
 

A Hybrid Approach to Investigating the 

Distributional Aspects Associated with Reliability 

System Indices 
M. A. da Rosa, M. D. Heleno, D. Issicaba, M. Matos,  

USE - Power Systems Unit 

INESC TEC 

Porto, Portugal 

marosa@inescporto.pt 

F. B. Lemos 

Department of Electrical Engineering 

UFRGS 

Porto Alegre, Brasil 

flemos@ece.ufrgs.br

 

 
Abstract—The power system analysis area has recently been 

challenged by the merge between the automotive and power 

industries and their combined objective to work towards a low-

carbon electrified transport economy. In order to study the hourly 

effects on the reliability of power systems, this paper first 

proposes a discussion of the risk methodologies and then a novel 

way of examining the probability distributions of the reliability 

indices based on a hybrid approach. The effects of the substantial 

use of renewable energy combined with the integration of electric 

vehicles will be discussed in relation to the IEEE test systems and 

a planning configuration of the Portuguese Generation System. 

Keywords—Power system reliability, Wind power generation, 

Monte Carlo methods. 

I. INTRODUCTION 

Power industries have faced several new challenges over the 
last decades. The rapid growth of renewable energy shows that 
the environmental problems are serious. The integration of wind 
and solar power by different countries around the world has 
become a reality and the needs for significantly more 
sustainable solutions are, undoubtedly, a priority for the energy 
sector. In addition to the new renewable electricity producing 
mechanisms, the challenge seems to be for automotive and 
power industries to both work towards a low-carbon electrified 
transport economy [1]. 

Such a combination has consequences for the analysis of 
power systems, since increased amounts of renewable power 
sources are already causing an effective increase in the number 
of random variables and the operational complexities in the 
system. From a power system tools perspective, three different 
approaches have appeared in the literature to evaluate power 
systems in an attempt to find more comprehensive solutions: 
simulation approaches, analytical tools and/or hybrid 
methodologies. Undoubtedly, sequential Monte Carlo 
simulation (SMCS) is the most suitable tool for simulating 
chronological aspects. Differently from the analytical 
approaches, the SMCS is able not only to calculate the common 
reliability indices but also to investigate the distributional 
aspects associated with them. However, the computational 
burden of SMCS is often more substantial than other 
approaches [2]. Simulation methods are usually divided into 
SMCS, non-SMCS, pseudo-SMCS [3], [4] and Population-
Based methods [5]. A suitable approach based on the 
combination of SMCS and Cross-Entropy method was recently 

proposed [6]. The only feature that this approach  
lacks in comparison to the normal SMCS is the ability to 

assess the probability distributions of the reliability indices [6]. 
Analytical calculations are usually based on recursive 
approaches [7] involving frequency and duration methods [8], 
and/or cumulant procedures [9]. Hybrid approaches use both 
simulation and analytical characteristics [10].  

In order to study the hourly effects on the reliability of 
power systems, this paper presents a discussion of the risk 
methodologies and then a novel way of examining the 
probability distributions of the reliability indices based on a 
hybrid approach.  

II. STOCHASTIC AND TIME-DEPENDENT CAPACITIES 

The SMCS is often chosen to assess reliability indices due 
to its ability to preserve the relations between all variables and it 
also manages time-dependent characteristics. These indices are 
generally based on the following power balance equation 

                     (1) 

where   represents the amount of power available at hour  ,   is 
the total system load at hour   and   is the static reserve at hour 
 . The random variable   depends on the availability of the 
equipment, which is usually modeled using a two state and/or a 
multi-state Markov model [3]-[7]. Also, when taking the effects 
of the capacity fluctuation into account it is necessary to include 
time-dependent characteristics in the system representation. 
Thus, prior to composing the system’s capacity, the random 
variable   can be decoupled into two capacity slices, such as a 
stochastic capacity slice, which is only linked to the stochastic 
behavior of each component, and a time-dependent capacity 
slice, which captures the time-dependent variations linked to the 
resources. Furthermore, the random variable   consists of 
hourly observations of capacities. In fact, a large slice of this 
capacity can be classified as time-dependent, whereas the 
stochastic capacity slice of  , may depend on, for instance, the 
short- and long-term uncertainties of load representations, 
which can also be included in any hourly load model. 

Hence, it is possible to decouple   and   representations on 
several slices of capacity in accordance with each type of 
generation technology to represent the behavior of the power 
system’s components. In general, hybrid methodologies are 
directly or indirectly based on these principles. 
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Figure. 1. State space representation. 
 

III. A DISCUSSION OF THE ANALYTICAL AND SIMULATION 

APPROACHES 

Analytical and simulation techniques are frequently used to 
adequacy evaluation of generation systems. Analytical 
approaches generally adopt the state space representation, 

while simulation can either adopt the state space representation 
or the chronological representation. In general, an analytical 
approach must be based on two major assumptions: a) the 
capacity and load states are independent and b) the probability 
of occurrence of two or more states during the same time step is 
negligible. These two conditions ensure the evaluation process 
takes place in a certain order. As an example, Fig. 1 illustrates a 
hypothetical state space representation, where a capacity model 
shown in Fig. 1a is combined with a load model shown in Fig. 
1b, resulting in the reserve model shown in Fig. 1c. In the latest 
figure, the reserve state    is a combination of the capacity state 
   and the load state   , and it does not transit directly to the 
reserve state   , because two transitions would be needed 
during the same time step (e.g. from capacity state    to    and 
from load state    to   ).  

From the simulation point of view, the sequential Monte 
Carlo representation assumes that two consecutive sampled 
system states differ from one single state component. This 
assumption follows the ordering principle previously described 
for the analytical approach. However, it must be highlighted 
that the probability of occurrence of two or more states during 
the same discrete time step could be taken into account in the 
simulation process. This feature is also the major difference 
between the non-sequential and sequential representations. 

The analytical and non-sequential based models also have 
another major constraint: system state residence times are not 
considered. In order to attain the reliability indices, such as the 
frequency and duration indices, the success/failure border (see 
Fig. 1c), which separates the positive reserve states (success) 
from the negative reserve states (failure), must be monitored 
and information on the probability and frequency of negative 
reserve states must be collected [7]. During this procedure, any 
chronological sense is broken and it is not possible to track the 
existing dependences between states. On the other hand, in the 
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Figure. 2. Chronological representation – SMCS sampled example. 

 
chronological representation, the history of a system is 
simulated in discrete time steps. More specifically, the 
sequential approach simulates the system operation by sampling 
the component state durations, which in turn are dependent on 
each component’s mean-time-to-failure (MTTF) and mean-
time-to-repair (MTTR). Fig. 2 illustrates a composition of six 
different system states using the same capacities presented in 
Fig. 1.  

A. Meeting Point between Analytical and Statistical Methods 

The random sample 1, in Fig. 2a, can be compared with the 
set of reserve states   ,   , and    in Fig. 1c, performing a 
completely positive reserve state in both representations. The 
main difference between these representations is that the 
corresponding reserve states   ,   , and   , have no sampled 
residence time. The sampled system state in the simulation 
representation (see Fig. 2a) is composed of the three reserve 
states visited in the analytical approach. 

The random sample 2, in Fig. 2a, starts in a failure state 
during the first two hours. This is followed by a success state in 
the third hour which is due to the load transition from 120 to 
100 MW. The random sample 2, in Fig. 2, can be compared 
with the reserve states   ,   , and   , in Fig. 1c. First, two 
failure states are visited and then a transition to a success state is 
assigned. Similarly, the random sample 3, in Fig. 2a, can be 
compared with the reserve states   ,   , and   , in Fig. 1c. It 
shows a totally negative reserve state in both representations. It 
is interesting to verify how the sequence of states observed in 
the chronological representation is composed of different 
subsets in the analytical approach. In fact, when the capacity is 
fixed during a certain period of time, the load variation always 
leads to a transition between reserve states. As stated 
previously, although the probability of occurrence of two or 
more states during the same time step may be considered small, 
it would not be negligible in the simulation approach.  

The random sample 4, in Fig. 2b, shows two transitions 
during the same time step, where the system capacity changes 
from 130 to 105 MW and the system load changes from 125 to 
120 MW. In this case, the transition between reserve states 
identified in the simulation process cannot be compared to the 
state space representation in Fig. 1c. This is mainly because 
there is no direct transition between the reserve states    and 
  . Intuitively, it can be concluded that the number of reserve 
states presented in Fig. 1c does not change when the assumption 
b) is not taken into account in the analytical approach. 
Nevertheless, when two or more state transitions during the 
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same time step are included in the evaluation, the state 
probability and frequency information change. In fact, the 
Markovian process behind the analytical and simulation 
approaches can be characterized by the relationship between the 
states. From the analytical point of view, this organization is 
based on the assumption b) where the communication between 
states can be divided into equivalent classes where the states in 
an equivalent class communicate with each other, but they do 
not communicate with any state outside of that class [11]. An 
important observation is that both approaches are able to deal 
with frequency unbalance [12]. However, the frequency 
unbalance is intrinsic to the simulation, whereas a correction 
factor should be applied to the analytical approach [13]. 

The random sample 5 includes the ordinary behavior of the 
simulation, where the residence time of the sampled states differ 
from the time step commonly used for load models (usually 1 
h). The random sample 6 shows another way of attaining the 
reserve state   , where the simulation approach can be 
compared with   ,   ,    and   . 

B. Remarks on Analytical Methodologies  

Analytical methodologies are well known for their 
efficiency. Hence, before presenting the proposed methodology, 
the analytical methods will be briefly discussed. The aim is to 
identify the best analytical approach in which some time-
dependent characteristics can be included without losing 
efficiency. Three different analytical methods were 
implemented in order to compare their efficiency and essentially 
their flexibility in coping with chronology. These methods were 
implemented using JAVA language and were based on three 
different techniques: the Recursive Algorithm [7], a fast 
convolution technique based on the Fast Fourier Transform 
(FFT) algorithm [14], and the Fourier Transform method based 
on the Gram-Charlier expansion [7]. 

In general, these methods use a generalized frequency and 
duration methodology and their accuracy can be controlled by a 
capacity rounding increment (CRI) in MW, and also by a 
truncation probability (TProb) [14]. Clearly, the full potential of 
these three algorithms will not be completely explored with the 
IEEE-RTS 79: 32 generating units and 3405 MW of installed 
capacity with a load model covering 8736 h. However, this 
system is a benchmark and the results can be easily replicated. 
For the simulations, only one index was chosen to carry out the 
comparisons: LOLP (Loss of Load Probability). In addition, the 
following parameters are used: CRI = 1, 2, and 5 MW, for 
TProb = 0. The Recursive algorithm was chosen as a reference. 
In the next sections, a more complete range of indices such as 
LOLE (Loss of Load Expectation), EENS (Expected Energy 
Not Supplied), LOLF (Loss of Load Frequency) and LOLD 
(Loss of Load Duration) will be explored. Table I shows the 
results in terms of accuracy and time elapsed (τ).  

The recursive algorithm [7] is based on a simple 
combination of the probabilities and frequencies using the 
failure and repair rates of each generating unit. Assuming that 
repair and failure rates are constant, this process an exact result, 
which is achieved using a recursive conditioned probability 
approach. In spite of the results, the consideration of all states 
may affect the efficiency of the method (see Table I), mainly 
because the number of states increases with the number of 
generating units, if no derated states are included. Thus, the 
application of this algorithm in large systems can be very time 
consuming. Alternatively, truncation or rounding techniques 
can be used. 

In the FFT algorithm [12] [14] the up and down states are  

TABLE I. RESULTS FOR THE IEEE-RTS 79 SIMULATION – PEAK LOAD 

 LOLP τ (s) Accuracy 

FFT (1 MW) 0.084578 0.468 0 

FFT (2 MW) 0.084550 0.234 2.81E-05 
FFT (5 MW) 0.084413 0.093 1.65E-04 

GCE (1 MW) 0.092276 1.093 7.70E-03 

GCE (2 MW) 0.092276 0.406 7.70E-03 
GCE (5 MW) 0.089888 0.187 5.31E-03 

Recursive 0.084578 0.952 - 

 
represented as positive impulses. This process is similar to the 
recursive method. However, in order to convolve the generators 
through the FFT method, the distance between the impulses 
should be maintained by a constant step. The use of the FFT 
algorithm accelerates the convolution in comparison to a simple 
combination of states, as shown in Table I. Nevertheless, to 
keep a constant distance in a train of impulses, a simple 
weighted-averaging rounding technique must be applied [14]. 
During this process an error is introduced and its magnitude 
strictly depends on the step used, as also shown in Table I.  

The Fourier Transform method, based on Gram-Charlier 
expansion [7], is a cumulant method that approximates the train 
of impulses of the probabilities using a normal distribution 
curve. Following this approximation, the probability of having 
an outage capacity higher than a defined value can be directly 
obtained. The computational effort of this cumulant method 
does not depend on the number of generating units, nor does it 
depend on the magnitude of the system, as shown in Table I. 
However, the accuracy of the algorithm is dependent on a fitting 
curve. Thus, as shown in [9], the error is acceptable when the 
system is composed of identical units with relatively large 
forced outage rates and the accuracy decrease when units with 
low forced outage rates are added. Therefore, the FFT algorithm 
has been chosen to be explored further. 

C. Hybrid Evaluation of Reliability 

One of the first proposals using hybrid reliability evaluations 
was to represent the model depletion in the output capacities of 
hydroelectric units [10]. This cited work proposes a 
simulation/analytical approach to reliability evaluation in large 
hydroelectric systems, where the random variable   is 
decoupled between reservoir depletion and equipment outages. 
In this case, simulation is responsible for handling the time-
dependent characteristics of reservoir depletion through 
complex reservoir distribution functions and an analytical 
approach is used to handle equipment outages without time-
dependent characteristic. One of the main conclusions is that the 
equipment outages have a very small effect on the energy state 
of large hydroelectric systems.  

Another analytical model that considers time-dependent 
characteristics is proposed in [15] and it allows unconventional 
sources, such as wind power and photovoltaic to be included in 
the assessment of the reliability of power systems. This 
methodology is based on the division of the generation system 
in order to incorporate the effects of the primary energy 
fluctuations as well as the failure and repair characteristics of 
the energy generating units. In this case, the overall electric 
system is decoupled into subsystems containing the 
conventional and unconventional units. The simulation process 
controls the calculation of the power output of the 
unconventional subsystems for each hour under study, so as to 
include the effect of fluctuating energy. 

As verified, both hybrid methodologies cited apply a 
principle that is commonly used in SMCS, where the random 
variable   is decoupled into subsystems in order to model the 



 

stochastic behavior of power system components and their time-
dependent characteristics. Intuitively, a chronologic sense is 
introduced through the impact of hydro inflow, or, for example, 
wind and solar power characteristics. 

IV. PROPOSED METHODOLOGY 

The proposed methodology follows the intuitive way that is 
based on decoupling   and   in different subsystems. This is 
mainly to convolve all stochastic capacities   and   at an 
appropriate moment during the evaluation, where the time-
dependent effects of each capacity slice or subsystem can be 
appropriately represented through the natural load chronology.  

The representation of thermal power plants is based on the 
two-state Markov model [7] where the failure/repair cycles for 
all thermal power technologies, such as nuclear, coal, oil, gas 
are included. The power available is assumed to be dependent 
on the unit unavailability. Other models that consider more than 
two states (derated states) can be used if the necessary 
parameters are available. Similarly, the hydro power available is 
assumed to be dependent on the failure/repair cycle using the 
two-state Markov model [7] and on the water storage of each 
reservoir. The power available for each unit is assumed to be 
proportional to the level of water storage in its respective 
reservoir as proposed in [3]. 

Wind power technology is usually modeled using several 
generating units (turbines) that are grouped into an equivalent 
multi-state Markov model [3]. The energy production of the 
wind generating units is usually defined for each hour according 
to the hourly wind series of each geographic region. This paper 
applies another approach, where the production of wind power 
is considered using the historical wind production (wind series), 
which captures the wind speed, the power conversion 
characteristics and also the stochastic behavior (up/down 
cycles) of each generating turbine. This latter assumption can be 
viewed as a simplified way of representing the stochastic 
behavior of the wind. This is true mainly when the historical 
yearly series only represents a single scenario and does not have 
statistical representation. However, this assumption can be 
enough to assess wind scenarios. Therefore, historical yearly 
wind power series fluctuations with an hourly resolution will be 
used, which represents some specific wind scenarios. 

A. Representation of a Conventional Generation System  

As stated previously, the conventional units, such as hydro 
and thermal units, are modeled using their capacity states, 
which may include derated levels. The probabilities and 
frequencies are given using the transition rates between the 
states. The method used to combine them is based on the FFT 
algorithm [14]. The first step of the proposed methodology is a 
convolution of the thermal units’ outage capacities, which does 
not depend on the time representation (hour, week, or month 
resolution). The result of this convolution is stored and 
combined with the monthly availability of hydro power. 
Although, there is a range of different thermal capacities, the 
period considered in the convolution process should be the same 
for all units, in order to keep the coherence with the number of 
impulses. This is a requirement of the FFT method. 

The next step is the convolution of the monthly cycles of the 
hydro units. The proposed model aims to capture the hydro 
units’ behavior during the dry and wet months of the year. 
Therefore, in each step of the proposed approach, their affected 
capacities are convolved with the stored results of the thermal 
units’ convolution. The main idea of the capacity affectation is 
also presented in [15]; however, the authors have affected the 
capacities after the combination of the generators. In this paper, 

the opposite order is used, which allows different levels of 
affectation for each unit. At the end of the hydro units’ 
convolution, it is possible to write the static generation 
subsystem model, incorporating hydro fluctuations as   
         

  , where each state is modeled using its capacity 
vector (  ), probability vector (  ) and incremental frequency 

vector (  
 ).  

B. Representation of Load, Unconventional Sources and 

Electric Vehicles   

The time-dependent power sources, like wind power, are 
rarely included in conventional energy generation models. 
Although, wind turbines behave in a similar way to hydro or 
thermal units from a stochastic point of view, the key factor 
linked to the wind capacity representation is the wind speed and 
direction. The annual variations in wind speed are often 
represented through a sequence of percentage values (wind 
series), similar to the hydro depletion of the reservoirs. 
However, the wind power resolution of these sequences is 
usually modeled in the same way as the load, using 8760 
capacity points. Hence, a simple method to combine the 
probabilities and frequencies of the wind power with the 
probabilities and frequencies of the conventional generation 
consists of converting the wind capacity sequence of a wind 
farm into impulses to perform a convolution. Thus, there are at 
least three possible ways of considering the wind power’s effect 
on the proposed evaluation: a) the wind capacities of each wind 
farm are convolved one by one with the conventional 
generation, b) the capacities of each wind farm are added 
together hour by hour creating a huge wind farm, which is 
convolved with the conventional generation and c) the hourly 
wind power of each wind farm is added as a negative capacity 
on the load points, maintaining the chronological characteristic 
of both models. In the latter case, the ordinary procedure for the 
load model is followed, that is described in [12]. 

In order to assess the chronological representation accuracy 
of these three approaches, a simple experiment is proposed, 
where each case is compared with a SMCS. For this task, the 
IEEE-RTS-96 HW [16], with an installed capacity of 11,391 
MW and a peak load of 8,550 MW is used. The SMCS is set 
with β = 1%. Three different wind scenarios are also assessed in 
order to compare the LOLE index in different conditions. 
Taking the SMCS as a reference, Fig. 3 shows the results for the 
comparisons. 

As expected, the one by one and huge wind farm cause a 
pessimistic LOLE index for each of the three scenarios studied. 
The differences to the SMCS results come from considering a 
set of unrealistic failures states, composed of load states and 
wind power states inadequately assumed to have occurred at 
same time. Naturally, the negative capacity provides similar 
results to those obtained using SMCS, since chronology is 
explicitly represented. In fact, on the one hand the 
representation used in SMCS considers the hourly output of 
each wind farm as a capacity addition on  . On the other hand, 
the analytical negative capacity considers the hourly output of 
each wind farm as a capacity reduction on  . The effect in (1) 
can be considered the same. However, it is important to 
highlight that SMCS is able to represent the stochastic behavior 
of each turbine, whereas the proposed analytical approach 
captures the turbine’s up and down cycles using only one wind 
power series. This may cause some differences depending on 
the purpose of the study. 

So far, only the effect of wind power has been represented 
preserving their time-dependent characteristics. However, other  



 

 

Figure. 3. Convolution comparisons with SMCS result. 

effects that are time–dependent, such as EV, should also be 
included. A simple way of including EV could be by applying 
the same concept used for wind power. 

In fact, this approach models EV as positive capacities when 

added onto the system load. In order to monitor the 
chronological sense of the load, wind power and EV 
subsystems, they can be modeled in a similar way as    
            

  , where    is defined as the chronological 
subsystem, which contains the capacity vector (   ), the 
probability vector (   ), and the incremental frequency vector 

(   
 ). This model can clearly be extended to include other 

unconventional sources. 

C. Reserve Model and Indices Calculation 

The conventional generating capacity model represented by 
the random variable   can be combined with the chronological 
subsystem capacity model, represented by the random variable 
  , to define the capacity reserve model        in which 
             . Hence, probabilities and frequencies of the 
reserve model as well as the traditional reliability indices are 
obtained through the combination of the two conventional and 
chronological subsystems, according to the same equations used 
in [12]. 

As shown in Fig. 1c the failure state space of the reserve 
model can be organized as subsets of failure states   , where 

each subset contains the combination of cumulative states of   
against individual states of   . At this point, it is important to 
highlight that the model alters the failure state space of Fig. 1, 
mainly due to the presence of the unconventional sources and 
EV. However, for didactic purposes the failure state space is 
considered to be the same as the one shown in Fig 1. From this 
perspective, one of the first remarks might be the possibility of 
assessing system reliability indices for each chronological 
capacity observation. This means an hourly reliability 
assessment, since the load, EV and unconventional sources are 
represented using hour resolution, although any other resolution 
could be used.  

Meanwhile, based on [12] and as shown in Fig. 1 and 2, 
some stochastic properties can be explored within the failure 
state space in order to attain an analytical risk model. For 
instance, the probability of residence in the cumulative subspace 
   and its respective frequency and average duration can be 
obtained as follows. 

      
    

    
         (2) 

      
    

                 
              (3) 

      
       

       
          (4) 

where       
is the loss of load probability,       

 is the 

loss of load frequency, and       
 is the loss of load duration 

all referred to subset   . These concepts can be extended to all 

subsets   . Therefore, an analytical risk model  can be 

written as follows. 

                           (5) 

where the   ,   ,   , are vectors with       
,       

, 

      
, entries respectively. These entries are computed 

according to the equations below. 

      
      

   
                (6) 

      
      

   
    

    
          (7) 

      
        

       
                        (8) 

where     
 is the individual probability of   , and    

 is the 

cumulative probability of  , both at hour  . Observe that    is a 
risk model that contains probabilities, frequencies and average 
durations for all subsets  . Therefore, through the manipulation 
of these vectors it is possible to achieve hourly, daily, weekly, 
monthly and annual reliability indices for the generation system. 

D. Distributional Aspects Associated with Reliability System 

Indices – A Statistical Perspective 

From a statistical perspective, the mechanisms used to 
explore the distributional aspects associated with the reliability 
system index mean values are based on time observations. Such 
time observations allow a comprehensive image of each system 
failure for each assessed random sample. For instance, to 
analyze the distributional aspects of the LOLE index for the 
hypothetical system shown in Fig. 1, Fig. 4 shows six different 
possible random samples for the system. In order to estimate the 
LOLE index, an estimator      must be defined, as in [2], 
which is calculated using the total loss of load duration 
observed throughout year    In this case, a LOLE index can be 
estimated as follows. 

             
 

 
      

 
             (9) 

where   is the number of samples and   is the period of study 
(usually 8760 h). In Fig. 4 the study period is 3 hours and the 
number of samples is 6. Using (9), a possible LOLE index could 
be 1.33 h/yr. Clearly, the small number of samples does not 
reveal any conclusions about the LOLE index, without the 
confidence interval evaluation [11]. By storing      values it is 
possible to estimate a probability distribution function for the 
LOLE index. 

Another approach to the     estimator can be obtained by 
dividing      by time portions along random samples (see Fig. 
4). Each portion of LLD can be linked to a year sample   , and 
an hour  . Hence, the LLD estimator for the random sample i 
can be expressed as follows. 

            
 
                               (10) 

where,        can be read as loss of load duration (in hours) 

observed in random sample   in the hour  . Therefore, another 
potential way of verifying the distributed characteristics of the 
LOLE index is, instead of observing      in each random 
sample i, one can observe        in overall random samples N 

as shown in Fig. 4. As stated in previous sections, from an 

analytical perspective, an analytical risk model  was proposed 
for all subsets  . Analogously, it is possible to write a statistical  
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Figure. 4. Distributional aspect of LOLE index – LLD estimator. 

 
Figure. 5. Distributional aspects of        – SMCS approach. 

 
Figure. 6. Distributional aspects of LOLE – SMCS Approach. 

 

Figure. 7. Distributed LOLE index algorithm - Hybrid approach. 

procedure to estimate  where one defines the expectation of a 
vector (matrix) as being the vector (matrix) of expectations [11]. 

It is therefore possible to estimate a probability distribution 
function of LOLE on each   . However, it would not be 

practical to examine 8760 probability distribution functions. 
Thus, in order to investigate the distributional aspects of each 
different load points, Fig. 5 shows the cumulative probability 
distribution of all load points (all hours of the year) of       , 

obtained using the SMCS on the IEEE-RTS 96 HW previously 
discussed. This shows that 20% of the        has a risk of 1 h. 

This means that at least 20% of the observed failure events are 
reaching a value of      that is equal to or greater than 1 h/y. It  

 

Figure. 8. Distributional aspects of LOLE – Hybrid Approach. 

 

is also possible to see that the        values range from 1.6 x 10
-

5
 h to 1.0 h for all load points. In fact, the most common result 

obtained from the SMCS is the LOLE distribution. This index 
represents a probability when expressed in h/h. Fig. 6 shows the 
LOLE distribution for the IEEE-RTS 96 HW previously 
discussed. The expected value for LOLE is 1.0362 h/y. 

However, it was possible to identify some rare events where 
the LOLE index varied from 71.7344 to 76.5167 h/y, with a 
very low probability. 

E. Distributional Aspects Associated with Reliability System 

Indices – A Hybrid Perspective 

After presenting a shared aspect between the analytical and 
statistical approaches, the hybrid methodology used to 
investigate the distributional aspects associated with reliability 
system indices will now be discussed. In summary, the 
proposed approach consists of building random samples, as 
illustrated in Fig. 4. However, instead of sampling        values 

as in the original statistical procedure, the index distributions 
are obtained using the information from which    was derived. 
Following this approach one can survey the distribution of the 

probability    in which one can encounter a state    during a 

year, by using the algorithm presented in Fig. 7. In this 
algorithm,     , denotes a uniform random sampled number at 

hour   and year  , and   
  represents the probability of 

encountering a state    during the sampled year  . 

This algorithm was applied to the IEEE-RTS 96 HW. It 

must be noted that by multiplying each   
  by 8760, one can 

obtain the number of visited hours   where a failure was 
assigned, for each sampled year  . Such values were organized 
in the probability distribution shown in Fig. 8. Clearly, the 
average value of this probability distribution gives an estimation 
for the LOLE index in h/y. Differently from the LOLE 
distribution obtained through the statistical procedure in which 
state residence times are sampled, the proposed algorithm only 
samples the occurrence of configurations of units which will 
cause a failure at hour  . Hence, Fig. 8 shows that the 
probability of visiting three hours with failure events is 6.54%. 
Note that the expected LOLE is 1.0358 h/y and it presents a 
similar result when compared to SMCS.  

It is possible to see that the hybrid approach takes the time 
dependent effects into account, following the load chronology, 
although state residence times are not sampled. 

V. APPLICATION RESULTS 

The proposed methodology was applied to the planned 
configuration of the Portuguese Generation System (PGS). In 
2015, the PGS is expected to attain an installed capacity of  
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Figure. 9. Distributional aspects of LOLE – Hybrid Approach. 

20,592 MW [17]. The annual peak load is predicted at 12,716 
MW. The thermal installed capacity will represent 33% of the 
total PGS installed capacity and is divided into coal-fired and 
natural gas, which will mainly replace oil-fired technology and 
ensure flexibility to cope with wind power variation. 
Hydropower is expected to represent 25% of the total installed 
capacity. Wind power is expected to represent 24% of the 
installed capacity. Cogeneration shares will remain at 11% and 
pumping stations will increase by 2%. Both hydro and thermal 
power shares will decrease slightly. 

Three different scenarios were studied. A base scenario 
considers the description previously presented. A second 
scenario considers an amount of EV load being added to the 
system load without any control. This is known in the EV 
literature as Dumb charging [18] which provides a load increase 
of 16.2%. Finally, a third scenario considers the same amount of 
EV load under a Smart charging strategy [18], where most of 
the EVs are charging in the load valley.  These three scenarios 
are used to highlight the proposed hybrid methodology, 
although it also shows the effects of the integration of EV into 
the PGS. Table II shows the annual results for the conventional 
reliability indices. The Dumb charging monthly evaluation 
revealed the highest LOLE of 7.9063 h/y in February. Table III 
shows the Well-being analysis considering the largest unit 
criterion. Finally, Fig. 9 shows the distributed aspect of the 
LOLE index. 

It must be noted that the number of hours with failure events 
increases when EV load is added to the system load using a 
Dumb charging scenario. The LOLE also increases from 3.61E

-

04
 to 19.4061 h/y. However, the number of hours with failure 

events when EV load is added to the system, under a Smart 
charging strategy, remains the same. 

Another important aspect related to the Hybrid approach is 
its computation performance. While the Hybrid approach 
required 226 seconds to perform the evaluation for the PGS, the 
SMCS took about 15 hours (    ). Evidently the 
representation behind the SMCS is more computationally 
expensive than the Hybrid approach. Clearly, the proposed 
approach can be viewed as a worthy alternative to investigating 
distributional aspects of reliability indices, due to its low 
computational cost. 

VI. CONCLUSIONS 

Different from the SMCS, which is based on the state 
duration sampling mechanism, the proposed hybrid approach 
deals with chronology using the sequence of load observations, 
which in turn represents a natural chronology for both 
approaches. While SMCS uses   as the main variable to follow 
the chronology, the hybrid approach uses   to deal with 
chronology. In fact, the hybrid approach shows to be a worth  

TABLE II. CONVENTIONAL INDICES FOR PGS 

Index Base Smart Dumb 

LOLE (h/y) 3.61E-04 3.61E-04 19.4061 
LOLF (oc./y) 2.98E-04 2.98E-04 16.2485 

EENS (MWh/y) 0.040949 0.040949 4984.74 

TABLE III. WELL-BEING ANALYSIS FOR THE PGS - FEBRUARY 

Index Base Smart Dumb 

EH (h) 672.00 672.00 654.53 

FH (occ./m) 8.57E-04 8.57E-04 11.45 

EM (h) 1.08E-03 1.08E-03 9.55 
FM (occ./m) 8.23E-04 8.23E-04 4.63 

 
alternative to the SMCS with low computational costs, 
preserving time-dependent effects and allowing, for instance, 
Well-being analyzes. In addition, distributional aspects of 
reliability indices can also be investigated using the approach.  
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