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Abstract—This paper describes a robust localization system,
similar to the used by the teams participating in the Robocup
Small size league (SLL). The system, developed in Object Pascal,
allows real-time localization and control of an autonomous
omnidirectional mobile robot. The localization algorithm is done
resorting to odometry and global vision data fusion, applying an
extended Kalman filter.

I. INTRODUCTION

Soccer was the original motivation for Robocup. Besides

being a very popular sport worldwide, soccer brings up a set of

challenges for researchers while attracting people to the event,

promoting robotics among students, researchers and general

public. RoboCup chose to use soccer game as a central topic

of research, aiming at innovations to be applied for socially

significant problems and industries [1].

As robotics soccer is a challenge in an highly dynamic

environment, the robot and ball position information must be

accessible as fast and accurate as possible [2]. As an example

if the ball has a velocity of 2 ms−1 and if the lag time is

100 ms, the ball will travel a distance of 20 cm between two

sampling instants, compromising the controller performance.

The presented localization algorithm is updated 25 times per

second, fulfilling the proposed real-time requisites.

Robots maintain a set of hypotheses with regard to their

position and the position of different objects around them.

The input for updating these beliefs come from poses belief

and various sensors. An optimal estimation can be applied in

order to update their beliefs as accurately as possible. After

one action the pose belief is updated based on data collected

up to that point in time, by a process called filtering. Kalman

filtering is a standard approach for reducing the error in a

least squares sense, using measurements from different sources

[3][4].

This paper describes a robust real-time localization system

based on odometry and global vision data fusion applying

an extended Kalman filter. Similar approaches were applied

successfully in other domains, such as Unmaned Air Ve-

hicles (UAVs) localization. Unmanned aerial vehicles are

increasingly used in military and scientific research. Some

miniaturized UAVs rely entirely on the global positioning

system (GPS) for navigation. GPS is vulnerable to accidental

or deliberate interference that can cause it to fail. For UAVs

relying solely on GPS for navigation such an event can be

catastrophic [5] [6].

II. RELATIVE POSITION ESTIMATION

Omnidirectional vehicles are widely used in robotics soc-

cer, allowing movements in every direction, where the extra

mobility is an important advantage. The fact that the robot

is able to move from one place to another with independent

linear and angular velocities contributes to minimize the time

to react, the number of maneuvers is reduced and consequently

the game strategy can be simplified [7] [8] [9]. The omni-

directional robots use special wheels, that allow movements

in every direction. The movement of these robots does not

have the restraints of the differential robots [10], presenting

the disadvantage of a more complex control. It is possible to

conclude from the geometry of a three wheel omnidirectional

robot, presented in Figure 1, that the velocities Vx, Vy and

w vary with the linear velocities V1, V2 and V3, as shown in

equations system (1) [11].
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The robot relative position estimation is based on the

odometry calculation. The odometry calculation uses each

wheel velocity in order to estimate the robot position, the

disadvantage is that the position estimate error is cumulative

and increases over time.

The robot kinematic equations can be represented by the

equations system (2), in alternative to the equations system

(1).
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Fig. 1. Geometry of a three wheel omnidirectional robot

The linear and angular velocities V , Vn and w can be

obtained rewriting equations system (2) as equations system

(3),
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where G is :
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By this way θ can be found, applying an first order

approximation, as shown in equation (5),

θ(K) = θ(K − 1) + wT (5)

where T is the sampling time.

After θ calculation an rotation matrix, presented in matrix

(6), is applied in order to obtain Vx and Vy , as shown in

equations system (7),

B =





cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0
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 (6)
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where:
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x and y estimate is calculated applying an first order

approximation, as shown in equations (18) and (19),

x(K) = x(K − 1) + VxT (18)

y(K) = y(K − 1) + VyT (19)

where T is the Sampling Time.

III. ABSOLUTE POSITION ESTIMATION

A global vision system was used in order to obtain the

robot absolute position estimation, it is presented in Figure

2. The global vision system is required to detect and track a

mobile robot in an area supervised by one camera. The camera

is placed perpendicular to the ground, fixed to an metallic

structure, allowing a maximal height of 3 meters, although in

the presented case is placed only at 2 meters height. Placing

the camera higher reduces the parallax error, reduces problems

such as ball occlusion and the vision field increases, although

the image quality decreases and the error due to the barrel

distortion effect increases. All this items are discussed bellow.

• Image quality:

The image quality concept, in this case study, is related

with the number of pixels that are available at each frame to

identify and localize an robot marker. The markers, placed on

the robot top, have the goal to provide information about the

robot localization. Their geometric shape is a circle, all with

the same dimensions and with different colors. The number of

observed pixels for each marker depends on the illumination

conditions, color calibration and camera height. If the camera

is placed higher the vision field is bigger, consequently the
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Fig. 2. Global vision system

maximum number of observed pixels for each marker will be

reduced.

• Parallax:

The parallax error is minimized by placing the camera higher.

In Figure 2 it can be observed that for a height h2 > h1 the

parallax error is reduced considerabilly [12].

• Barrel distortion:

Barrel distortion consists in a lens aberration or defect that

causes straight lines to bow outward away from the center of

the image. As the vision field is only 1 m2 and the camera

is only placed at 2 meters height the barrel distortion error is

not considerable, by this way its associated localization error

is negligible.

A. Markers Localization

Knowing at first hand that are necessary to localize the robot

two different markers, one to identify the center and another to

provide information for the angle calculation. Being the field

green, and the ball orange, the colors for the robot markers

should be the most distant as possible in the RGB cube. The

chosen colors were blue for the robot center and yellow for

the angle, being the official Robocup colors to distinguish two

teams in the SSL [1].The used robot is illustrated in Figure

3. The ball localization is achieved the same way as the robot

center, the only difference is that is a marker placed at a

different height and associated to a different color.

Once detected a calibrated pixel with the color of the object

to localize, its coordinate is registered in x and y of the image.

This process is repeated for all the active image area, being

the coordinates accumulated. At the end of searching this area

the average of all coordinates is calculated, which corresponds

to the calculation of the marker center.

B. Colors Calibration

An essential component of a colored vision system is the

color classification and detection algorithms for each pixel.

Fig. 3. Omnidirectional robot prototype

Considering the 16777216 colors (256 ∗ 256 ∗ 256) that is

possible to represent with 8 bit for each component R, G and

B, it is possible to build a colored cube defined from (0, 0, 0)
to (28; 28; 28) with RGB components in each vertex.

A cube edge represents 256 discrete and different color

points and there are 16777216 different colored points inside

the cube. It is necessary to teach the system the colors of

the 3 used markers. In practice, several cube points belong to

one marker color. In short, calibration fits marker colors and

cube points (RGB combinations). It is necessary to calibrate

the marker colors in the localization system setup and after a

lightning change. This calibration can be saved in a file that

keeps all RGB combinations for each color.

C. Image-World mapping

In order to extract the observed object localization, using

the image, it is necessary to construct the following function:

m : Nx × Ny −→ ℜ2(u, v) −→ (x, y) (20)

Function (20) maps 2d image coordinates in to world

coordinates. This function provides the x and y, assuming that

the component z is zero. As the objects are not all placed at

the same height there will be error due to parallax. This error

can be compensated having in account the objects and camera

height. This compensation can only be done after the marker

localization.

D. Parallax correction

With the acquired image, it is only possible to extract

information about the object in the xy plane. Knowing z

(Marker height) and h (Camera height) it is possible to correct

the values x̃, ỹ to obtain x, y [12].

The function F that implements this compensation is des-

cribed by:

F : ℜ3 −→ ℜ2(x̃, ỹ, z) −→ (x, y) (21)

where:

x = Fx(x̃, ỹ, z) = x̃ − zh (22)

y = Fy(x̃, ỹ, z) = ỹ − zh (23)
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E. Robot angle calculation

As referred previously in subsection III-A, the blue and

yellow markers are used for the robot detection and loca-

lization. The blue marker allows x and y calculation, and

the yellow marker allows the angle calculation. The extracted

information from each marker is each one center position

(x,y). Considering Pr(x, y) the position of the blue marker

and Pa(x, y) the position the yellow marker, it is possible

to calculate the vector that connects Pr to Pa, having as

parameters a and b, as shown in Figure 4.

X

y

b

a

Pa

Pr

Fig. 4. Robot angle

By this way, the vector components in x and y are given

by a and b.

a = Pa(x) − Pr(x) (24)

b = Pa(y) − Pr(y) (25)

By this way is possible to know the robot angle, resorting

to an trigonometric operation:

θ = arctg
b

a
(26)

This operation can be achieved using the function arc-

tan2(b,a), which receives 2 parameters, solving the problem

related with division by zero.

F. Global vision error study

It was made for the global vision localization system

an analysis of the error probability distributions [3][4]. The

position error probability distributions were approximated to

Gaussian distributions [13][14], being the results presented in

SI units.

The number of obtained pixels for the blue marker (Q1),
affects the error variance in x and y, as shown in the next

table:

Q1 x y

5-10 1,5E-05 1,9E-05

10-20 9,25E-06 7,36E-06

20-30 4,84E-06 4,86E-06

30-40 4,15E-06 3,80E-06

≥ 40 1,96E-06 2,21E-06

On the other hand the variance of the angle error probability

distribution is affected by the number of pixels obtained for

both makers, for the blue (Q1) and for the yellow (Q2), as
shown in the next table:

Q1 5-10 10-20 20-30 30-40 ≥ 40
5-10 0,14 8E-02 1,2E-02 1E-02 6,2E-03

10-20 1,6E-02 9,9E-03 1,3E-02 6,6E-03 4,6E-03

20-30 1,5E-02 9,9E-03 7,2E-03 4,9E-03 3,9E-03

30-40 1,4E-02 9,5E-03 5,9E-03 4,4E-03 2,9E-03

≥ 40 1,4E-02 7,2E-03 5,77E-03 3E-03 3E-03

Q2

The variance for less than 5 pixels is not presented, because

it is considered that the thrust in the sensor data is null.

As an example an angle error probability distribution is

shown in Figure 5. The probability distribution was approxi-

mated to a Gaussian distribution being the variable of interest

to extract the standard deviation which allows the variance

calculation.

Fig. 5. Probability distribution for Q1 and Q2 between 5 and 10 pixels

IV. ODOMETRY AND GLOBAL VISION DATA FUSION

Odometry and global vision data fusion was achieved ap-

plying an extended Kalman filter. This method was chosen

because the robot motion equations are nonlinear and also

because the measurements error probability distributions can

be approximated to Gaussian distributions.

A. Extended Kalman filter algorithm

With the dynamic model given by equations system (7)

and considering that control signals change only at sampling

instants, the state equation is:

dX(t)

dt
= f(X(t), u(tk), t), tǫ[tk, tk+1] (27)

Where u(t) = [V1V2V3]
T , that is, the odometry measure-

ments are used as kinematic model inputs. This state should
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be linearized over t = tk, X(t) = X(tk) and u(t) = u(tk),
resulting in:

A∗k =
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with state transition matrix:

φ∗(k) = exp(A∗(k)(tk − tk−1)) (29)

Resulting in:
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Where T is the sampling time (tk − tk−1).
Thus the observations are obtained directly, H∗ is the

identity matrix.

The extended Kalman filter algorithm steps are as follows

[15]:

1) State estimation at time t = tk, X(k−), knowing the

previous estimate at t = tk−1, X(k − 1) and control

u(tk), calculated by numerical integration as shown in

equations (5), (18) and (19).

2) Propagation of the state covariance

P (k−) = φ∗(k)P (k − 1)φ∗(k)T + Q(k) (31)

Where Q(k) is the noise covariance (27) and also

relates to the model accuracy. In order to achieve a

more realistic model of the odometry error probability

distribution it is necessary to have in account that for

abrupt acceleration an deceleration the wheels can slip,

consequently there is an significant position estimate

error increase, mainly in the angle. By this way the used

odometry variance error model for x and y is:

V arxy = K1 + K2la(k − 1)2 (32)

Where K1 is the variance when the robot is moving

in steady state and K2 is a constant that relates the

variance with the previous sample time acceleration

la(k − 1). The previous sample time acceleration is

used instead of the acceleration obtained for the present

sample time because it is more representative to evaluate

the odometry error noise, because transitions are updated

from the previous sample time up to the present sample

time.

The angle variance is modeled in a similar way, but

using different constants (K3 and K4):

V arAngle = K3 + K4la(k − 1)2 (33)

As there is a measure, the follow also apply:

3) Kalman gain calculation

K(k) = P (k−)H∗(k)T (H∗(k)P (k−)H∗(k)T +R(k))−1

(34)

Where R(k) is the covariance matrix of the measure-

ments.

4) State covariation update

P (k) = (I − K(k)H∗(k))P (k−) (35)

5) State update

X(k) = X(k−) + K(k)(z(k) − h(X(k−, 0))) (36)

Where z(k) is the measurement vector and h(X(k−, 0))
is X(k−).

B. Kalman filter performance

With the objective of evaluating the Kalman filter perfor-

mance a robot race was made, as shown in the flowchart

presented in Figure 6. It is possible to observe that the

robot moves across several locations, executing the trajectory

presented in Figure 7.

The goal of the controller is to move the robot to a target

position with controlled velocity. As input parameters we have

as goal the robot displacement to a target position. Initially a

position vector pointing to the target position is calculated,

the position vector is normalized converting it into a velocity

vector, becoming this the objective to accomplish. The system

(1) is used to calculate the velocity that each wheel must have

in order to accomplish the objective. At each sampling time the

estimated position changes, consequently the position vector

changes, the velocity vector changes and the reference speed

of each motor changes. The controller has also as objective to

follow the trajectory with an angle near to zero. One important

fact that needs to be enhanced from the graphics presented in

Figures 7 and 8, is that when it is expected the robot to pass

by the position x = 20 cm and y = −20 cm, the robot starts

to move to the next target position. This happens because the

objective of reaching one position is accomplished if the error

in x and in y is less than 2 cm, making the state machine

evolve to the next state, changing the objective to x = 20 cm

and y = 20 cm.

The image quality of the robot markers for the presented

robot race are presented in Figure 9 and the variance of the

estimated robot position is presented in Figure 10. Whenever

the image quality decreases of position estimate variance

increases, compromising the controller performance. On the

other hand whenever the image quality increases the error

variance is reduced and when the state update is done the

position estimate error is reduced.

V. CONCLUSIONS

It is very important for the robot to have an accurate

knowledge of its position in order to better accomplish its

mission requisites. If the robot does not know where it is, it

can’t decide what to do next.
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Fig. 6. Flowchart of the robot race

Fig. 7. a) Robot trajectory, and (b) Estimated Angle

Fig. 8. a)Estimated x position, and (b) Estimated y position

Fig. 9. a) Image quality of the center marker Q1, b)Image quality of the
angle marker Q2

Fig. 10. a) x and y variance, and (b) Angle variance

Odometry and global vision real-time data fusion was

achieved applying an extended Kalman filter. This method was

chosen because the robot motion equations are nonlinear and

also because the measurements error probability distributions

can be approximated to Gaussian distributions.

Omnidirectional vehicles have many advantages in robotics

soccer applications. The fact that the robot is able to move

from one place to another with independent linear and angular

velocities contributes to minimize the time to react, the number

of maneuvers is reduced and consequently the game strategy

can be simplified.
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