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Abstract
We present an overview of the applications of the electric arc technique related to optical fibre
technology. The use of arc discharges ranges from the well-known fibre splicing, going through
the fabrication of basic devices such as fibre tapers and microspheres, to tailoring the spectra of
UV-induced gratings such as in the apodization of fibre Bragg gratings and also in the
fabrication of phase-shifted and sampled fibre Bragg gratings. However, in the past decade a
topic more intensively investigated was probably long-period fibre gratings. Therefore, some
devices based on arc-induced gratings, namely, phase-shifted and step-changed gratings and
bandpass filters are discussed. We also present an electrically insulated thermocouple
assembled in situ using arc discharges. This sensor is very useful in the determination of the
temperature attained by the fibre during an arc discharge, this property being fundamental for
the discussion of the mechanisms of formation and for the understanding of the thermal
properties of arc-induced devices.

Keywords: long-period fibre gratings, fibre Bragg gratings, tapers, microspheres,
arc discharges, temperature measurement

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Among the different techniques available for the fabrication
of fibre optics components, the electric arc technique is one
of the few that enables their fabrication in virtually all kinds
of glass fibres. This technique is simple, inexpensive and not
harmful when compared to the ones based on laser radiation.
Furthermore, arc-induced devices are suitable for high
temperature applications since their formation mechanisms
rely on thermal effects. Thus, the temperature reached by
the fibre during an electric arc discharge is a key parameter
to understand the properties of these devices. The main
drawback of the technique is the relatively long length of the
region heated by the arc (a few hundreds of micrometres) that
prevents the fabrication of short-period gratings. Despite this

limitation, the versatility of the technique for the fabrication
of compact devices with new functionalities, such as the ones
resulting from superimposing gratings on tapers or couplers or
superimposing fibre Bragg gratings on arc-induced gratings,
justifies a review of the applications of the electric arc
technique.

As far as fibre optics technology is concerned, arc
discharges were first applied to fibre fusion splicing [1, 2]. In
the past thirty years this basic operation evolved due to the
request for splicing dissimilar fibres which may require mode-
field adjustment based on core dopant diffusion [3, 4]. On the
other hand, splicing a single-mode fibre (SMF) and a photonic
crystal fibre (PCF), or a SMF and a hollow optical fibre (HOF)
or other combinations that may involve a multimode fibre
(MMF) yields extremely useful sensors [5–8]. A core mode
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Figure 1. Photograph of the arc discharge showing its asymmetry.

blocker can also be made by concatenating a short piece of
HOF in between a SMF [9].

Several other fibre optics components have been produced
based on the electric arc technique. Some are just basic devices
like fibre tapers [10], fibre probes [11] and microspheres [12]
whilst others like fibre couplers [13] and long-period fibre
gratings (LPFGs) [14] are more complex. Fibre couplers are
important devices for optical communications and sensing that
can be fabricated by fusion with an electric arc; two or more
fibres being pulled to form a tapered structure [15–17]. The
spectral response of a fibre coupler can also be modified by
post-fabrication exposure to arc discharges [18, 19]. Band
rejection filters have been fabricated by applying successive
arc discharges in a short piece (∼3 mm) of a dispersion-shifted
fibre [20].

In the past twelve years the most popular fibre optic
components based on arc discharges have probably been
LPFGs [21, 22] especially due to the intrinsic properties of the
technique that allows the inscription in PCF fibres [23] and also
to the fact that the fabricated gratings are very stable at high
temperatures [24].

In this review we start by describing briefly an
arc discharge and an electrically insulated thermocouple,
fabricated through arc discharges, that was used to estimate
the temperature reached by a fibre when exposed to an
arc discharge. Some basic devices as fibre tapers, probes
and microspheres are presented. Afterwards we discuss the
possibility to tailor the spectra of UV-written devices by
applying arc discharges, namely, the fabrication of Fabry–Perot
like structures, apodization of fibre Bragg gratings (FBGs) and
the inscription of sampled FBGs. Finally, we present several
devices based on LPFGs, such as step-changed and phase-shift
gratings, Mach–Zehnder interferometers and bandpass filters.

2. Arc discharge and fibre temperature

An arc discharge is a complex phenomenon during which
a number of processes occur, namely, electrons are emitted
by one electrode, due to the high intensity electric field

Figure 2. Photograph of an electrically insulated Pt/Pt–Rh
thermocouple (wires with a diameter of 50 μm).

generated at the electrodes’ tip, and while in transit between the
electrodes ionize nitrogen and oxygen atoms, through impacts,
creating a high temperature plasma comprising electrons and
ions (figure 1) [25].

The temperature reached by a fibre when submitted
to an arc discharge depends on arc parameters such as
electric current and time, it depends also on the electrodes’
configuration, that is, the distance between the electrodes and
on the electrodes’ tip (angle) and may also depend on ambient
conditions. For those that have been involved in the research
concerning arc-induced gratings it is unquestionable that the
knowledge of this temperature is important to understand
the underlying mechanisms responsible for the formation
of devices based on arc discharges, such as long-period
fibre gratings. In 2004, we pursued that goal through the
development of a sensor that could be exposed to an arc
discharge and with dimensions similar to that of an optical
fibre, in order not to perturb the discharge conditions. In this
context, an electrically insulated thermocouple was assembled
consisting of wires of platinum and platinum/rhodium alloys
placed inside a silica capillary, with internal/external diameters
of 56/125 μm. The thermocouple junction (figure 2) was made
by applying several arc discharges of high current. Afterwards,
using the aforementioned thermocouple we estimated that
the fibre reached thermal equilibrium (with a temperature
of the order of 1350 ◦C) in less than 0.5 s, for typical arc
parameters used in the fabrication of LPFGs [26, 27]. A similar
temperature value was obtained by fitting to the emission
spectrum of the blackbody radiation, the radiation emitted by
an optical fibre during heating due to an electric arc discharge
and that was detected using a Cronin spectrometer [28]. Based
on this temperature value and also on the fact that for our
setup the arc is directional (see figure 1), creating a temperature
gradient across the fibre, the mechanisms of formation of arc-
induced gratings were discussed [29, 30]. Furthermore, this
electrically insulated thermocouple fabricated by applying arc
discharges can find application in the calibration of the arc
parameters of fusion splicing machines [31].

3. Basic devices: fibre tapers, probes and
microspheres

The simplest example of a device produced by the electric arc
technique is a fibre taper (figure 3(a)), which can be produced
in a straightforward way by applying a time controllable arc
discharge whilst the fibre is kept under a constant tension.
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Figure 3. (a) Fibre taper. (b) Fibre probe. (c) Microsphere.

The loss evolution can be followed by an optical spectrum
analyzer (or an optical power meter). The length of the taper
region can be controlled by displacing the fibre during the arc
discharge [10]. Tapers increase the interaction between the
fibre guided modes and the surrounding medium, thus being
very useful for refractive index measurement, particularly
when combined with fibre gratings [32]. A severe taper can be
used for laser beam shaping [33, 34]. If the previous process is
further continued, a fibre probe (figure 3(b)) may be achieved,
that is, the fibre is stretched until rupture, the dimensions of
the fibre tip being of the order of 100 nm [11]. Optical fibre
probes can be used for atomic force microscopy. Microlenses
and microspheres can be produced by applying arc discharges
on the tip of a fibre (figure 3(c)) [35, 36]. The former can
be used for semiconductor laser–fibre coupling [35] or optical
free-space interconnector [37]. The latter can act as whispering
gallery mode resonators [38], side-viewing probe [39], contact-
type microprobe [40] and they were also tested for blackbody
radiation detection [28].

4. Tailoring the spectra of UV-written devices by
using arc discharges

In this section we review the fabrication of Fabry–Perot like
structures by applying arc discharges in the middle of a UV-
induced FBG, the apodization of FBGs through arc discharges
in the vicinity of the grating and the fabrication of sampled
FBGs by writing a FBG on top of an arc-induced LPFG.

4.1. Phase-shifted Bragg gratings

Phase-shifted FBGs or Fabry–Perot like structures can be
produced by applying arc discharges in the middle of a UV-
induced FBG (figures 4(a) and (b)) [41, 42]. A 10 mm
long Bragg grating was inscribed in a B/Ge co-doped fibre
(PS 1250/1500, Fibercore) by using 248 nm laser radiation.
The grating was afterwards placed under tension (caused by a
weight of 5.1 g) in between the electrodes of a fusion splicing
machine and was submitted to electric arc discharges of 8.5 mA
and 0.5 s duration each. Figure 4(c) shows the original
reflection spectrum of the grating, as well as the formation
of the phase-shifted FBG after the first, second and sixth arc
discharges. Figure 4(d) shows the evolution of the spectrum
of the phase-shifted FBG for the third, fourth, fifth and tenth
arc discharges. The arc discharges erase a short section in
the middle of the FBG creating a Fabry–Perot like structure

comprising two shorter gratings separated by the thermal
annealed region. This is evidenced by the decrease in the peak
reflectivity and by the increase in the spectral bandwidth of this
structure. It is interesting to note that after five consecutive arc
discharges in the same physical place the initial spectrum of
the phase-shifted FBG was almost recovered, i.e., the spectra
of the phase-shifted FBG correspondent to the first and sixth
discharges are similar (see figure 4(c)). The same occurs
for the fifth and tenth arc discharges (see figure 4(d)). The
periodicity of this process resulting from a phase change of 2π

remains constant even after 50 arc discharges. This behaviour
may have originated from the fact that after the erasure of
the short grating section, the subsequent discharges promote
changes in the refractive index of the annealed region due
to several mechanisms such as slight tapering and structural
rearrangement in this soft fibre core [43, 44].

Recently, Cusano et al [45] have presented detailed
analysis of these structures. They have studied the influence
of the position of the arc discharges and taper waist on
the interferometer spectra and, in particular, they have
demonstrated, by using a simple and inexpensive technique,
the feasibility of very narrow bandpass filters (FWHM =
5 pm) within the reflection band of the FBG. These
devices can find application in optical communications and
sensing [45–47].

4.2. Apodisation of fibre Bragg gratings

The well-known spectral response of uniform fibre Bragg
gratings (FBGs) is not desirable in some optical communi-
cations applications due to the presence of side-lobes which
are due to multiple reflections to and from opposite ends of
the grating region [48]. The apodization of a FBG gives
not only a reduction of the side-lobes but also changes its
dispersion characteristics. In this section, the symmetric
apodization of a FBG using electric arc discharges is presented
(figure 5(a)) [49]. A uniform 5 mm long FBG centred at
λB = 1555 nm and with a bandwidth (FWHM) of 0.3 nm was
photo-imprinted, in a standard telecommunications fibre with
6 mol% GeO2 and mode-field diameter of 10.5 ± 1.0 μm at
1550 nm (Siecor), using a diffractive phase mask illuminated
with a KrF excimer laser operating at 248 nm. The fibre, placed
in a motorized translation stage with a resolution of 0.1 μm,
was longitudinally moved along its axis in such way that the
grating was moved towards the heating zone in steps of 50 μm;
35 electric arc discharges on each side of the grating were
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Figure 4. Schematic diagrams of (a) the FBG and (b) the phase-shifted FBG. Spectra of the phase-shifted FBG regarding the number of arc
discharges: (c) 0–2 and 6; (d) 3–5 and 10.

Figure 5. (a) Schematic diagram of the FBG apodization. (b) Evolution of the reflection spectrum during the apodization process. Initial FBG
(solid line), FBG with 35 discharges on the right (dashed line) and FBG with 35 discharges on both sides (bold solid line).

needed to achieve the apodized grating shown in figure 5(b).
The whole process was computer controlled and monitored
in real time using a broadband optical source and an optical
spectrum analyzer (OSA) in order to obtain the best reflection
spectrum for the apodization profile.

The reflection spectrum of the grating after the apodization
process (figure 5(b)) shows that the longer wavelength side-
lobes were reduced due to the smoothing of the refractive
index modulation profile, as caused by the high temperature
annealing during the arc discharges. The pronounced structure
on the short wavelength side of the grating is consistent
with the formation of a distributed Fabry–Perot interferometer
and corresponds to reflections at the edges of the grating
(the annealed regions) [50]. The spectrum also shows a
slight decrease of the peak reflectivity as expected since the

refractive index modulation step profile was partially erased.
These results enable one to conclude that a non-uniform
effective index longitudinal distribution was obtained after the
apodization process instead of the uniform FBG. Better results
are expected if a preconditioning photosensitivity response and
effective index profile are accomplished by exposing the fibre
to the electric arc before the grating photo-inscription in the
same region.

4.3. Sampled fibre Bragg gratings

A sampled fibre Bragg grating (SFBG) or superstructure
grating is a contra-directional coupling grating whose effective
refractive index amplitude and/or phase is modulated through
a long periodic structure (figure 6(a)). The special reflection
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Figure 6. (a) Schematic diagram of a sampled FBG. (b) Reflection spectrum of a sampled FBG. (c) Variation of �λ with the LPFG period
(M). (d) Single reflection peak from a sampled FBG. (e) Schematic diagram of a FBG written over a long LPFG in which the Bragg
wavelength falls into the resonance band of the LPFG. (f) Reflection spectrum of a sampled FBG potentially originated by the core and
cladding modes. The dashed lines serve as guides to the eye to delimit the two sets of reflection peaks.

characteristics of SFBGs make them very useful and attractive
devices for optical communications and fibre sensors [51, 52].
The fabrication of a superstructure grating obtained by writing
a FBG with a 248 nm UV source over an arc-induced LPFG
comprises two different stages. In the first a LPFG (tension

associated to a weight of 22.8 g, arc current smaller than
10 mA, arc duration of 1 s, modulation period of M ∼ 400 μm
and grating with 66 discharges) is inscribed in a Corning
dispersion-shifted fibre [14]. In the second stage a 10 mm
long FBG is written over the LPFG (previously hydrogenated)
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using a uniform diffractive phase mask illuminated with a
KrF laser operating at 248 nm to give rise to the SFBG.
The superstructure originates due to the periodic modulation
of the effective refractive index amplitude caused by the
reduced photosensitivity in the zones previously exposed to
the electric arc (this results in a rapidly varying component
with period � and a slowly varying envelope with a period
M). The spatial frequency content of this superstructure can
be approximated by a comb of delta functions centred at
the Bragg frequency. In terms of reflection spectrum there
will be reflection peaks separated in wavelength by �λ =
λ2

B/(2neff M) [53]. Separations in the range of 1.5–3.5 nm
were obtained for periods M ranging from 250 to 600 μm.
The reflection spectrum of a LPFG with 521 μm period and
the experimentally determined variation of �λ with the period
M of the LPFG are shown in figures 6(b) and (c) respectively.
It can be seen that the results are in good agreement with the
values derived from the theoretical equation.

An arc discharge anneals stresses, promotes structural
rearrangements and may cause tapering of the fibre, all these
effects contribute to changes of the effective refractive index
of the fibre core. At the same time an arc discharge reduces
drastically the fibre photosensitivity [54, 27]. Therefore, when
a FBG is written over an arc-induced grating, only periodic
regions are available for the growth of the FBG resulting in
a sampled FBG. The number of reflection peaks is inversely
proportional to the length of the region not annealed by the
arc (the dimensions and the intensity distribution of the arc
are key factors) [53]. Note, however, that FBGs have been
written in tapers arc-induced in standard hydrogenated and
non-hydrogenated photosensitive fibres [55, 56]. In figure 6(b)
the reflected peaks seem to have an internal structure probably
resulting from some ‘residual’ photosensitivity of the annealed
regions. On the other hand, a single reflection peak belonging
to another sampled FBG was swept by a wavelength tunable
laser, in steps of 1 pm, the radiation being detected by an
optical power meter, and no internal structure was found (see
figure 6(d)). In this case, the sampled FBG was inscribed
in a standard telecommunications fibre with 1.5 mol% GeO2

and mode-field diameter of 10.5 ± 1.0 μm at 1550 nm
(Sumitomo). Thus, the reduction of the fibre photosensitivity
may depend not only on the arc parameters but also on the fibre
composition.

Finally, when the reflection peaks fall in the same
wavelength region as one LPFG resonance band it would be
interesting to investigate the influence of the relative physical
position between both gratings on the SFBG spectrum, that
is, is it the same to write the FBG in the middle or at the
edges of the LPFG? In fact, recently it was demonstrated that
a FBG written 1 cm after a LPFG can partially reflect the
cladding mode [57]. Therefore, it is expected that if the FBG
is written at the edge of a sufficiently long LPFG a ‘cladding-
SFBG’ may also be achieved (figure 6(e)). Although further
investigations are needed, this may explain the spectrum
obtained after writing a 10 mm long FBG on top of a LPFG
(5.1 g, 9 mA, 1 s, 540 μm, 74 discharges) arc-induced in
a B/Ge co-doped fibre (see figure 6(f)). The reflected peaks
at longer wavelengths (positioned in the slope near one edge

of the resonance band) may result from reflection of the core
mode (similar to having the Bragg resonance outside the LPFG
resonance bands) and the set of reflected peaks at shorter
wavelengths (positioned near the centre of the resonance band)
may result from reflection of the cladding mode.

5. Arc-induced gratings

5.1. Long-period grating based devices

A review of arc-induced gratings was presented in [22].
In the past five years other important results concerning
the fabrication, characterization and sensing properties have
been published in the literature. Gratings have been written
in Al and Al/Er co-doped fibres [58] and also in several
photonics crystal fibres [59, 60]. The fabrication of ultra-short
gratings [61] and rocking filters [62] was also demonstrated.
Further investigations on the thermal behaviour of arc-induced
gratings at high temperatures have been presented [24, 63].
The mechanisms of formation of these gratings have also
been studied intensively [29, 30, 64, 65]. As far as
optical fibre sensing is concerned, these gratings, with or
without thin films, can measure external refractive index
changes [66–69], pressure [70] and bending [71], operate as
an inclinometer [72], and simultaneously measure temperature
and strain [73], while also being able to operate in harsh
environments [74]. Temperature compensated sensors can be
implemented by using a dual resonance formed by different
mechanisms in B/Ge co-doped fibres [75]. LPFGs find a
huge number of applications in optical communications and
sensing fields such as gain flattening, external refractive index
detection and the simultaneous measurement of temperature
and strain [76–78, 73].

A LPFG is a periodic structure inscribed in the
fibre that couples light between the core mode and co-
propagating cladding modes at specific resonance wavelengths
(figure 7(a)) [79]. The grating behaves as a selective
filter where the resonance wavelengths depend on physical
parameters, such as temperature and strain. The grating’s
spectrum can be modified by changing the fabrication
parameters (arc duration, electric current and pulling tension)
leading, for instance, to a step-changed grating (see
figure 7(b)) where the resonances exhibit different sensitivities
to changes of physical parameters and are thus very useful for
multiparameter sensing [73]. Figure 7(c) shows the spectra
of a typical grating and a step-changed grating (a duplication
of each resonance is observed) where the electric current and
pulling tension were changed after the fifteenth discharge.

The typical loss band of a LPFG can be converted into
a bandpass by inserting a phase shift in the middle of the
grating during its fabrication. This can be accomplished by
applying one or more arc discharges in the middle of a LPFG
(figure 8(a)). Figure 8(b) shows a π -shift grating obtained
after submitting a LPFG, induced in the aforementioned
Sumitomo fibre, to five extra arc discharges applied to its
centre. Alternatively, a phase shift in the middle of the
grating is produced by changing the grating pitch by half
a period (figure 8(c)) [80]. Figure 8(d) shows the initial
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Figure 7. Schematic diagram of (a) a LPFG and (b) a step-changed LPFG. (c) Spectrum of a typical grating and of a step-changed grating.

Figure 8. (a) Schematic diagram of a phase-shifted LPFG by �n modulation; (b) π-shift produced after five arc discharges in the middle of
the grating; (c) schematic diagram of a phase-shifted LPFG by introducing a gap between two consecutive grating sections; (d) grating
transmission spectra before and after the phase shift.

and final spectra of a phase-shift grating arc-induced in
standard telecommunications fibre (SMF-28, Corning) using
the following fabrication parameters: weight of 5.1 g, a period
of 540 μm, an electric current of 9.5 mA, an arc duration of 1 s,
and 35 discharges were produced on each side of the phase-
shift region (displacement of 118 μm) [81].

The concatenation of two identical LPFGs leads to the
well-known Mach–Zehnder interferometer (figure 9(a)). One

half of the light is coupled from the fundamental mode to the
cladding mode and the other half goes through the core. These
two paths can be seen as arms of an interferometer, since the
light that is guided by the cladding is coupled back by the
second grating and interferes with the light guided by the core.
Figure 9(b) shows the transmission spectrum of two LPFGs
arc-induced in the B/Ge co-doped fibre (5.1 g, 9 mA, 0.5 s,
425 μm, 60 discharges), each having a transmission loss of
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Figure 9. (a) Schematic diagram of a Mach–Zehnder interferometer based on LPFGs; (b) transmission spectrum of two concatenated LPFGs
separated by ∼25 mm.

Figure 10. (a) Schematic diagram showing the effect of a core mode blocker in between two LPFGs. (b) Evolution of the transmission
spectrum of the bandpass filter for different numbers of turns. Inset: typical photograph of the region containing the tapered capillary after
splicing.

3 dB at 1.55 μm. If a taper is fabricated in the region between
the gratings an interferometer highly sensitive to variations of
the external refractive index is achieved [82, 32]. Recently,
another interesting interferometer comprising a LPFG and
an arc-induced point defect in a photonic crystal fibre was
proposed by Choi et al [83].

5.2. Core mode blockers

A core mode blocker (CMB) is an obstacle inserted in the fibre
core that prevents the propagation of light in the core, being
the key element for the fabrication of bandpass filters based on
LPFGs (see figure 10(a)) [84]. Typically, the CMB is achieved
by exposing the fibre to a high temperature heat source, such
as intense laser radiation [84–86] or arc discharges [87]. The
latter was demonstrated by exposure of a hydrogenated B/Ge
co-doped fibre to arc discharges that led to a micro-explosion in
the core. Thus, the core of the fibre is destroyed such that light

is no longer guided by the fundamental mode. When a CMB
is inserted in between two identical concatenated LPFGs, the
light that is rejected by the first grating is afterwards coupled
back by the second one, the transmission spectrum of the
bandpass filter being similar to the inverted spectrum of the
individual gratings. Note, however, that since a fraction of the
energy of a cladding mode is guided by the fibre core, the CMB
leads to bandpass filters with typical insertion loss values of 1–
2 dB [84–87].

A different approach to having the fundamental mode
blocked and that can be applied to any kind of fibre is splicing
a short section (0.3–0.5 mm) of a silica capillary in between
a single-mode fibre. The inset of figure 10(b) shows a
photograph of a CMB fabricated by that technique. However,
due to the dimensions of the capillary (inside diameter: 25 μm)
used, several arc discharges were applied in the splice region in
order to reduce its diameter. It was experimentally determined
that tapering the capillary, from the side of the incoming
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light, would lead to bandpass filters with lower insertion loss.
The performance of the CMB as an element of a bandpass
filter was evaluated in the laboratory, in a straightforward
way, by using mechanically induced long-period fibre gratings
(MLPFGs) [88].

Two MLPFGs were fabricated by winding a nylon string
around the fibre/grooved tube set on both sides of the CMB
section. The evolution of the transmission spectrum of the
bandpass filter as a function of the number of turns of the
nylon string is shown in figure 10(b). The lowest insertion
loss (10 dB) and the highest non-resonant light suppression
(20 dB) were obtained after 33 turns, however the side-lobes in
the transmission spectrum are asymmetric. The high insertion
loss results from the large diameter of the capillary used being
much larger than the fibre core diameter. By using a capillary
with an inside diameter of 6 μm the insertion loss can be
reduced to 3–4 dB [9]. The non-resonant light suppression
is typically about 20 dB, although the technique based on
the micro-explosion may achieve larger values [87]. The
bandwidth (FWHM) was 18.6 nm which is three times larger
than that obtained in [87] and one order of magnitude larger
than that obtained in [84] and [86].

Recently, a technique based on femtosecond laser ablation
of the core was demonstrated that can also be applied to any
kind of fibre [89]. The obtained results are comparable to
the ones achieved by other techniques relying on damage due
to laser radiation. Bandpass filters are very important in the
optics communication field and several applications have been
proposed in the literature [90, 91].

6. Conclusions

We have reviewed the potentialities of the electric arc
technique to produce optical fibre devices. In particular,
we presented the fabrication of Fabry–Perot like structures,
the apodization of fibre Bragg gratings and the inscription
of sampled FBGs. Fibre components based on arc-induced
LPFGs were also discussed, namely, phase-shifted and step-
changed gratings.
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