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Abstract The aim of this work was to evaluate the potential
of Fourier transform infrared (FTIR) spectroscopy as a rapid
and accurate technique to detect and predict the onset of
spoilage in fresh chicken breast fillets stored at 3, 8, and
30 °C. Chicken breasts were excised from carcasses at 6 h
post-mortem; cut in fillets; packed in air; stored at 3, 8, and
30ºC; and periodically examined for FTIR, pH, microbiolog-
ical analysis, and sensory assessment of freshness. Partial least
squares regression allowed estimations of total viable counts
(TVC), lactic acid bacteria (LAB), Pseudomonas spp.,
Brochothrix thermosphacta, Enterobacteriaceae counts and
pH, based on FTIR spectral data. Analysis of an external set
of samples allowed the evaluation of the predictability of the
method. The correlation coefficients (R2) for prediction were
0.798, 0.832, 0.789, 0.810, 0.857, and 0.880, and the room
mean square error of prediction were 0.789, 0.658, 0.715,
0.701, 0.756 log cfu g−1 and 0.479 for TVC, LAB,
Pseudomonas spp., B. thermosphacta, Enterobacteriaceae,
and pH, respectively. The spectroscopic variables that can be
linked and used by the models to predict the spoilage/
freshness of the samples, pH, and microbial counts were the
absorbency values of 375 wave numbers from 1,700 to
950 cm−1. A principal component analysis led to the conclu-

1,370 cm−1 and from 1,320 to 1,305 cm−1 are strongly con-
nected to changes during spoilage. These wave numbers are
linked to amides and amines and may be considered potential
wave numbers associated with the biochemical changes dur-
ing spoilage. Discriminant analysis of spectral data was suc-
cessfully applied to support sensory data and to accurately
bound samples freshness. According to the results presented,
it is possible to conclude that FTIR spectroscopy can be used
as a reliable, accurate, and fast method for real time freshness
evaluation of chicken breast fillets during storage.
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Introduction

The consumer demand for chicken meat is increasing, due in
part to dietary health considerations (Ellis et al. 2002; Sahar
et al. 2011). Distribution chain agents, retailers, and con-
sumers ask for long shelf life as well as good quality and
safety throughout the entire shelf life period. This is a chal-
lenge to the meat industry as they have to optimize the
processes in order to achieve the best shelf life (Nychas
et al. 2008; Walker and Betts 2000).

Chicken meat is a highly perishable food; therefore, it
becomes important to improve quantitative measurements of
spoilage in order to monitor the quality of the meat (Guevara-
Franco et al. 2010; Lin et al. 2004, Sahar et al. 2011). This can
be affected by factors such as health, age, sex, chicken car-
casses condition at the time of slaughter, type of packaging,
and storage conditions used (Huis in’t Veld 1996; Jiménez
et al. 1997). After slaughtering, raw chicken meat could
deteriorate in 4 to 10 days, even when stored under refriger-
ation (Jiménez et al. 1997; Lin et al. 2004; Sahar et al. 2011).
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The freshness can be defined by various indicators, includ-
ing microbial enumeration methods, such as total viable counts
(TVC), volatile compound analysis, total volatile basic nitrogen
(TVB-N), biogenic amines index, measurement of lipid oxida-
tion (Balamatsia et al. 2006, 2007), and sensory evaluation,
which is the most frequently used method for freshness evalu-
ation of meat and meat products in industry and retail deliveries
(Guevara-Franco et al. 2010; Nychas et al. 2008).

However, most of these methods have the disadvantage of
being invasive, often expensive, time consuming, and, in the
case of sensory analysis, is unsuitable for onlinemonitoring and
may not provide rapid results. Thus, it is important to develop
new rapid detection methods of meat spoilage to guarantee its
safety and quality (Archer 1996; Ellis et al. 2002; Guevara-
Franco et al. 2010; Lin et al. 2004; Sahar et al. 2011).

The application of Fourier transform infrared spectroscopy
(FTIR) analysis to monitor meat spoilage is not new, and it has
been reported by previous researchers (Ellis et al. 2002, 2004;
Ellis and Goodacre 2001; Papadopoulou et al. 2011). Ellis et al.
(2002) showed that the microbial count and spoilage in commi-
nuted chicken stored at room temperature can be monitored by
FTIR, suggesting the beginning of spoilage when microorgan-
isms have reached 107 cfu g−1. In those studies, the application
was specified on comminuted beef, pork, and poultry meats.

FTIR was also successfully used to distinguish microbial
cells producing biochemical fingerprints, leading to identifi-
cation of bacterial species and strains (Mossoba et al. 2003;
Naumann et al. 1991; Rodriguez-Saona et al. 2001) and has
been successfully employed to correlate spectral data to mi-
crobial counts (Ellis et al. 2002; Ellis and Goodacre 2001)
with the objective of TVC prediction. However, no effort was
made to take into account other specific microbial groups
which are representative of the microbial dynamics during
meat spoilage, such as Pseudomonas spp., LAB,
B. thermosphacta, and Enterobacteriaceae (Doulgeraki et al.
2012). B. thermosphacta is psychrotrophic; commonly linked
with fresh meats spoilage; and has the ability to grow during
storage in air, vacuum, and modified atmosphere packaging.
Consequently, it is a substantial meat colonizer and an impor-
tant portion of the spoilage microbiota, being occasionally the
dominant organism (Labadie 1999; Nychas et al. 2008).

Numerous studies have already applied near infrared spec-
troscopy (NIR) for microbial identification and quantification
both in isolated systems (membranes and water solution) and
food (Sousa Marques et al. 2013; Tito et al. 2012).

NIR and short wavelength (SW) spectroscopy was used in
conjunction with multivariate statistics for the determination
of Enterobacteriaceae on chicken fillet (Feng et al. 2013) and
for the assessment of freshness in packaged sliced chicken
breasts (Grau et al. 2011). Despite the excellent work present-
ed by Alexandrakis et al. (2009) for the detection of spoilage
of intact chicken breast muscle using NIR and FTIR, to our
knowledge, the potential of FTIR has not been fully evaluated

for qualitative and quantitative assessment of spoilage of
chicken breast fillets stored at both chill and abusive temper-
atures. Also, there is scarce data on FTIR potential to predict
pH and LAB, B. thermosphacta, and Pseudomonas spp. pop-
ulation in chicken breast fillets.

The objective of this study was to explore the potential of
FTIR as a rapid and accurate method to detect and predict the
onset of spoilage in fresh chicken breast fillets stored at 3, 8,
and 30 °C. TVC, LAB, B. thermosphacta, Pseudomonas spp.,
and Enterobacteriaceae counts and pH, associated with chick-
en breast fillets spoilage and its relation with FTIR spectral
data, were studied for several storage times and temperatures.

A further objective of this work was to demonstrate the
possibility of building PLS-R-based models in view to predict
fresh chicken breast spoilage from measured IR spectra.
Correlation of spectral data with freshness/spoilage categories
defined by the sensory panel is presented.

Material and Methods

Sampling

Chicken breasts were excised from carcasses at 6 h (t0) post-
mortem and were cut in fillets of 3×4×1 cm, weighing
approximately 20 g, and packed in air overwrapped with
polyethylene (PE) film. Following packaging, samples were
stored at 3, 8, and 30ºC and examined at intervals of 96, 168,
240, and 336 h for the first two temperatures and at 7, 24, and
48 h of storage for samples kept at 30ºC.

The experiment was repeated six times over a period of a
few months. At each sampling point, two samples were ana-
lyzed for different parameters, specifically, spectroscopic, mi-
crobial, physical-chemical determinations, and sensory anal-
ysis. Therefore, a total of 144 samples were analyzed.

While the temperature of 3ºC was chosen as correct storage
temperature for chicken breast fillets and the exposition limit
for selling is 4ºC, the value of 8 °C is the typical extreme high
temperature of a home refrigerator. The temperature of 30ºC is
an extreme value that was used to reach a wide band of
experimental conditions.

Microbial Analysis

The number of microorganisms potentially associated with
chicken meat spoilage was counted, namely LAB,
B. thermosphacta, Enterobacteriaceae, Pseudomonas spp.,
and TVC. Escherichia coli was also evaluated in our study
as a pathogenic microorganism, but was not considered in this
paper because it is not considered a specific spoilage micro-
organism, therefore, not relevant in the presented work.

Meat cuts were sampled aseptically at each interval.
Samples were homogenized with tryptone salt (tryptone
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0.1 % and NaCl 0.85 %) in a Stomacher for 90 s. Serial
decimal dilutions were prepared in the same solution for
microbiological determinations.

TVC were obtained on Plate Count Agar (CM325,
OXOID, England) (30ºC, 72 h); LAB on double layer on
Man Rogosa Sharpe agar (CM361, OXOID, England)
(30ºC, 72 h); Enterobacteriaceae on double layer Violet Red
Bile Glucose agar (CM485, OXOID, England) (37ºC, 24 h);
B. thermosphacta on Streptomycin Thallous Acetate and
Actidione agar (CM881, SR151, OXOID, England) (25ºC,
48 h); and Pseudomonas spp. on selective Cetrimide, Fucidin,
and Cephaloridine agar (CM0559, SR0103, OXOID,
England) (25ºC, 48 h), according to ISO 4833 (2003), NF V
04-503 (1988), ISO 21528-2 (2004), ISO 13722 (1996), and
NF V04-504 (1998).

The enumeration of Enterobacteriaceae (ISO 21528-2,
2004) and Pseudomonas spp. (NF V04-504 1998) was per-
formed by biochemical tests and oxidase test.

In case the microorganism counts were below the detection
limit, the result was considered to be zero for statistical purposes.

Physical-Chemical Measurements: pH

The pH was measured directly in the muscle using a penetra-
tion electrode with a pH meter (Crison Instruments, Spain)
and was evaluated in duplicate immediately after opening the
packages.

FTIR Measurement

Infrared spectra were collected in a FTIR spectrometer
(Mattson, Unicam Research Series, USA) equipped with a
single reflection attenuated total reflection (ATR) module
(Golden Gate, UK), a DLaTGS detector, and a KBr
beamspliter. The equipment is connected to a computer and
controlled by WinFirst Software.

For the spectroscopic measurements, the samples were
placed on top of the ATR crystal, which was kept at 30ºC,
ensuring that the aerobic surface of the meat was in close
contact with the crystal and then pressed with the gripper.
Assuming that meat is mainly composed of water, calculation
using equation 2.7 of Stuart (2004) showed that the evanes-
cent field was probing a depth of approximately 1.0 μm. All
infrared spectra were recorded from 900 to 2,000 cm−1, co-
adding 128 interferograms at a resolution of 2 cm−1. The
collection time for each sample spectrum was approximately
2 min. These spectra were subtracted against background air
spectrum. After every scan, a new reference air background
spectrum was taken. The ATR base was carefully cleaned in
situ by scrubbing with ethanol (99.9 %) and dried with soft
tissue before measuring the next sample. The cleaningmethod
was verified by collecting a background spectrum and com-
pared to the previous one. These spectra were recorded as

absorbance values at each data point. For each sampling
occasion, two replicate samples were analyzed by FTIR, each
replicate was measured twice and the spectra averaged.

Mathematical Treatment

Spectral data collected between 900 and 2,000 cm−1 were
initially submitted to smoothing based on the Savitzky-
Golay algorithm (Savitzky and Golay 1964). Afterward,
mean-centered and standardized spectra were subjected to a
principal component analysis (PCA) to inspect differences
between samples. The PCA transforms the large number of
potentially correlated factors into a smaller number of uncor-
related factors (principal components, PCs), and thus reduces
the size of the data set (Abdi and Williams 2010).

For qualitative analysis, principal components contributing
to the variance of the data set were subjected to discriminant
analysis (DA) in an attempt to predict the likelihood of a sample
belonging to a previously defined group. Since the raw spectral
data could not be used because of the strong correlation be-
tween the wave numbers, uncorrelated PCs resulting from PCA
were employed. DA is a statistical method used to find a linear
combination of structures which characterizes or separates
classes of objects or observations (McLachlan 2004). The
resulting arrangement may be used as a linear classifier or
dimensionality reduction priori to classification.

For quantitative analysis, the measured microbial,
physical-chemical, and sensory parameters, factors consider-
ably contributing to the variance of the data set, were
regressed using partial least squares regression (PLS-R) onto
the referred variables (Liang and Kvalheim 1996; Wentzell
and Montoto 2003). This multivariate calibration technique,
sometimes called factor analysis, transform the original vari-
ables (FTIR spectra absorbencies) into the new ones (known
as latent variables), which are linear combination of original
variables (Miller and Miller 2005).

The method relied on two steps, the so-called calibration
and cross-validation steps. In the calibration step, a mathemat-
ical model was built to establish a correlation between the
matrix of FTIR spectra (predictor variables, X) and the con-
centration of analytes of interest (response variables, Y) used a
set of observations usually named calibration set. In the cross-
validation step, the developed calibration model was used to
calculate the concentration of samples not used to set up the
model (De Luca et al. 2009). The dependent variable (Y) was
either the sensory classes for DA or the measured pH and
bacterial counts for PLS-R analysis.

The relative performance of the established model is
accessed by the root mean square error of calibration
(RMSEC), root mean square error of cross-validation
(RMSECV), and multiple coefficient of determination or re-
gression coefficient (R2) (Divya andMishra 2007). The model
selected is then used to determine the concentration of the
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samples in an independent prediction set. The predictive abil-
ity of the model is evaluated from the root mean square of
prediction (RMSEP). The lower the RMSEP value, the higher
the degree of accuracy of the prediction result provided by the
calibration model (Corgozinho et al. 2008).

PCA, DA, and PLS-R calculations were performed using
the Excel-based XLSTAT V2006.06 package (Addinsoft, Inc,
NY, USA) and statistical software Unscrambler V9.6 package
(Camo, Oslo, Norway).

Sensory Analysis

Sensory evaluation of chicken breast fillets was performed
during storage by a panel of eight members (with a minimum
of six members per session) consisting of graduate professors
and staff of the lab with experience on meat sensory evalua-
tion by virtue of having participated in several meat sensory
panels over the last years.

Sensory evaluation was carried out under controlled condi-
tions of light (white fluorescent lamps) in sensory booths. The
presentation of samples in each session was randomized and
evaluation data were collected on a separate profile sheet. Each
evaluation was carried out once. Chicken breast samples were
assessed immediately after opening the package. Meat quality
was rated on a non-structured scale extending from 0 to 15 cm
ISO 4121 (2003), based on the perception overall assessment
of freshness (0=extremely spoiled, 15=extremely fresh).

Mean scores of the examined samples by the panelists were
used to include each sample in one of the three defined
categories of freshness: fresh (>10 cm), semi-fresh (>5 and

≤10 cm), and spoiled (≤5 cm), according to the stage of
freshness/spoilage.

In this work, the classification of chicken meat samples by
a panel of sensory analysis in three distinct freshness/spoilage
categories is a more lifelike approach to consumer insight
about meat spoilage which was used by Papadopoulou et al.
(2011). A third category of “semi-fresh” has been introduced
between “fresh” and “spoiled” categories, representative of
the early stage of spoilage where the meat has developed
slight off-odors but it is still acceptable for consumption.

Results and Discussion

Microbial and Sensory Data

The TVC of chicken breast samples indicated that the total
microflora was 4.2±0.5 log cfu g−1 at the onset of storage
(samples considered as fresh) to 9.8±0.1 log cfu g−1 for
samples characterized as completely spoiled. The hedonic
mark “fresh”, “semi-fresh” and “spoiled” was attributed to
samples having average TVC of 5.1±1.3, 7.6±1.5, and 8.7±
1.1 log cfu g−1, respectively. Actually, depending on the
storage parameters, samples were rejected by the sensory
panel (classified as Spoiled) at a TVC between 7.7 and
9.9 log cfu g−1. Therefore, a reasonable correlation was ob-
served between measured TVC levels and the sensory assess-
ment of freshness classification attributed by the sensory
panel. These results are in agreement with Nychas and
Tassou (1997) and Sahar et al.(2011), referring that the general

Fig. 1 Time evolution of total viable counts (TVC), lactic acid bacteria (LAB), B. thermosphacta (BT), Enterobacteriaceae (Entero), and Pseudomonas
spp. (Pseudo) for chicken breast fillets stored aerobically at 3, 8, and 30ºC
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sensory spoilage of chicken fillets stored under aerobic con-
ditions is detectable when the TVC is around 8 log cfu g−1.

The microbiological analysis indicated that Pseudomonas
spp., LAB, B. thermosphacta, and Enterobacteriaceae are the
initial microbiota of chicken breast fillets. The time evolution
of the population of these groups depends on the storage
temperature, as illustrated in Fig. 1. The temperatures of
storage were found to affect the microbial development and
the competition between microbial groups of the meat and
consequently, the spoilage process, as referred previously by
Nychas et al. (2008). It was perceived that Pseudomonas spp.
constituted the predominant population at 3 and 8 °C, present-
ing a fast increase at 8ºC.

At 3ºC, the pattern of spoilage is dominated by the slow
proliferation of Pseudomonas spp., reaching levels near 5 log
at 168 h and 7 log cfu g−1 at 240 h, while the counts of LAB
and Enterobacteriaceae are around 4 log cfu g−1 at 168 h, and
did not achieved 7 log cfu g−1 at the end of the storage time.
Different species of these microorganisms have different min-
imum temperatures of development ranging between 1.3 and
8.7 °C (Crowley et al. 2005). At 8ºC, Pseudomonas spp.
predominated the microbial population with average levels
of 8.81 log cfu g−1 at the end of the storage. The LAB counts
are always slightly lower compared to the previous. Higher
levels of Enterobacteriaceae are obtained at 268 h, reaching
8.2 log cfu g−1 at the end of storage.

According to Labadie (1999), Pseudomonas spp. are al-
ways dominant after a few days storage at temperatures rang-
ing between 0 and 7 °C in any type of meat (Ercolini et al.
2009; Molin and Ternström 1982). Pseudomonas spp. are
followed by the development of LAB, Enterobacteriaceae,
and B. thermosphacta.

Lin et al. (2004) reported that early stages of the spoilage of
chicken samples packed in air were mainly associated with
Pseudomonas spp. and, after the oxygen depletion, LAB were
the dominant microorganisms on the chicken meat. However,
in our work, Pseudomonas spp. counts are always higher than
LAB counts for 3 and 8ºC, indicating that Pseudomonas spp.
grows faster in aerobic storage under refrigeration than other
bacteria, remaining predominant in the last stage of spoilage.
This was also referred by other authors (Gill and Newton
1977; Dainty and Mackey 1992; Borch et al. 1996).

This can be justified because in general, meat spoilage is
connected to the composition of the microbial population and
also the nature of substrates (glucose, lactate, among others)
present in meat (Nychas and Skandamis 2005; Nychas et al.
2008). After depletion of glucose, spoilage under aerobic
atmosphere is most frequently associated with the catabolism
of nitrogenous compounds and free amino acids by
Pseudomonas spp. (Gill 1986; Nychas et al. 2008). It was
recognized that in those conditions, the free amino acids
increased during storage, revealing consistency with the
counts of bacteria (Nychas et al. 2008).

A major effect of storage temperature was observed on the
level of Enterobacteriaceae, whose growth was greatly in-
creased at 30 °C, being the dominant microorganism since
they are often more metabolically active at these temperatures
(ICMSF 2000; Holt et al. 1994). They are followed by
Pseudomonas spp. and LAB, whereas B. thermosphacta
remained at lower levels. While at refrigerated temperatures
the Enterobacteriaceae counts were below Pseudomonas spp.
and LAB counts, a result similar to those published (Borch
et al. 1996; Russo et al. 2006), at abusive temperatures
(30 °C), no data was found in literature to compare with.
However, Ridell e Korkeala (1997) refers that any temperature

Fig. 2 FTIR spectra collected from fresh and spoiled chicken breast
samples stored at 8ºC for 336 h. These spectra correspond to 3.7 and
9.4 log cfu g-1 of TVC and to 5.7 and 6.5 pH values, respectively

Fig. 3 PCA based comparison of spectral data obtained from fresh
chicken fillets (day 0) and stored 96 h at 3ºC and 48 h at 30ºC (all
batches)
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increase during storage, transportation, and distribution can
lead to an increase in Enterobacteriaceae counts.

Note also that Enterobacteriaceae showed the lowest
counts in initial microflora, and presented a long lag phase
on samples stored at 3 and 8ºC, particularly evident at 3ºC. At
8ºC, in the final stages of storage, this microbial group are a
good competitor with LAB.

B. thermosphacta counts augmented slower than other
microorganisms, appearing always in levels lower than
LAB. In fact, according to Holzapfel (1998), this microorgan-
ism appear to be more prevalent in pork and lamb than in
chicken meat.

Through the TVC, the meat was considered spoiled on the
following hours: 240 h at 3 °C, and 168 h at 8 °C, though at
30 °C, the onset of spoilage is about 7 h.

FTIR Measured Spectra

The infrared spectra can provide information on biochemical
changes occurring during spoilage (Ellis et al. 2002).
Representative FTIR spectral data in the range of 1,750 to
950 cm−1 collected from fresh and spoiled chicken breast
samples stored at 8ºC for 336 h are shown in Fig. 2. These
spectra correspond to 3.7 and 9.4 log cfu g−1 of TVC and to
5.7 and 6.5 pH values, respectively. A major peak at

1,639 cm−1 due to the presence of water (O–H stretch) with
a simultaneous contribution from amide I in the samples is
obvious. A second peak at 1,550 cm−1 was due to the absor-
bance of amide II (N–H bend, C–N stretch). A second amide
vibration can be seen at 1,398 cm−1 (C–N stretch). Amide III
peaks at 1,314 and at 1,238 cm−1 (C–N stretch, N–H bend, C–
O stretch, O=C–N bend). The peaks at 1,460, 1,240, and
1,175 cm−1 can be attributed to fat (C O ester). Finally, the
peaks arising from 1,025 to 1,140 cm−1 could be absorbance
due to amines (C–N stretch) (Ellis et al. 2002; Ammor et al.
2009).

The small differences between the spectra are due to bio-
chemical changes in the meat due to a combination of auto-
lytic and microbiological proteolysis of meat muscle proteins.
An intensification in absorption at certain wavelengths, with
storage time, corresponding to amides and amines was already
reported by Alexandrakis et al. (2009), suggesting the produc-
tion of free amino acids and peptides. Hydrolysis of proteins
points to the production of metabolites related to spoilage such
as ammonia and volatile amines.

Preliminary Analysis of the Spectral Data Set

Smoothed, mean-centered, and standardized FTIR spectral
data expressing various combinations of storage time and

Fig. 4 Observations diagram
determined by discriminant
factors F1 and F2 for FTIR-ATR
spectral data for different chicken
breast meat freshness groups:
Fresh, Semi-fresh, Spoiled

Table 1 Confusion matrix for the calibration and cross-validation datasets based on the sensory panel discrimination and FTIR spectral data

From/To Calibration Cross-validation

Fresh Semi-fresh Spoiled Total Correct (%) Fresh Semi-fresh Spoiled Total Correct (%)

Fresh 46 3 1 50 92.0 34 15 1 50 68.0

Semi-fresh 1 24 1 26 92.3 2 20 4 26 76.9

Spoiled 0 2 42 44 95.5 0 11 33 44 75.0

Total 47 29 44 120 93.3 36 46 38 120 73.3

Observed classifications in rows. Predicted classifications in columns
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temperature were subjected to PCA. It was found that the
variance of the data set, based on 550 original variables (wave
numbers), could be explained by 87 principal components,
among which the first eight principal components explain
approximately 97.6 % of the total variance.

In statistics, communality is defined as the sum of the
squared factor loadings for all factors for a given original
variable. It is the variance in that variable accounted for by
all the factors. In other words, the communality measures the
percentage of variance in a given variable explained by all the
factors jointly and may be interpreted as the consistency of the
indicator (Abdi and Williams 2010). By definition, the initial
value of the communality in PCA is 1. Small communality
values after extraction indicate variables that do not fit well
with the factor solution and should be dropped from the
analysis (Field, A.P. 2005). According to Stevens (2002), a
lower limit of 0.6 should be used.

Following a procedure outlined by Nychas and Tassou
(1997), wave numbers for which the communality value of

each principal components was higher than 0.6 were con-
sidered important to explain the variance of the spectral
data set and were then considered as potential wave
numbers associated with the biochemical changes happen-
ing during spoilage of chicken meat (Argyri et al. 2010).
These wave numbers extended, approximately, from 1,700
to 950 cm−1 (375 variables), which were then selected for
additional analyses.

A new PCAwas then performed using wave numbers from
1,700 to 950 cm−1, which showed that the variance could be
explained by 38 principal components among which the first
five principal components explain approximately 98.9 % of
the total variance. It should be noticed that wave numbers for
which the communality value of each principal components
out of the first five was higher than 0.9 ranged from 1,408 to
1,370 cm−1 and from 1,320 to 1,305 cm−1. These wave
numbers are connected to amides and amines (Ammor et al.
2009) and were considered potential wave numbers associated
with the biochemical changes during spoilage.

Fig. 5 RMSEC andRMSECVas a
function of latent variable number
for TVC and pH

Table 2 Quality parameters of themultivariatemodels for quantification of total viable counts, lactic acid bacteria,Pseudomonas spp.,B. thermosphacta
and Enterobacteriaceae counts, and pH (RMSE microbial counts in log cfu g−1)

Factors Equation R2 RMSE
(log cfu g−1)

Calibration Validation Prediction Calibration Validation Prediction Calibration Validation Prediction

TVC 5 y=0.834x+
1.225

y=0.824x+
1.273

y=0.834x+
1.225

0.898 0.863 0.798 0.512 0.751 0.789

LAB 6 y=0.996+
0.037

y=0.9787x+
0.067

y=1.024x−
0.052

0.950 0.880 0.832 0.581 0.599 0.658

Pseudomonas spp. 5 y=1.090x−
0.411

y=1.028x−
0.130

y=0.9752x+
0.029

0.946 0.813 0.789 0.601 0.699 0.715

Brochothrix
thermosphacta

5 y=0.989x+
0.085

y=0.991x+
0.052

y=1.052x−
0.321

0.834 0.798 0.810 0.591 0.641 0.701

Enterobacteriaceae
(at 30ºC)

4 y=1.008x−
0.080

y=1.038x−
0.171

y=0.872x+
0.610

0.963 0.927 0.857 0.625 0.702 0.756

pH 5 y=0.901x+
0.611

y=0.929x+
0.416

y=0.965x+
0.241

0.882 0.806 0.880 0.312 0.452 0.479

TVC total viable counts, LAB lactic acid bacteria

2336 Food Bioprocess Technol (2014) 7:2330–2341



Meat Storage Supervising Using Spectroscopic Data

PCAwas then performed using wave numbers from 1,700 to
950 cm−1, to compare the spectra obtained from fresh breast
fillets (day 0) and those obtained from the fillets stored in
acceptable conditions (96 h at 3ºC, corresponding to an aver-
age TVC of 3.5±0.6 log cfu g−1) and in abusive conditions
(48 h at 30ºC, corresponding to an average TVC of 9.8±
0.1 log cfu g−1). For each batch, the three groups are distinctly
separate from one another, Fig. 3, with F1 and F2 principal
components describing 52.34 and 39.54 % of the variation,
respectively.

Analysis of the fresh samples, located in the upper half of
the observations diagram, shows that the batches (fillets pur-
chased and analyzed on the same day) are different from each
other. This batch effect could be the result of a number of
factors ranging from differences in the chicken age or health to
differences in handling such as temperature fluctuations dur-
ing transport (Koutsoumanis and Taoukis 2005).

The batch variability adds features to the spectral data set
that is not related to the number of bacteria present on the meat
after spoilage (Nychas et al. 2008). To minimize batch vari-
ability on the model, it would be interesting to include as
many batches as possible. There were five batches in this
work, and it is expected that increasing the number of batches
to ten or more would improve the performance of the model.

The spectral data from 1,700 to 950 cm−1 was then sub-
jected to a discriminant analysis based on the known mem-
bership of each sample analyzed as defined by the sensory
panel (chicken meat freshness groups: fresh, semi-fresh,
spoiled), constituting the dependent variable.

In Fig. 4, shown is the observation diagram as defined by
discriminant factors F1 and F2, which explained the total
variance. The classification in Table 1, resulting from the
discriminant analysis, provided 93.3 % correct classification
for the calibration set and 73.3 % correct classification when
cross-validated. Albeit 26.7 % of samples were not cross-
validated, spoiled samples were never classified as fresh.

PLS-RModels for Prediction of Microbiological Data and pH
Based on Spectral Data Set

PLS-R calibration were carried out in order to evaluate the
possibility of predicting the microbiological counts and pH (Y,
response variables) from the knowledge of the predictor var-
iables (X, absorbencies at wave numbers from 1,700 to
950 cm-1). The PLS regression was performed on the same
frequency regions used for DA.

The quality of the fitting was scrutinized by the root mean
square error of calibration (RMSEC), multiple coefficient of
determination or regression coefficient (R2, where R is the
correlation factor), and by the root mean square error of cross-
validation (RMSECV). To validate the developed PLS-R

models, Leave-One-Out cross-validation (LOOCV) method
was applied to a subset of 120 samples (the remaining 24
samples were used to determine the ability of themethodology
to predict new samples). In this technique, one sample at a
time is randomly excluded. Then, the properties of the re-
moved sample was predicted with a model constructed with
the remaining samples (the training set). This procedure was
repeated until each sample was excluded once (Picard and
Cook 1984).

The capability of the models to predict the microflora
population and pH for external samples was inspected by the
RMSEP (Corgozinho et al. 2008; Divya and Mishra 2007).

Fig. 6 Correlation between the observed and the estimated values ob-
tained from FTIR spectra for: a TVC and b pH, (LV-latent variable)

Food Bioprocess Technol (2014) 7:2330–2341 2337



The confirmation and validation of the analysis region used
for developing the PLS model were performed by computing
the predicted residual error sum of squares (PRESS) values for
different latent variable (LVs). The PRESS value is a direct
measure on howwell a calibration predict the value of samples
left out during a cross-validation (Smith 2002).

In order to exemplify the typical behavior of the calculated
RMSEC and RMSECV, Fig. 5 represents its values as a
function of the latent variable number for TVC and pH PLS
regression models. The optimum number of latent variables,
between four and six for the models developed in this work
(see Table 2), is the lowest that minimizes the RMSECV,
which becomes stable thereafter. This confirms that the spec-
tral region used for developing the models for quantification
exhibits significant correlation with microflora population and
pH values.

The accuracy and the performance of the models which
correlate the actual and estimated values obtained from FTIR
spectra is illustrated in Fig. 6a, b for TVC and pH values,
respectively and in Fig. 7a–d for LAB, Pseudomonas spp.,
B. thermosphacta, and Enterobacteriaceae, respectively. The
correlation of the spectral data with the pH of the samples
allows a more complete characterization of the meat using
only one spectroscopic measurement.

Good relationships were found between the spectral data
and the microbiological analysis. Table 2 resumes the quanti-
tative performance of the multivariate calibrations determined
in this work in terms of the R2 coefficients, RMSEC,
RMSECV, and RMSEP.

For TVC, LAB, and Pseudomonas spp., using the values of
Table 2, it can be seen that the predicted values for the external
set are higher or similar than the measured values, except for

Fig. 7 Correlation between the observed and the estimated values obtained from FTIR spectra for: a LAB, b Pseudomonas spp., c B. thermosphacta,
and d Enterobacteriaceae (LV-latent variable)
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B. thermosphacta. The slopes are, in general, different from 1,
maybe because the FTIR spectroscopic measurement are
made only at the surface and microbial counting method uses
the full samples of meat. Therefore, given the inhomogeneity
of this matrix, the experimental procedure through this work is
responsible for an offset between the two measurements. In
any case, the FTIR models for predicting microflora popula-
tion provide an early warning of high bacteria loads. This is an
interesting feature when dealing with public health.

It needs to be noted that no reasonable regression model
was attained for Enterobacteriaceae with all temperatures; R2

values of 0.7 or less and RMSEP higher than 2 log cfu g−1

were typical. This is an expected result as this microbial group
presented a long lag phase at 3 and 8ºC, in agreement with the
work by Papadopoulou et al. (2011). However, at 30ºC, the
lag phase was negligible.

The high value of R2 and the low values of RMSEC and
RMSECV indicate good performance and precision of PLS-R
models. Additionally, to obtain a robust calibration model, the
number of regression factors used should be the lowest as
possible (Hui-shan et al. 2006). The bias factors of the differ-
ent regressions were found close to unity, indicating no major
structural deviation of the models, i.e., systematic over or
underprediction of the microbial counts (Miller and Miller
2005).

The values of R2 and RMSEC, showing the quality of
models, were 0.898/0.512 for the TVC and 0.882/0.312 for
the pH, respectively. Regarding the bacterial groups LAB,
P s e u d omo n a s s p p . , B . t h e rm o s p h a c t a , a n d
Enterobacteriaceae, the corresponding values of R2 and
RMSE were 0.950/0.581, 0.946/0.601, 0.834/0.591, and
0.963/0.625, respectively.

When the data is subjected to cross-validation, the quality
of the models for prediction decrease; R2 and RMSE becomes
0.863/0.751 for the TCVand 0.806/0.452 for pH, 0.880/0.599
for LAB, 0.813/0.699 for Pseudomonas spp., 0.798/0.641 for
B. thermosphacta, and 0.927/0.702 for Enterobacteriaceae,
respectively.

The PLS-R calibration model was also used to calculate the
microflora population in external samples (samples not used
to build the models). Figures 6 and 7 mentioned above also
show the scatter plot for the relationship between actual and
FTIR predicted values of the microflora and pH. The values of
R2 and RMSEP obtained are 0.798/0.789 for the TCV and
0.880/0.479 for pH, 0.832/0.658 for LAB, 0.789/0.715 for
Pseudomonas spp., 0.810/0.701 for B. thermosphacta, and
0.857/0.756 for Enterobacteriaceae, respectively.

Conclusions

The different microbial groups that potentially contributed to
the spoilage of chicken breast studied depends on the storage

temperature. Aerobic storage of chicken meat allowed high
final population levels regardless of storage temperature, with
Pseudomonas spp. being the dominant microorganism follow-
ed by LAB and Enterobacteriaceae, whereas B. thermosphacta
remained at lower levels. At 30ºC, Enterobacteriaceae showed
the highest values, being largely predominant.

Infrared spectroscopy was used to obtain spoilage finger-
prints of chicken breasts fillets during storage at different
temperatures in an attempt to quantitatively monitor the
process.

The FTIR-ATR technique was found to represent an inex-
pensive and rapid instrument for monitoring raw chicken
fillets spoilage through measurement of biochemical changes
happening in the chicken matrix instead of using classical
counting bacteria colonies. According to Ellis et al. (2002),
an infrared spectrum may be considered a metabolic pattern
that can be straightforwardly converted to valuable data relat-
ed to degree of spoilage.

From the PCA, it was concluded that the wave numbers
from 1,408 to 1,370 cm−1 and from 1,320 to 1,305 cm−1,
linked to amides and amines, are strongly connected to spoil-
age dynamics.

However, to set up empirical models to predict the spoilage/
freshness of the samples, pH, and microbial counts, the absor-
bency values of 375 wave numbers from 1,700 to 950 cm−1

were utilized. The authors are involved in trying to build cali-
bration models based in a discrete number of wave numbers.

The collected infrared spectra contain valuable informa-
tion, allowing the discrimination of meat samples in quality
categories corresponding to different spoilage levels, and
could also be used to correlate the population of the different
microbial groups, particularly Pseudomonas spp., LAB, and
Enterobacteriaceae directly from the sample surface.
Supplementary systematic work must be carried out to expand
the spectral data for more accurate results.
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