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Abstract—Computing the frequency of small subgraphs on
a large network is a computationally hard task. This is,
however, an important graph mining primitive, with several
applications, and here we present a novel multicore parallel
algorithm for this task. At the core of our methodology lies a
state-of-the-art data structure, the g-trie, which represents a
collection of subgraphs and allows for a very efficient sequential
search. Our implementation was done using Pthreads and
can run on any multicore personal computer. We employ a
diagonal work sharing strategy to dynamically and effectively
divide work among threads during the execution. We assess
the performance of our Pthreads implementation on a set of
representative networks from various domains and with diverse
topological features. For most networks, we obtain a speedup
of over 50 for 64 cores and an almost linear speedup up
to 32 cores, showcasing the flexibility and scalability of our
algorithm. This paves the way for the usage of such counting
algorithms on larger subgraph and network sizes without the
obligatory access to a cluster.

Keywords-Parallel Algorithms, Adaptive Load Balancing,
Complex Networks, Graph Mining, G-Tries

I. INTRODUCTION

Complex Networks are an ubiquitous representation of

systems in many domains [1]. Mining features from these

networks is, thus, a very important task with general appli-

cability [2]. One such feature is the number of occurrences

of subgraphs. This frequency computation lies at the core

of several graph metrics, such as graphlet degree distribu-

tions [3] or network motifs [4]. For instance, motifs are over-

represented subgraphs, appearing more often than expected.

A typical motif discovery algorithm will need to count all

subgraphs of a certain size both in the original network and

in an ensemble of similar randomized networks [5].

Computing the frequency of subgraphs is, however, a

computationally hard task, closely related to subgraph iso-
morphism, which is one of the classical NP-complete prob-

lems [6]. This means that, as we increase the size of either

the subgraphs or the network being analyzed, the execution

time increases exponentially. Nevertheless, improving the

execution time of subgraph counting can have a broad

impact. For example, even increasing by just one node the

size of the subgraphs may lead to the discovery of new

motifs, providing new insight into a network.

One way to make the subgraph counting algorithms faster

is using parallelism. Still, work in this area is very scarce and

the vast majority of the existing algorithms are sequential in

their nature. We have previous work on the parallelization

of subgraph frequency computation, but it was focused on

using MPI in distributed environments [7], [8]. Multicore

architectures are, however, much more common and readily

available to a typical practitioner, with multicores being

pervasive even on personal computers.

Our main contribution in this paper is precisely a novel

parallel algorithm for subgraph counting geared towards

multicores. As a basis, we use our own state-of-art g-trie data

structure, which is the core of one of the fastest sequential

algorithms for subgraph counting [9]. G-Tries are able to

store a collection of graphs, identifying common substruc-

tures, and provide an efficient method to search for those

graphs as subgraphs of another larger network. This search

induces a highly unbalanced search tree with independent

tree branches. We use one thread per core and schedule

work dynamically based on a diagonal splitting work sharing

strategy to try to ensure a fair division of the work. With

this technique, we achieve very good performance up to 64

cores and an almost linear speedup up to 32 cores. To the

best of our knowledge, this constitutes the fastest multicore

algorithm for subgraph counting.

The remainder of this paper is organized as follows.

Section II formalizes the problem being tackled and talks

about related work. Section III describes the g-trie data

structure and its sequential subgraph counting algorithm.

Section IV details our parallel approach. Section V shows

our experimental results on a series of representative net-

works. Finally, section VI concludes our paper and gives

some possible directions for future work.

II. SUBGRAPH COUNTING PROBLEM

A. Problem Definition

We start by more formally defining the exact problem we

are tackling in this paper:

Definition 1 (General Subgraph Counting Problem):
Given a set of subgraphs S and a graph G, determine the
exact count of all induced occurrences of subgraphs of S
in G. Two occurrences are considered different if they have
at least one node or edge that they do not share. Other
nodes and edges can overlap.
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Figure 1. An example subgraph counting output, with detailed subgraph
occurrences.

Figure 1 gives an example of a subgraph frequency com-

putation, detailing the subgraph occurrences found (these

are given as sets of nodes). Note also how we distinguish

occurrences: other possible frequency concepts do exist [10],

but here we resort to the standard definition.

B. Related Work

Sequential subgraph counting algorithms can be divided

into three different conceptual approaches. Network-centric
methods are based upon the enumeration of all sets of k
connected nodes, followed by isomorphism tests to deter-

mine the subgraph type of each occurrence. Examples of

this strategy include ESU [11], Kavosh [12] and FaSE [13].

By contrast, subgraph-centric methods, such as the one by

Grochow and Kellis [14], only search for one subgraph type

at a time, individually computing their frequency. G-Tries

provide a set-centric approach, standing conceptually in the

middle [9]. They allow the search of a customized set of

subgraphs: not necessarily all possible subgraphs of a certain

size (as network-centric methods) but also not only one

subgraph at a time (as subgraph-centric methods). These

algorithms provide exact results, and here we will also

concentrate on exact frequency computation, but we should

note that there exist some sampling alternatives for providing

approximate results. Some examples are Rand-ESU [11],

Randomized g-tries [15] and GUISE [16].

Regarding parallel approaches, the available work is

scarcer. We provided a distributed memory parallel approach

for both ESU [7] and g-tries [8], using MPI for commu-

nication. Our work here differs because we instead aim

for a shared memory environment with multiple cores. A

different parallel approach is the one by Wang et al. [17],

which employs a static pre-division of work and limits the

analysis to a single network and a fixed number of cores

(32). In our work, we use dynamic load balancing and do a

more thorough study of the scalability of our approach. A

subgraph-centric parallel algorithm using map-reduce was

developed by Afrati et al. [18], where they enumerate only

one individual subgraph at a time. By contrast, we use

a g-trie based set-centric approach and aim for a differ-

ent target platform (multicores). For more specific types

of subgraphs there are other paralell algorithms such as

Sahad [19] (an hadoop subgraph-centric method for tree sub-

graphs), Fascia [20] (a multicore subgraph-centric method

for approximate count of non-induced tree-like subgraphs)

or ParSE [21] (approximate count for subgraphs that can be

partitioned in two by a cut-edge), but our work stands apart

by aiming at a completely general set of subgraphs.

III. SEQUENTIAL G-TRIE ALGORITHM

A. The G-Trie Data Structure

A g-trie is similar in concept to a prefix tree. However,

instead of storing strings and identifying common prefixes, it

stores subgraphs and identifies common subtopologies. Like

a classical string trie, it is a multiway tree, and each tree node

contains information about a single subgraph vertex and its

connections to the vertices stored in ancestor tree nodes.

Descendants of a tree node share a common topology with

a path from the root to a node defining a single subgraph.

Figure 2 gives an example of a g-trie with the 6 undirected

subgraphs previously mentioned stored in its leafs. The same

concept can be easily applied to directed subgraphs by also

storing the direction of each connection.

Figure 2. A g-trie representing a set of 6 undirected subgraphs. Each
g-trie node adds a new vertex (in black) to the already existing ones in
the ancestor nodes (white vertices). Clauses of the form X < Y indicate
symmetry breaking conditions.
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In order to obtain a unique g-trie representation for

a certain subgraph collection, we employ a customized

canonical form that tries to ensure that the g-trie is as

compact as possible, that is, that we identify as many

common subtopologies as possible. This capability is the

main strength of a g-trie, not only because we compress the

information (avoiding redundant storage), but also because,

when we are matching a specific node in the g-trie, we are, at

the same time, matching all possible descendant subgraphs

stored in the g-trie. In order to avoid symmetries in the stored

graphs, g-tries also keep symmetry breaking conditions of

the form X < Y , indicating that the vertex in position X
should have a graph index smaller than the vertex in position

Y . Given the space constraints, we refer the reader to [9]

for a detailed explanation of how a g-trie can be created.

Nevertheless, in the following section we will explain how

it can be used to compute the frequency of subgraphs, so that

afterwards we can explain how we parallelize the process.

B. Subgraph Counting with a G-Trie

In order to avoid ambiguities in the description, from now

on we will use the term node to refer to the g-trie tree nodes,

and vertex to refer to a node in the graphs. The algorithm

depicted in Figure 3 details how we can use g-tries for

counting subgraphs sequentially.

1: procedure COUNTALL(T,G)
2: for all vertex v of G do
3: for all children c of T.root do
4: COUNT(c, {v})
5: procedure COUNT(T, Vused)
6: V ← MATCHINGVERTICES(T, Vused)
7: for all vertex v of V do
8: if T.isLeaf then
9: T.frequency++

10: else
11: for all children c of T do
12: COUNT(c, Vused ∪ {v})
13: function MATCHINGVERTICES(T, Vused)
14: Vconn ← vertices connected to the vertex being added
15: m ← vertex of Vconn with smallest neighborhood
16: Vcand ← neighbors of m that respect both
17: connections to ancestors and
18: symmetry breaking conditions
19: return Vcand

Figure 3. Algorithm for computing the frequency of subgraphs of g-trie
T in graph G.

The core idea of the algorithm is to search for a set

of vertices (Vused) that match to a path in the g-trie, thus

corresponding to an occurrence of the subgraph represented

by that path. We use the information stored in the g-trie to

heavily constrain the search. In the beginning, all vertices

are possible candidates for the initial g-trie root node (lines

2 to 4). Then, we find the set of vertices that fully match

with the current g-trie node (line 6) and we traverse that

set. If we are at a leaf, we have found an occurrence

and increment the respective frequency (line 9). If not, we

continue recursively to the other possible g-trie descendants.

Function matchingVertices() gives some detail on

how we efficiently find matches for the current g-trie node.

Essentially, from the current partial match, we look for the

vertex that is both connected, in the current g-trie node, to

the vertex being added and, at the same time, has the smallest

number of neighbors in the network, which are the potential

candidates for that position (lines 14 and 15). From those

vertices, we take the ones that have the exact set of needed

connections with the already matched vertices and respect

the symmetry breaking conditions stored in the g-trie node

(lines 16 to 18).

For the sake of illustration, we will now exemplify how

one occurrence is found. We use the notation (X, k) to

denote that vertex k is matched to X in the g-trie node.

Consider Figures 1 and 2 and take for instance the oc-

currence {2, 3, 7, 6} of type T6 subgraph. Looking at the

respective g-trie leaf, we can see that the only path leading to

this occurrence will be (A, 3)→(B, 7)→(C, 2)→(D, 6). A

path like (A, 2)→(B, 3)→(C, 7)→(D, 6) could not happen

because when adding (C, 7) there would be no match-

ing g-trie node regarding the connections. A path like

(A, 7)→(B, 3)→(C, 6)→(D, 2) could not happen either be-

cause, even if that would correspond to valid connections, it

would break symmetry conditions. In particular, T6 imposes

the condition A < B and, in this case, 7 is not smaller than

3. These two simple mechanisms (verifying connections and

symmetry conditions) form the basis of how a g-trie is able

to highly constrain and limit the candidates it is searching

and, at the same time, guarantee that each occurrence is

found only once.

IV. PARALLEL G-TRIE ALGORITHM

One of the most important aspects of our sequential algo-

rithm is that it originates completely independent search tree

branches. In fact, each call to count(T, Vused) produces

one different branch, and knowing the gtrie node T and

the already matched vertices Vused is enough for continuing

the search from that point. Each of these calls can thus be

thought of as a work unit and, when designing our parallel

algorithm, we aimed to provide a balanced division of work

units per resource during execution time.

As we can see in Figure 3, each vertex in the input graph

G is given as a candidate for the root node (line 2). A naive

approach would be to simply divide these initial work units

among the available computing resources. The problem with

this static strategy is that the generated search tree is highly

irregular and unbalanced. A few of the vertices may take

most of the computing time, leading to some resources being

busy processing them for a long time while others were idle.

To achieve a scalable approach, an efficient dynamic sharing

mechanism, that redistributes work during execution time, is

required.
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Another important factor in the sequential algorithm’s

performance is that there is no explicit queue of unprocessed

work units. Instead, the recursive stack implicitly stores the

work tree, with the two cycles between vertices and nodes

(lines 7 and 11) being responsible for generating new work

units that are recursively processed (line 12). In our parallel

approach we keep this crucial feature of the algorithm and do

not artificially introduce explicit queues during the normal

execution of the algorithm. These queues would introduce

a serious overhead both on the execution time and on the

needed memory, significantly deteriorating the sequential

algorithm’s performance. Our goal is, therefore, to scale up

our original efficient algorithm, providing the best possible

overall running time.

Since we want the end users to take advantage of their

personal multicore machines, our target is a shared memory

architecture. For that purpose we chose Pthreads, due to its

portability and flexibility. 1

A. Overall View

We allocate one thread per core, with each thread being

initially assigned an equal amount of vertices. When a

thread P finishes its allotted computation, it requests new

work from another active thread Q, which responds by first

stopping its computation. Q then builds a representation of

its state, bottom-up, to enable sharing. Q proceeds by di-

viding the unprocessed work units in a round-robin fashion,

achieving a diagonal split of the entire work tree, allowing

it to keep half of the work units and giving the other half

to P . Both threads then resume their execution, starting at

the bottom (meaning the lowest levels of the g-trie) of their

respective work trees. When all vertices for a certain g-trie

node are computed, the thread moves up in the work tree.

The execution starts at the bottom so that only one Vused is

necessary, taking advantage of the common subtopology of

ancestor and descendant nodes in the same path. When there

is no more work, the threads terminate and the computed

frequencies are aggregated. We will now describe in more

detail the various components of our algorithm.

B. Parallel Subgraph Frequency Counting

Figure 4 depicts our parallel counting algorithm. All

threads start by executing parallelCountAll() with

an initially empty work tree W (line 2). The first vertex

that a thread computes is that of position threadid (lines

3 and 5). At each step, the thread computes the vertex

threadid positions after the previous one (line 13). Every

vertex is used as a candidate for the g-trie root node by some

thread (lines 11 and 12). This division gives approximately

|V (G)|/numthreads vertices for each thread to initially

explore. We do this in a round-robin fashion because it

generally provides a more equitable initial division than

1Our implementation, along with test data, can be consulted on the
following URL: http://www.dcc.fc.up.pt/gtries/.

1: procedure PARALLELCOUNTALL(T , G)
2: W ← ∅
3: i ← threadid
4: while i ≤ |V (G)| do
5: v ← V (G)i
6: if WORKREQUEST(P ) then
7: W.ADDWORK()
8: (WQ,WP )← SPLITWORK(W)
9: GIVEWORK(WP , P )

10: RESUMEWORK(WQ)

11: for all children c of T.root do
12: PARALLELCOUNT(c, {v})
13: i← i+ threadid
14: ASKFORWORK()

15: procedure PARALLELCOUNT(T, Vused)
16: V ← MATCHINGVERTICES(T, Vused)
17: for all vertex v of V do
18: if WORKREQUEST(P ) then
19: W.ADDWORK()
20: return
21: if T.isLeaf then
22: threadfreq[T ]++
23: else
24: for all children c of T do
25: PARALLELCOUNT(c, Vused ∪ {v})
Figure 4. Parallel algorithm for computing the frequency of subgraphs of
g-trie T in graph G.

simply allocating continuous intervals to each thread, due

to the way we use the symmetry breaking conditions. Our

intuition was verified empirically by observing that the

threads would ask for work sooner if continuous intervals

were used. When a thread Q receives a work request from

P (line 6) it needs to stop its computation, save what it still

had left to do (line 7), divide the work tree (line 8), give P
some work (line 9) and resume the remaining work (line 10).

On the other hand, if a thread finishes its initially assigned

work, it issues a work request to get new work (line 14).

parallelCount() remains almost the same as the

sequential version, except for now attending work requests

and storing subgraph frequencies differently. If the thread

receives a work request while computing matches, it first

adds them to the work tree W and then stops the current

execution (lines 18 to 20) to compute the current state and

build the work tree. In the sequential version we simply

needed to increase the frequency of a certain subgraph in the

g-trie structure. As for the parallel version, multiple threads

may be computing frequencies for the same subgraph, using

different vertices from the input graph, and so they need

to coordinate their frequency storing. Initially, we kept in

each g-trie node a shared array Fr[1..numthreads] where

the threads would update the array at the position of their

threadid. In the end, the global frequencies would be

obtained by summing the values in the array. This resulted

in significant false sharing due to too many threads updating

those arrays simultaneously, and became a severe bottleneck.
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Figure 5. The constructed work tree of a thread Q and its division by diagonal splitting when a work request is received from thread P .

Our solution was to create thread private arrays indexing

g-trie nodes, i.e. Fr[1..numgtrieNodes], which impacted

very favorably our efficiency. In our testing phase with a 24

cores machine, we had cases with speedups below 5 that,

only with this change, went to a speedup of over 22, thus

converting a modest into an almost linear speedup.

The matchingVertices() procedure remains the

same as the sequential version, the only difference being

that Vused is now thread local, with threads computing a

different set of vertices.

C. Work Request

A work request is performed when some thread P has

completed its assigned work. Since there is no efficient way

of predicting exactly how much computation each active

thread still has in its work tree, it asks a random thread

Q for more work. Note that this kind of random polling

has been established as an efficient heuristic for dynamic

load balancing [22]. If Q sends some unprocessed work,

then P executes the resumeWork() procedure. If Q does

not have any work to share, P proceeds by asking another

random thread. The computation is over when all threads

are requesting work and thus no more work units remain to

be processed.

D. Work Sharing

When a thread Q receives a work request it builds a work

tree representing its current recursive state. In Figure 5 we

show a resulting work tree and its division with a caller

thread P . The yellow colored circles constitute Vused and

the yellow colored squares form the g-trie path up to the

current level. The other nodes and vertices are still left to

be explored and are split in a round-robin fashion. This

division results in two work trees with approximately the

same number of work units. This does not, however, imply

that the two halves are of the same computational dimension

given the irregularity of the search tree they will induce, but,

nevertheless, they constitute our best guess of a fair division

across all levels.

As said before, we only build an explicit work tree

when a work request is received. In that situation, a thread

saves the current and the other unexplored vertices for

the current node and moves up in the recursive tree. This

process is repeated up to the top level, effectively populating

the work tree with the unprocessed work units, i.e., the

unexplored g-trie nodes and network vertices. This is a

very fast operation and it is done by stopping the execution

of the recursive parallelCount() calls and adding the

work to the work tree (line 19 in Figure 4) until we get to

parallelCountAll() and add the remaining nodes and

vertices of the top level (line 7). We also store the current

g-trie path and network vertices (Vused).

E. Work Resuming

After the threads have shared work, they resume it

and proceed with the computation. The work tree W
is traversed in a bottom-up fashion (lines 2 to 5) and

the vertices of each level are computed (line 6). If the

thread receives a work request, work sharing is performed

(line 7). There is no call to addWork() since the work

1: procedure RESUMEWORK(W )
2: ORDERBYLOWEST(W )
3: for all level L of W do
4: depth← L.depth− 1
5: Vused ← active vertices[1..depth]
6: for all vertices v of L.nodes do
7: if WORKREQUEST(P ) then
8: (WQ,WP )← SPLITWORK(W)
9: GIVEWORK(WP , P )

10: RESUMEWORK(WQ)
11: return
12: if L.T.isLeaf then
13: threadfreq[T ]++
14: else
15: for all children c of L.T do
16: PARALLELCOUNT(c, Vused ∪ {v})
17: ASKFORWORK()

Figure 6. Algorithm for resuming work after sharing is performed.
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Table I
THE SET OF SEVEN DIFFERENT REPRESENTATIVE REAL NETWORKS USED ON PARALLEL PERFORMANCE TESTING.

Network |V (G)| |E(G)| |E(G)|
|V (G)| Directed Description Ref. Source

polblogs 1,491 19,022 12.76 Yes Network of hyperlinks between weblogs on US politics [23] Newman1

netsc 1,589 2,742 1.73 No Coauthorships of scientists working on network experiments [24] Newman1

facebook 4,039 88,234 21.85 No Friend circles from Facebook [25] SNAP2

routes 6,474 12,572 1.94 No Traffic flows between routers [26] SNAP2

company 8,497 6,724 0.79 Yes Ownership of media and telecommunication companies [27] Pajek3

blogcat 10,312 333,983 32.39 No Friendship and group membership networks from BlogCat [28] ASU4

enron 36,692 367,662 10.02 Yes Communication network of around half a million emails [29] SNAP2

is already on the work structure: either it was unfinished

work already on W or it was added there by the recur-

sive parallelCount() calls. After work sharing is per-

formed (lines 8 and 9), the thread continues its computation

with the new work tree (line 10) and the current execution

is discarded (line 11). On the other hand, if it does not

have a pending work request, it proceeds to process the

vertex. The thread first checks if it has arrived at a desired

subgraph (line 12) and increases its frequency in that case

(line 13). Otherwise, the thread calls parallelCount()
with the new vertex added to Vused for each children of the

g-trie node (lines 15 and 16). When all work is completed

it requests work from another thread (line 17).

V. RESULTS

Our experimental results were gathered on a 64-core

machine. It consists of four 16-core AMD Opteron 6376

processors at 2.3GHz with a total of 252GB of memory

installed. Each 16-core processor is split in two banks of

eight cores, each with its own 6MB L3 cache. Each bank

is then split into sets of two cores sharing a 2MB L2

and a 64KB L1 instruction cache. A 16KB L1 data cache

is dedicated to each core. We disabled the turbo boost

functionality because it would give us inconsistent results

by having executions with less cores running at an increased

clock rate. All code was developed in C++11 and compiled

using gcc 4.8.2. We used NPTL 2.18 for Pthread support. To

measure real times, we opted for the gettimeofday()
function.

We tested our algorithm in a few dozens of real-world

networks and here we present the results for a representative

subset of them. Table I gives a general view of the content

and dimension of the chosen seven networks. In order to

showcase the general scalability of our algorithm, we chose

networks that vary in their field of application, their use of

edge direction and their dimension, as can be seen in Table I.

At the same time, we need to choose which subgraphs

should be searched in the networks. For that purpose we

use all possible subgraphs of a given size k, again to

highlight general applicability. Note that when we consider

directed networks, the number of possible subgraphs of size

k increases drastically. For example, for k = 4 there are

only 6 undirected graphs and 199 directed. One query on a

directed network for k = 4 would therefore imply counting

the occurrences of 199 different types of subgraphs.

The g-trie sequential algorithm takes a few seconds in

cases where competing algorithms would take a considerable

amount of time [9]. Our purpose here is to explicitly pick

very large cases even for g-tries. The sequential time for the

examples used range from a couple of minutes to several

hours. We chose this approach to show the real importance

of our work, since going from a few seconds to tenths of

seconds is of minimal practical interest to the user. Searching

for larger subgraphs or networks takes longer but can provide

new important insight and, from a practitioner point of view,

our parallel approach increases the limits of what is feasible

to compute on a reasonable amount of time.

As said before, we wanted our parallel strategy with one

thread to perform similarly to the original sequential version.

Empirically we observed that our parallel implementation

with one thread does not produce a high overhead, being on

average less than 10% for all the networks we tested (the

maximum overhead we obtained was 17%). The overhead

lies mostly in threads having to check if they received a work

request, with sharing itself having minimal impact. Using

code profilers, such as Intel VTune and AMD CodeXL, we

verified that sharing took a negligible amount of time (less

than 1% of the total time). Henceforth we will use sequential
time to mean the execution with only one thread and the

speedups shown are relative to it.

Our algorithm was evaluated up to 64 cores and here

present the results in three tables. In Table II we show the

size of the subgraphs and the resulting number of all possible

subgraphs of that type and size that will be counted in that

network. The sequential time and the obtained speedups

for 8, 16, 32 and 64 cores are shown in Tables III and

IV. We present two tables containing the speedups with

and without compiler optimization (gcc -O3 flag) because

we observed significant differences in the results. This

happens due to compiler optimizations usually not being

1Mark Newman: http://www-personal.umich.edu/˜mejn/netdata/
2SNAP: http://snap.stanford.edu/data/
3Pajek: http://vlado.fmf.uni-lj.si/pub/networks/data/
4ASU: http://socialcomputing.asu.edu/pages/datasets
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Table II
OVERALL EXECUTION INFORMATION.

Network
Subgraph #Subgraphs

size searched
polblogs 6 1,530,843

netsc 9 261,080
facebook 5 21

routes 5 21
company 6 1,530,843
blogcat 4 6

enron 4 199

Table III
RESULTS WITH COMPILER OPTIMIZATIONS.

Sequential #Threads: speedup
time (s) 8 16 32 64

91,190.73 7.87 15.69 31.31 52.96
466.48 7.90 15.78 30.91 51.09

6,043.90 6.75 14.72 30.23 52.47
4,936.54 6.53 14.52 30.34 48.76
26,955.71 6.74 14.54 29.99 45.12
5,410.45 7.72 14.37 24.92 25.69
1,038.60 6.23 12.69 23.78 24.41

Table IV
RESULTS WITHOUT COMPILER OPTIMIZATIONS.

Sequential #Threads: speedup
time (s) 8 16 32 64

222,210.76 7.91 15.78 31.38 52.11
2,030.39 7.91 15.74 31.36 51.65
17,851.16 6.78 14.67 30.31 53.84
20,706.67 6.80 14.67 30.53 52.44
94,384.39 6.69 14.61 30.17 47.09
15,666.05 7.88 15.40 29.60 48.69
2,768.74 6.42 13.69 27.43 45.59

designed for parallel programs. For example, some cache

optimizations that greatly reduce the sequential time are not

as effective when multiple cores are running at the same

time. This effect may cause an unfair comparison between

sequential and parallel executions. Nevertheless, results from

Table III are also positive and users will be more interested

in real execution time than speedups, therefore we decided

to include both tables for the sake of completeness.

The results we obtained are very promising and up to

32 cores we achieved near-linear speedup, for both directed

and undirected networks. With 64 cores we still achieve over

75% efficiency. We should reassert that each pair of cores

shares its 2MB L2 and 64KB L1 instruction cache. This

makes it harder to obtain perfect linear speedup because

these cores are not completely independent. For testing

purposes, we experimented with the well known pbzip5

parallel data compression algorithm, which should achieve

near-linear speedup on shared memory machines. Neverthe-

less, pbzip had a performance similar to our algorithm,

with near-linear speedup up to 32 cores and with a speedup

of around 50 for 64 cores, further substantiating the idea

that, with a different architecture, our algorithm could still

present near-linear speedup with more than 32 cores.

We can also observe that as the network size increases,

the performance slightly degrades. This is particularly no-

ticeable in the two largest networks, which show the worst

behavior. This is mostly due to their large size leading

to memory constraints and cache issues. Note, however,

that their behavior without compiler optimizations is not

significantly worse. Furthermore, here we used an adjacency

matrix to represent the network. This gives the best possible

algorithmic complexity for verifying if an edge exists but, at

the same time, implies a quadratic representation in mem-

ory. Other data structures would degrade edge verification

performance but also significantly decrease the memory

footprint, and thus would contribute to a potentially better

shared memory parallel performance. We should also note

that we have done previous work in a distributed memory

environment on which we obtained near-linear speedup up

to 128 processors [8]. In that architecture, each CPU has its

5Parallel BZIP2 (PBZIP2): http://compression.ca/pbzip2/

own dedicated main memory storing a copy of the graph,

which means that the problems related with competing

memory and caching are not present.

VI. CONCLUSION

In this paper we presented a scalable algorithm to count

subgraph frequencies for multicore architectures. We used

the g-trie data structure as a basis for parallelization. G-Tries

are multiway trees, much like prefix trees, that use com-

mon topologies in subgraphs in order to prune the search

tree. The sequential version already performed significantly

better than competing algorithms, making it a solid base

for improvement. We were able to keep the original re-

cursive nature of the counting algorithm and only create

a more explicit work tree when needed. To dynamically

divide the search tree among the threads, we developed an

efficient sharing mechanism that is able to stop, split and

resume the execution. Our algorithm was tested in several

representative networks from various fields and presented

near-linear speedup up to 32 cores and a speedup of over

50 for 64 cores. To the best of our knowledge, our parallel

algorithm is the fastest available method for shared memory

environments and allows practitioners to take advantage of

either their personal multicore machines or more dedicated

computing resources. This expands the limits of subgraph

counting applicability, allowing an exploration of larger

subgraphs in bigger networks.

In the near future, we intend to investigate the potential

of mixing the shared and distributed memory approaches

since both of them showed promising results. We are also

interested in experimenting with GPU programming because

powerful GPUs are now commonplace and their manycore

architecture may lead us to interesting speedups. We also

intend to explore several variations on the g-tries algorithm,

like, for instance, using different base graph data-structures

or using sampling to obtain approximate results. Finally, to

give our work a more practical context, we will use our

implementation in real world scenarios. For example, we

are in the process of building a large co-authorship network

and plan to explore its structure using our algorithm.
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