen in figures
8 to 10. A typical mission consists on sending the AUV
performing a straight line, maintaining a specified heading
while controlling heave and pitch to do the bottom following
at 1.5 meters above the bottom. The selected missions for the
plots here presented correspond to the data that more clearly
demonstrates the performance of our approach in typical
mission scenarios.

Figures 8 and 9 are complementary and correspond to the
same bottom following mission: on figure 8 we can see the
plot of the depth of the vehicle, given by the navigation layer
of the vehicle, and the estimated distance to the bottom, and
on figure 9 we can see the same depth of the vehicle, plotted
against the measured pitch of the vehicle. Initially, the vehicle
is performing a hover maneuver, at 0.5 meters deep and then,
after approximately 5 seconds, the bottom following maneuver
is initiated. The AUV was initially on a location with very
shallow waters, of less than 2 meters. As this is really close
to the desired 1.5 meters, there were some oscillations on both
depth and pitch. These oscillations can also be explained by
the small overshoot that affects the heave controller. As the
vehicle progresses, it can be seen that the measured distance
to the bottom has a rough change, from around 1 meter to 2.5
meters. After this, the AUV starts behaving more smoothly,
first steadily increasing it’s depth for some seconds and, after
second 60, it decreasing again the depth. The distance to the
bottom, however, clearly approaches the 1.5 meters bottom-
following distance. At the same time, the pitch of the vehicle
changes accordingly to the evolution of the profile of the
bottom, as can be seen on figure 9.

In figure 9 some oscillations on the pitch of the vehicle
can be seen, while the vehicle is following some ascending or
descending bottom profiles. These oscillations are quite small,
usually less than 5 degrees, and they result from small changes
in the topography bottom. However, if it is not desired that the
vehicle reacts to such small changes, it is likely that this can
be achieved by tuning the filter accordingly.

Figure 10 depicts a different bottom following mission,
and represents the profile of the bottom and the trajectory

Depth (m)
|
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Fig. 9: Bottom Following mission: depth (blue) and pitch of
the vehicle (green) over time

followed by the AUV. This was done by combining data from
the depth and distance to the bottom of the vehicle. The plot
also contains data representing the pitch of the vehicle, which
can be easily related with the steepness of the bottom. In this
figure it is clear that the AUV trajectory is clearly following
the bottom.
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Fig. 10: Bottom Following mission: bottom of the river
(black), trajectory performed by the AUV (blue), and pitch
of the vehicle(green)

VII. CONCLUSION

When AUVs need to do tasks where the visual inspection
of the bottom is required, they need to navigate as close to
the bottom as possible, in order to maximize the quality of the
final images. Moreover, they should maintain a parallel attitude
towards the bottom in order to decrease the level of distortion
of the images. Therefore, a bottom-following behaviour, where
the vehicle follows a trajectory always parallel to the bottom,
is of critical importance. In this article we propose a Bottom
Estimation and Bottom Following guidance-based approach,
that uses only an altimeter that continuously provides ranges
to the bottom of the seabed.

Two different estimation algorithms were initially proposed:
one based on a Linear Regression, and one based on a Kalman
Filter. Both the approaches consist on feeding the pitch and
heave controllers of the vehicle with the desired control
variables. These control variables are generated according to



the real-time estimates of both the distance of the AUV to the
bottom, and the slope of the bottom. After some simulation
tests, it was concluded that the Kalman Filter performance to
be more adequated to this problem. The subsequent sintegra-
tion of this Kalman Filter algorithm with the onboard software
of the MARES AUV, allowed to experimentally verify the
robustness of the solution in a real-world scenario. In the field
tests, the AUV performed a trajectory closely resembling the
profile of the bottom, something that can be very useful for
missions requiring the visual inspection of the bottom.
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