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Abstract. We consider interval-valued time series, i.e., series resulting from collecting real

intervals as an ordered sequence through time. Since the lower and upper bounds of the observed

intervals at each time point are in fact values of the same variable, they are naturally related.

We propose modeling interval-time series with Space-time autoregressive models and, based on the

process appropriate for the interval bounds, we derive the model for the intervals’ center and radius.

A simulation study and an application with data of daily wind speed at different meteorological

stations in Ireland illustrate that the proposed approach is appropriate and useful.

Keywords. Interval time series; Interval data; Space-time AR model; Prediction.

1 Introduction

In classical data analysis, variables describing entities are usually mono-valued, that is,

each entity takes exactly one value for each variable at each point in time. However, this

model is too restrictive to represent complex data which may comprehend variability and/or

uncertainty. The need to consider data containing information that cannot be represented

within the classical framework led to the development of Symbolic Data Analysis. Symbolic

data extend the classical model, where each individual takes exactly one value for each

variable, by allowing multiple, possibly weighted, values for each variable. New variable

types have been introduced enabling us to represent variability and/or uncertainty inherent

to the data: multi-valued variables, interval variables and modal variables (Bock and Diday,

2000). A variable is called set-valued if its values are nonempty subsets of the underlying

domain; it is multi-valued if its values are finite subsets of the domain and it is an interval

variable if its values are intervals of IR. A survey of this new area can be found in Billard

and Diday (2006), Diday and Noirhomme (2008), or, more recently, in Noirhomme and

Brito (2011).

Interval data refers to data sets where the observed values of the variables are inter-

vals of IR and may arise in multiple situations that result from temporal aggregation or

systematic sampling such as recording monthly temperatures or the daily wind speed in

different locations or daily stock prices or returns. Other important sources of interval data

are the aggregation of huge data-bases in groups or classes, when the individual real values

are generalized by intervals, or situations where there is some inaccuracy or uncertainty
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in recording the value of a (classical) variable (e.g., due to measurement errors). Interval-

valued data may be represented by the lower (li) and upper (ui) bounds of each observed

interval Ii = [li, ui] , i = 1, ..., n, or, alternatively, by its center ci =
li + ui

2
and radius

ri =
ui − li

2
.

Many different approaches have now been developed to analyze interval data. Assuming

a uniform distribution in each observed interval, Bertrand and Goupil (2000) have proposed

central tendency and dispersion measures for interval data. Billard and Diday (2003) devel-

oped this approach introducing association measures. Duarte Silva and Brito (2006) discuss

the properties of dispersion and association measures for interval data and their implications

in the definition of linear combinations of interval-valued variables. Based on the uniform

assumption, Billard and Diday (2000) have proposed a regression model for interval-valued

data. Principal Component Analysis of interval data has first been addressed by Chouakria

et al (2000) either by representing the observed intervals by their centers (“centers method”)

or by considering all the vertices of the hypercube representing each of the n individuals in

a p-dimensional space (“vertices method”). A different approach is based on representing

each variable by the midpoints and ranges of its interval values, a line of work followed by

Lauro and Palumbo (2005) on Principal Component Analysis and also by Neto et al (2008,

2010) on Regression Analysis. In Duarte Silva and Brito (2006) different approaches for

Linear Discriminant Analysis of interval data are investigated.

When the interval-valued data such as in the examples mentioned above are collected

as an ordered sequence through time (daily, monthly, quarterly, etc) or any other dimen-

sion, they form a time series and consequently the appropriate methodology to study and

model them is time series analysis. To describe time series data, ARIMA (Autoregressive

Integrated Moving Average) models are usually considered (Box, Jenkins and Reinsel, 2008;

Brockwell and Davis, 2002; Wei, 2006) but these are appropriate for single-valued data sets.

New developments to model interval time series have recently been proposed.

Teles and Brito (2005) were the first to consider interval-valued time series data using

an approach based on fitting univariate ARIMA processes to the interval bounds (see also

Brito, 2007). Maia, De Carvalho and Ludermir (2008) propose fitting univariate ARIMA

processes applied to the center and radius and use them to forecast the interval bounds,
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since the latter can be obtained from the former. They also propose an approach based on

an artificial neural network model as well as a combination of both.

Arroyo (2008), Garćıa-Ascanio and Maté (2009), González-Rivera and Arroyo (2011)

and Han et al. (2008) define interval stochastic process, interval-valued time series, weak

stationarity for interval processes and, based on the sample moments previously proposed

(Bertrand and Goupil, 2000), also define the empirical autocovariance and autocorrelation

functions for interval time series data, aiming at uncovering the data-generating process

behind this type of symbolic data sets. Arroyo (2008), Garćıa-Ascanio and Maté (2009)

and Arroyo, González-Rivera and Maté (2010) focus on forecasting based on Vector Au-

toregressive models (VAR), Vector Error Correction models (VEC) and smoothing filters.

Other approaches may provide a new insight into modeling interval time series data,

particularly concerning its description, understanding and forecasting. In this paper, we

propose modeling such data with Space-time processes, thus taking into account the exis-

tence of contemporaneous correlation or dependence between the intervals’ lower and upper

bounds (or center and radius). The main contribution of the paper is therefore the proposal

of Space-time models as an adequate approach to model interval time series.

In the next section we introduce interval time series and review the main models used

in the literature. Section 3 presents the class of Space-time autoregressive models which are

then used in Section 4 to model interval time series. In Section 5, a simulation experiment

is conducted to compare the predictive performance of the different approaches considered

and Section 6 describes an application to real data. Finally, concluding remarks are given

in Section 7.

2 Interval time series

An interval time series (ITS) is a realization of an interval stochastic process (see the

references mentioned above), i.e., for each moment in time t = 1, . . . , N , let XLt and XUt

denote the lower and the upper bounds of the observed interval, with XLt ≤ XUt ; the

interval time series is then

[XL1 , XU1 ] , [XL2 , XU2 ] , . . . , [XLN
, XUN

] . (1)
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We assume that XLt and XUt are both weakly stationary, which implies the weak station-

arity of the interval time series (see the references mentioned above). Let also Ct and Rt

denote the center and the radius of the ITS at time t respectively, i.e., Ct =
XLt +XUt

2

and Rt =
XUt −XLt

2
. Weak stationarity of XLt and XUt implies that of Ct and Rt.

Arroyo (2008) and Garćıa-Ascanio and Maté (2009) propose the following Vector Au-

toregressive model of order p (VAR(p)) for ITS:

XLt = βL +
p∑
i=1

βLL,iXLt−i +
p∑
i=1

βUL,iXUt−i + ξLt

XUt = βU +
p∑
i=1

βLU,iXLt−i +
p∑
i=1

βUU,iXUt−i + ξUt (2)

where βL, βU are the intercepts, βLL,i, β
U
L,i, β

L
U,i and βUU,i (i = 1, . . . , p) are the autoregressive

parameters and ξLt and ξUt are white noise processes with zero mean, variances σ2ξL and

σ2ξU respectively, and covariance

Cov
(
ξLt , ξUt+k

)
=

 σξLU
if k = 0

0 if k 6= 0 .

In vector notation, if Xt = (XLt , XUt)
T , B = (βL, βU )T , Bi =

 βLL,i βUL,i

βLU,i βUU,i

 and Ξt =

(ξLt , ξUt)
T (where T means transpose), model (2) may be written as

Xt = B +
p∑
i=1

BiXt−i + Ξt. (3)

When XLt and XUt are cointegrated, a Vector Error Correction Model can be derived.

From model (2), Arroyo (2008) derives the corresponding model of (Ct, Rt) and shows

it is also a VAR(p):

Ct = βC +
p∑
i=1

βCC,iCt−i +
p∑
i=1

βRC,iRt−i + ξCt

Rt = βR +
p∑
i=1

βCR,iCt−i +
p∑
i=1

βRR,iRt−i + ξRt (4)

which, in vector notation, with Yt = (Ct, Rt)
T , is written as

Yt = Λ +
p∑
i=1

ΛjYt−i + Ωt, (5)
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where a similar notation to that of (2) and (3) is adopted. The parameters in models (4)

and (5) can be written as functions of those in (2) and (3) respectively. Arroyo (2008) also

shows that the models corresponding to (4) or (5) in terms of (XLt , XUt) or Xt are (2) and

(3) respectively. The parameters in the latter models can be written as functions of those

in the former. In short, models (2) and (4), or (3) and (5) are equivalent and it is always

possible to derive one of them from the other, including their parameters. The parameters

in both models can be estimated by ordinary least squares.

Given the data X1, . . . ,XN or Y1, . . . ,YN , the minimum mean square error predictors

at time t = N of the m-step ahead (m = 1, 2 . . .) future values XN+m or YN+m based

on models (2) or (3) and on models (4) or (5) respectively, X̂N (m) and ŶN (m), are the

conditional expectations (Arroyo, 2008)

X̂N (m) = E (XN+m |XN ,XN−1, . . .)

⇔


X̂LN

(m) = E
(
XLN+m

∣∣∣(XLN
, XUN

)T ,
(
XLN−1

, XUN−1

)T
, . . .

)

X̂UN
(m) = E

(
XUN+m

∣∣∣(XLN
, XUN

)T ,
(
XLN−1

, XUN−1

)T
, . . .

) (6)

and

ŶN (m) = E (YN+m |YN ,YN−1, . . .)

⇔


ĈN (m) = E

(
CN+m

∣∣∣(CN , RN )T , (CN−1, RN−1)
T , . . .

)

R̂N (m) = E
(
RN+m

∣∣∣(CN , RN )T , (CN−1, RN−1)
T , . . .

)
.

(7)

Thus,

X̂LN
(m) = ĈN (m)− R̂N (m)

X̂UN
(m) = ĈN (m) + R̂N (m)

ĈN (m) =
X̂LN

(m) + X̂UN
(m)

2

R̂N (m) =
X̂UN

(m)− X̂LN
(m)

2
.

All these approaches treat the interval bounds as two different univariate time series

and propose a model to describe their relationship. However, this may not be the most
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appropriate since interval data result from observations of the same variable made at differ-

ent points. Therefore, an approach that takes this important feature of interval time series

data into account is required.

3 Space-time AR models

The basic format of the data in the examples mentioned in the introduction is the recording

of observations of a variable as an ordered sequence through time at different spatial loca-

tions for each period of time. Thus, the class of Space-time processes is a natural framework

to model those data sets and in fact it is able to describe these as sets of observations of

the same variable made at different points. Some definitions are required first.

Let s = (s1, . . . , sm) ∈ D ⊂ IRm, where D is an index set, be a generic data (spatial)

location in a m−dimensional Euclidean space and let t ∈ T where T , an index set, is the set

of time points. A space-time process is the multivariate random field {Xs,t : s ∈ D, t ∈ T},

where it is also possible to have D (t) (Cressie, 1993). Usually, m = 2, i.e., s = (s1, s2) ∈

D ⊂ IR2 is the spatial location and s1 and s2 are the space coordinates, but m = 3,

i.e., s = (s1, s2, s3) ∈ D ⊂ IR3 or m = 1, i.e., s ∈ D ⊂ IR also tipically occur. We

will assume that D is a fixed finite set and that the index set T is the set of all integers,

T = {0,±1,±2, . . .}. Suppose then that Xsi,t is an observation taken at time t, with

t = 1, . . . , N , and spatial location si, with i = 1, . . . , n, i.e., there are n locations, the

number of elements of D. Let {Xsi,t : i = 1, . . . , n; t = 1, . . . , N} denote the data set and

Xt = (Xs1,t, . . . , Xsn,t)
T .

Space-time autoregressive (STAR) models (Cliff and Ord, 1975; Pfeifer and Deutsch,

1980; Cressie, 1993) generalize the time-series AR models by incorporating the spatial

dimension and are therefore characterized by linear dependence in both space and time (see

also Antunes and Subba Rao, 2006; Diggle and Ribeiro, 2007; Finkenstädt, Held and Isham,

2007; Le and Zidek, 2006). A stationary STAR(p) process is written as

Xt = Θ + ψ0WXt +
p∑
i=1

(φiIn + ψiW) Xt−i + at (8)

where Θ is a (n× 1) vector of intercepts, the scalars ψi (i = 0, . . . , p) and φj (j = 1, . . . , p)

are unknown parameters, In is the (n× n) identity matrix and W is a non-zero (n× n)
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matrix of known weights with diagonal elements 0 and off-diagonal elements (the weights)

usually non-negative and related to the distances between the spatial locations. This matrix,

with elements ωij (i, j = 1, . . . , n), may be either symmetric (ωij = ωji) or not. The weights

may be standardized so that each row of W sums up to 1. The independent white noise

random vector at = (as1,t, . . . , asn,t)
T is a vector of independent white noise processes at

space-time locations {(si, t) : i = 1, . . . , n; t = 1, . . . , N} and has zero mean and covariance

matrix

E
(
ata

T
t+k

)
=

 Σa if k = 0

0 if k 6= 0

where Σa is a (n× n) symmetric positive definite matrix. The parameters can be estimated

by appropriate methods for simultaneous-equation models, such as two or three-stage least

squares, generalized method of moments and, assuming gaussianity, maximum likelihood

(Johnston, 1997). A STAR process can easily be generalized to accommodate temporal

nonstationarity which can be removed by differencing Xt. In such cases, denoting the

differencing order by d, (1−B)d Xt follows the STAR(p) model (8) above.

The STAR model (8) can be used for prediction. Given the data X1, . . . ,XN , the

conditional expectation X̂N (m) = E (XN+m |XN ,XN−1, . . .) is the minimum mean square

error predictor of XN+m. Therefore, from (8), and letting E (· |XN ,XN−1, . . .) = EN (·),

the predictor is (m = 1, 2, . . .)

X̂N (m) = Θ + ψ0WEN (XN+m) +
p∑
i=1

(φiIn + ψiW)EN (XN+m−i) + EN (aN+m) (9)

where, for i = 0, . . . , p,

EN (XN+m−i) =

 XN+m−i m− i ≤ 0

X̂N (m− i) m− i > 0
and EN (aN+m) = 0.

Therefore, since EN (XN+m) = X̂N (m), the predictor (9) above becomes

X̂N (m) = (In − ψ0W)−1

(
Θ +

p∑
i=1

(φiIn + ψiW)EN (XN+m−i)

)
(10)

assuming (In − ψ0W) is nonsingular.
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4 STAR models applied to interval time series

As mentioned above, the STAR model (8) appropriately takes into account the fact that the

interval time series (1) is an ordered sequence of observations of the same variable recorded

through time at different data points for each time period, for each of which the lower and

upper bounds are retained (and is therefore a suitable data-generating process for an ITS).

Then, let the interval stochastic process Xt = (XsL,t, XsU ,t)
T , where XsL,t and XsU ,t

denote the lower and upper bounds respectively, be the STAR(p) model with n = 2:

XsL,t = θL +
p∑
i=1

φiXsL,t−i +
p∑
i=0

ψiωUXsU ,t−i + asL,t

XsU ,t = θU +
p∑
i=1

φiXsU ,t−i +
p∑
i=0

ψiωLXsL,t−i + asU ,t (11)

where θL, θU are the intercepts, φi (i = 1, . . . , p) and ψi (i = 0, . . . , p) are the autoregressive

parameters, ωU and ωL are the weights such that W =

 0 ωU

ωL 0

 and asL,t and asU ,t are

white noise processes with zero mean and variances σ2aL and σ2aU respectively, and covariance

Cov (asL,t, asU ,t+k) =

 σaLU if k = 0

0 if k 6= 0 .

We note the contemporaneous dependence of each interval bound on the other, an important

characteristic to be taken into account in the data and that does not exist in the VAR model

(2) nor in the univariate ARIMA models of the center and radius. The interval time series

(1) is hence considered a realization of the stochastic process (11) which is given in vector

notation by (8) with n = 2, Θ = (θL, θU )T , W as given above and at = (asL,t, asU ,t)
T .

From (11), we derive in the following proposition the bivariate model of the interval

center and radius Ct =
XsL,t +XsU ,t

2
and Rt =

XsU ,t −XsL,t

2
respectively, as Arroyo (2008)

does for the VAR(p) model (2) proposed by himself and Garćıa-Ascanio and Maté (2009).

Proposition Let Xt = (XsL,t, XsU ,t)
T be an interval stochastic process, where XsL,t and

XsU ,t denote the lower and upper bounds respectively, following the STAR(p) model (11).

Then, denoting by Ct = (XsL,t +XsU ,t) /2 and Rt = (XsU ,t −XsL,t) /2 the interval center

and radius, respectively, the stochastic process Yt = (Ct, Rt)
T follows a bivariate Structural

VAR model, SVAR(p), whose parameters are functions of those in (11).
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Proof. From model (11), the sum of the interval bounds is

XsL,t +XsU ,t = θL +
p∑
i=1

φiXsL,t−i +
p∑
i=0

ψiωUXsU ,t−i + asL,t

+ θU +
p∑
i=1

φiXsU ,t−i +
p∑
i=0

ψiωLXsL,t−i + asU ,t

= θL + θU +
p∑
i=1

φi (XsL,t−i +XsU ,t−i) +
p∑
i=0

ψi (ωLXsL,t−i + ωUXsU ,t−i)

+ asL,t + asU ,t

or

XsL,t +XsU ,t

2
=

θL + θU
2

+
p∑
i=1

φi
XsL,t−i +XsU ,t−i

2
+

p∑
i=0

ψi
ωLXsL,t−i + ωUXsU ,t−i

2

+
asL,t + asU ,t

2
.

Since Ct = (XsL,t +XsU ,t) /2, Rt = (XsU ,t −XsL,t) /2, XsU ,t = Ct+Rt and XsL,t = Ct−Rt,

the above expression is

Ct =
θL + θU

2
+

p∑
i=1

φiCt−i +
p∑
i=0

ψi
2

(ωL (Ct−i −Rt−i) + ωU (Ct−i +Rt−i))

+
asL,t + asU ,t

2

=
θL + θU

2
+

p∑
i=1

φiCt−i +
p∑
i=0

ψi

(
ωL + ωU

2
Ct−i +

ωU − ωL
2

Rt−i

)
+

asL,t + asU ,t
2

=
θL + θU

2
+ ψ0

ωL + ωU
2

Ct +
p∑
i=1

(
φi + ψi

ωL + ωU
2

)
Ct−i

+
p∑
i=0

ψi
ωU − ωL

2
Rt−i +

asL,t + asU ,t
2

⇔ Ct =
θL + θU

2− ψ0 (ωL + ωU )
+

p∑
i=1

φi + ψi
ωL + ωU

2

1− ψ0
ωL + ωU

2

Ct−i

+
p∑
i=0

ψi
ωU − ωL

2

1− ψ0
ωL + ωU

2

Rt−i +
asL,t + asU ,t

2− ψ0 (ωL + ωU )

= πC +
p∑
i=1

πCC,iCt−i +
p∑
i=0

πRC,iRt−i + ηCt (12)
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where, assuming ψ0 6= 2 /(ωL + ωU ) ,

πC =
θL + θU

2− ψ0 (ωL + ωU )
; πCC,i =

φi + ψi
ωL + ωU

2

1− ψ0
ωL + ωU

2

i = 1, . . . , p ;

πRC,i =
ψi
ωU − ωL

2

1− ψ0
ωL + ωU

2

i = 0, . . . , p ; ηCt =
asL,t + asU ,t

2− ψ0 (ωL + ωU )
(13)

and ηCt is an independent white noise process with mean and variance

E (ηCt) = E

(
asL,t + asU ,t

2− ψ0 (ωL + ωU )

)
= 0

V (ηCt) = σ2ηC = V

(
asL,t + asU ,t

2− ψ0 (ωL + ωU )

)
=

σ2aL + σ2aU + 2σaLU

(2− ψ0 (ωL + ωU ))2
. (14)

Similarly, from (11), the interval range is

XsU ,t −XsL,t = θU +
p∑
i=1

φiXsU ,t−i +
p∑
i=0

ψiωLXsL,t−i + asU ,t

−
(
θL +

p∑
i=1

φiXsL,t−i +
p∑
i=0

ψiωUXsU ,t−i + asL,t

)

= θU − θL +
p∑
i=1

φi (XsU ,t−i −XsL,t−i) +
p∑
i=0

ψi (ωLXsL,t−i − ωUXsU ,t−i)

+ asU ,t − asL,t

or

XsU ,t −XsL,t

2
=

θU − θL
2

+
p∑
i=1

φi
XsU ,t−i −XsL,t−i

2
+

p∑
i=0

ψi
ωLXsL,t−i − ωUXsU ,t−i

2

+
asU ,t − asU ,t

2
.

Therefore, this expression may be written as

Rt =
θU − θL

2
+

p∑
i=1

φiRt−i +
p∑
i=0

ψi
2

(ωL (Ct−i −Rt−i)− ωU (Ct−i +Rt−i))

+
asU ,t − asL,t

2

=
θU − θL

2
+

p∑
i=1

φiRt−i −
p∑
i=0

ψi

(
ωU − ωL

2
Ct−i +

ωL + ωU
2

Rt−i

)
+

asU ,t − asL,t
2
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=
θU − θL

2
− ψ0

ωL + ωU
2

Rt +
p∑
i=1

(
φi − ψi

ωL + ωU
2

)
Rt−i

+
p∑
i=0

ψi

(
−ωU − ωL

2

)
Ct−i +

asU ,t − asL,t
2

⇔ Rt =
θU − θL

2 + ψ0 (ωL + ωU )
+

p∑
i=1

φi − ψi
ωL + ωU

2

1 + ψ0
ωL + ωU

2

Rt−i

+
p∑
i=0

−ψi
ωU − ωL

2

1 + ψ0
ωL + ωU

2

Ct−i +
asU ,t − asL,t

2 + ψ0 (ωL + ωU )

= πR +
p∑
i=0

πCR,iCt−i +
p∑
i=1

πRR,iRt−i + ηRt (15)

where, assuming ψ0 6= −2 /(ωL + ωU ) ,

πR =
θU − θL

2 + ψ0 (ωL + ωU )
; πCR,i =

−ψi
ωU − ωL

2

1 + ψ0
ωL + ωU

2

i = 0, . . . , p ;

πRR,i =
φi − ψi

ωL + ωU
2

1 + ψ0
ωL + ωU

2

i = 1, . . . , p ; ηRt =
asU ,t − asL,t

2 + ψ0 (ωL + ωU )
(16)

and ηRt is an independent white noise process with mean and variance

E (ηRt) = E

(
asU ,t − asL,t

2 + ψ0 (ωL + ωU )

)
= 0

V (ηRt) = σ2ηR = V

(
asU ,t − asL,t

2 + ψ0 (ωL + ωU )

)
=

σ2aL + σ2aU − 2σaLU

(2 + ψ0 (ωL + ωU ))2
. (17)

Joining equations (12) and (15), we conclude that Yt follows the SVAR(p) model

∆Yt = Π +
p∑
i=1

ΠiYt−i + Vt (18)

where Vt = (ηCt , ηRt)
T is a vector independent white noise with ηCt and ηRt given above

such that

Cov
(
ηCt , ηRt+k

)
= E

(
ηCtηRt+k

)
=


E

(
a2sU ,t − a

2
sL,t

4− ψ2
0 (ωL + ωU )2

)
if k = 0

0 if k 6= 0

=


σ2aU − σ

2
aL

4− ψ2
0 (ωL + ωU )2

if k = 0

0 if k 6= 0

=

 σηCR if k = 0

0 if k 6= 0
(19)
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and

∆ =

 1 −πRC,0
−πCR,0 1


Π = (πC , πR)T

Πi =

 πCC,i πRC,i

πCR,i πRR,i

 i = 1, . . . , p

with the parameters πC , πCC,i and πRC,i given in (13) and the parameters πR, πCR,i and

πRR,i given in (16), for i = 0, . . . , p. The matrix ∆ has to be nonsingular, requiring that

πCR,0 6= −1/πRC,0 or, in terms of the parameters of model (11),

φ0ψ0
ωU − ωL

2
+ ψ2

0

ω2
L − ω2

U

4
6= 1− ψ2

0

(
ωL + ωU

2

)2

.

We note that, as shown above, when Xt follows a STAR(p) model, Yt does not follow

a STAR(p), but a SVAR(p) model (Lütkepohl and Krätzig, 2004), which differs from the

situation when Xt is a VAR(p) model. In fact, in the latter case, both Xt and Yt follow

VAR(p) models.

It is also important to analyze two particular cases. The first is that of a symmetric

matrix W in model (8), i.e.,when ωL = ωU = ω in model (11), which occurs in the general

case. In such situation, the parameters in (12) and (15) given in (13) and (16) respectively

become

πC =
θL + θU

2 (1− ωψ0)
; πCC,i =

φi + ωψi
1− ωψ0

i = 1, . . . , p ; πRC,i = 0 i = 0, . . . , p (20)

πR =
θU − θL

2 (1 + ωψ0)
; πRR,i =

φi − ωψi
1 + ωψ0

i = 1, . . . , p ; πCR,i = 0 i = 0, . . . , p (21)

and ηCt =
asL,t + asU ,t

2− 2ωψ0
and ηRt =

asU ,t − asL,t
2 + 2ωψ0

with, from (14), (17) and (19),

E (ηCt) = 0

V (ηCt) = σ2ηC =
σ2aL + σ2aU + 2σaLU

4 (1− ωψ0)
2 (22)

E (ηRt) = 0

V (ηRt) = σ2ηR =
σ2aL + σ2aU − 2σaLU

4 (1 + ωψ0)
2 (23)
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Cov
(
ηCt , ηRt+k

)
=

 σηCR if k = 0

0 if k 6= 0
=


σ2aU − σ

2
aL

4
(
1− ω2ψ2

0

) if k = 0

0 if k 6= 0

(24)

assuming ψ0 6= ±1/ω.

The second case is when the weights are standardized to sum up to 1. In such situation,

ωL = ωU = ω = 1 and the parameters in (20) and (21) become

πC =
θL + θU

2 (1− ψ0)
; πCC,i =

φi + ψi
1− ψ0

i = 1, . . . , p ; πRC,i = 0 i = 0, . . . , p (25)

πR =
θU − θL

2 (1 + ψ0)
; πRR,i =

φi − ψi
1 + ψ0

i = 1, . . . , p ; πCR,i = 0 i = 0, . . . , p (26)

and ηCt =
asL,t + asU ,t
2 (1− ψ0)

and ηRt =
asU ,t − asL,t
2 (1 + ψ0)

with, from (22), (23) and (24),

E (ηCt) = 0

V (ηCt) = σ2ηC =
σ2aL + σ2aU + 2σaLU

4 (1− ψ0)
2 (27)

E (ηRt) = 0

V (ηRt) = σ2ηR =
σ2aL + σ2aU − 2σaLU

4 (1 + ψ0)
2 (28)

Cov
(
ηCt , ηRt+k

)
=

 σηCR if k = 0

0 if k 6= 0
=


σ2aU − σ

2
aL

4
(
1− ψ2

0

) if k = 0

0 if k 6= 0

(29)

assuming ψ0 6= ±1. Consequently, from (12) and (15), we conclude in both cases that Ct

and Rt follow univariate AR(p) models:

Ct = πC +
p∑
i=1

πCC,iCt−i + ηCt (30)

Rt = πR +
p∑
i=1

πRR,iRt−i + ηRt . (31)

As mentioned above, the STAR(p) model (11) can be used for prediction according to

(10) with

X̂N (m) =

 X̂sL,N (m)

X̂sU ,N (m)

 ; I2 − ψ0W =

 1 −ψ0ωU

−ψ0ωL 1

 ; Θ =

 θL

θU


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φiI2 + ψiW =

 φi ψiωU

ψiωL φi

 ; EN (XN+m−i) =

 EN (XsL,N+m−i)

EN (XsU ,N+m−i)

 i = 1, . . . , p

(32)

assuming that 1 − ψ2
0ωLωU 6= 0 ⇔ ψ0 6= ±1/

√
ωLωU so that I2 − ψ0W is nonsingular. If

ωL = ωU = ω, then ψ0 6= ±1/ω which has been assumed above in (20) to (24). If ω = 1,

then ψ0 6= ±1, assumed in (25) to (29).

Similarly, given the data Y1, . . . ,YN and letting EN (·) = E (· |YN ,YN−1, . . .), the

minimum mean square error predictor of YN+m (m = 1, 2, . . .) is, from (18),

ŶN (m) = EN (YN+m) = ∆−1

(
Π +

p∑
i=1

ΠiEN (YN+m−i)

)

= ∆−1

(
Π +

p∑
i=1

ΠiŶN (m− i)
)

(33)

where

EN (YN+m−i) =

 ŶN (m− i) m− i > 0

YN+m−i m− i ≤ 0.

Since the conditional expectation is a linear operator, it is possible to predict XN+m

from ŶN (m):

X̂sL,N (m) = E
(
XsL,N+m

∣∣∣(XsL,N , XsU ,N )T , (XsL,N−1, XsU ,N−1)
T , . . .

)
= E

(
CN+m −RN+m

∣∣∣(CN , RN )T , (CN−1, RN−1)
T , . . .

)
= E

(
CN+m

∣∣∣(CN , RN )T , (CN−1, RN−1)
T , . . .

)
− E

(
RN+m

∣∣∣(CN , RN )T , (CN−1, RN−1)
T , . . .

)
= ĈN (m)− R̂N (m)

and

X̂sU ,N (m) = E
(
XsU ,N+m

∣∣∣(XsL,N , XsU ,N )T , (XsL,N−1, XsU ,N−1)
T , . . .

)
= E

(
CN+m +RN+m

∣∣∣(CN , RN )T , (CN−1, RN−1)
T , . . .

)
= ĈN (m) + R̂N (m) .

Similarly, it is also possible to predict YN+m from X̂N (m):

ĈN (m) = E
(
CN+m

∣∣∣(CN , RN )T , (CN−1, RN−1)
T , . . .

)
15



= E

(
XsL,N +XsU ,N

2

∣∣∣∣∣(XsL,N , XsU ,N )T , (XsL,N−1, XsU ,N−1)
T , . . .

)

=
1

2

[
E
(
XsL,N+m

∣∣∣(XsL,N , XsU ,N )T , (XsL,N−1, XsU ,N−1)
T , . . .

)
+ E

(
XsU ,N+m

∣∣∣(XsL,N , XsU ,N )T , (XsL,N−1, XsU ,N−1)
T , . . .

)]
=

X̂sL,N (m) + X̂sU ,N (m)

2

and

R̂N (m) = E
(
RN+m

∣∣∣(CN , RN )T , (CN−1, RN−1)
T , . . .

)
= E

(
XsU ,N −XsL,N

2

∣∣∣∣∣(XsU ,N , XsL,N )T , (XsL,N−1, XsU ,N−1)
T , . . .

)

=
X̂sU ,N (m)− X̂sL,N (m)

2
.

Prediction with the STAR(p) model (11) requires that the predicted bounds satisfy

X̂sL,t (m) ≤ X̂sU ,t (m) for every period t. Similarly, prediction with the SVAR(p) model

(18) requires that the predicted values of the radius are positive, R̂t (m) ≥ 0 for every t.

Therefore, in both cases it is required that X̂sU ,t (m) − X̂sL,t (m) ≥ 0 for which sufficient

conditions on the parameters are derived next. We note this is a similar approach to that

of conditional heteroscedastic ARCH and GARCH models of Engle (1982) and Bollerslev

(1986) to ensure positiveness of the conditional variance (see also Tsay, 2005).

From model (11), the interval range is

XsU ,t −XsL,t = θU − θL +
p∑
i=1

φi (XsU ,t−i −XsL,t−i) +
p∑
i=0

ψi (ωLXsL,t−i − ωUXsU ,t−i)

+ asU ,t − asL,t. (34)

For prediction purposes, the white noise processes asL,t and asU ,t are set to zero (their

expected values) and consequently it is required that, for every t,

θU − θL +
p∑
i=1

φi (XsU ,t−i −XsL,t−i) +
p∑
i=0

ψi (ωLXsL,t−i − ωUXsU ,t−i) ≥ 0. (35)

For this condition to hold, it is sufficient that

θU ≥ θL, (36)

φi ≥ 0 since XsU ,t−i −XsL,t−i ≥ 0 (i = 1, . . . , p) (37)
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and, for (i = 0, . . . , p),

ψi ≥ 0 if ωLXsL,t−i − ωUXsU ,t−i ≥ 0 ⇒



XsU ,t−i
XsL,t−i

≤ ωL
ωU

if XsL,t−i > 0

XsU ,t−i
XsL,t−i

≥ ωL
ωU

if XsL,t−i < 0

XsU ,t−i ≤ 0 if XsL,t−i = 0
XsL,t−i
XsU ,t−i

≥ ωU
ωL

if XsU ,t−i > 0

XsL,t−i
XsU ,t−i

≤ ωU
ωL

if XsU ,t−i < 0

XsL,t−i ≥ 0 if XsU ,t−i = 0.

(38)

ψi ≤ 0 if ωLXsL,t−i − ωUXsU ,t−i ≤ 0 ⇒



XsU ,t−i
XsL,t−i

≥ ωL
ωU

if XsL,t−i > 0

XsU ,t−i
XsL,t−i

≤ ωL
ωU

if XsL,t−i < 0

XsU ,t−i ≥ 0 if XsL,t−i = 0
XsL,t−i
XsU ,t−i

≤ ωU
ωL

if XsU ,t−i > 0

XsL,t−i
XsU ,t−i

≥ ωU
ωL

if XsU ,t−i < 0

XsL,t−i ≤ 0 if XsU ,t−i = 0.

(39)

If at least one of the above conditions (36) to (39) does not hold, then it is not possible to

derive sufficient conditions and only (35) is required.

Concerning the radius Rt in equation (15), it is required that

πR +
p∑
i=0

πCR,iCt−i +
p∑
i=1

πRR,iRt−i ≥ 0 (40)

for every t, since the white noise process is also set to zero (its expected value) for prediction.

Assuming first that Ct ≥ 0 for every t (which is true if XsU ,t ≥ |XsL,t|), it is sufficient for (40)

that πR ≥ 0, πCR,i ≥ 0 (i = 0, 1, . . . , p) and πRR,i ≥ 0 (i = 1, . . . , p), since Rt−i ≥ 0, i = 1, . . . , p

i. These conditions impose the following restrictions on the parameters of the STAR(p)

model (11):

πR =
θU − θL

2 + ψ0 (ωL + ωU )
≥ 0⇒ θU ≥ θL and ψ0 > −

2

ωL + ωU
(recall that θU < θL is not

possible because of (36)). (41)

πCR,i =
−ψi

ωU − ωL
2

1 + ψ0
ωL + ωU

2

≥ 0⇒


ψi ≥ 0 and ωU ≤ ωL

or

ψi ≤ 0, ωU ≥ ωL and ψ0 > −
2

ωL + ωU
.

(i = 0, 1, . . . , p)
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(42)

Note that ψi ≤ 0, ωU ≤ ωL and ψ0 < −
2

ωL + ωU
is not valid because, although it

satisfies πCR,i ≥ 0, the condition on ψ0 violates (41).

πRR,i =
φi − ψi

ωL + ωU
2

1 + ψ0
ωL + ωU

2

≥ 0⇒ φi ≥ ψi
ωL + ωU

2
and ψ0 > −

2

ωL + ωU
(i = 1, . . . , p) .

Note that φi ≤ ψi
ωL + ωU

2
and ψ0 < −

2

ωL + ωU
is not valid because, although it

satisfies πRR,i ≥ 0, the condition on ψ0 violates (41).

Assuming now that Ct ≤ 0 for every t (which is true if XsU ,t ≤ |XsL,t|), it is sufficient for

(40) that πR ≥ 0, πCR,i ≤ 0 (i = 0, 1, . . . , p) and πRR,i ≥ 0 (i = 1, . . . , p). The conditions on

πR and πRR,i are the same as above and thus lead again to (41) and (43) respectively, the

new restrictions on the parameters of the STAR(p) model (11) are as follows:

πCR,i =
−ψi

ωU − ωL
2

1 + ψ0
ωL + ωU

2

≤ 0⇒


ψi ≤ 0, ωU ≤ ωL and ψ0 > −

2

ωL + ωU

or

ψi ≥ 0 and ωU ≥ ωL.

(i = 0, 1, . . . , p)

(43)

Note that ψi ≤ 0, ωU ≥ ωL and ψ0 < −
2

ωL + ωU
is not valid because, although it

satisfies πCR,i ≥ 0, the condition on ψ0 violates (41).

If at least one of the above conditions (41), (42) or (43) and (43) does not hold, then it is

not possible to derive sufficient conditions and only (40) is required.

If the matrix W is symmetric, i.e., ωL = ωU = ω, new sufficient conditions can be

derived instead of (36) to (39) or of (41) to (43). In fact, concerning the former, (34) is

XsU ,t −XsL,t = θU − θL +
p∑
i=1

φi (XsU ,t−i −XsL,t−i) +
p∑
i=0

ωψi (XsL,t−i −XsU ,t−i)

+ asU ,t − asL,t

= θU − θL − ωψ0 (XsU ,t −XsL,t) +
p∑
i=1

(φi − ωψi) (XsU ,t−i −XsL,t−i)

+ asU ,t − asL,t

⇔ XsU ,t −XsL,t =
θU − θL
1 + ωψ0

+
1

1 + ωψ0

p∑
i=1

(φi − ωψi) (XsU ,t−i −XsL,t−i)

+
asU ,t − asL,t

1 + ωψ0
. (44)
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Dropping the white noise process in the right-hand side of this equation, condition (35) is

now replaced by

θU − θL
1 + ωψ0

+
1

1 + ωψ0

p∑
i=1

(φi − ωψi) (XsU ,t−i −XsL,t−i) ≥ 0 (45)

and the sufficient conditions are as follows.

θU ≥ θL, ψ0 > −
1

ω
and φi ≥ ωψi (i = 1, . . . , p) or (46)

θU ≤ θL, ψ0 < −
1

ω
and φi ≤ ωψi (i = 1, . . . , p) . (47)

Concerning the model of the radius (31) with parameters given by (21), the conditions are

as follows (recall that these conditions are the same when Ct ≥ 0 for every t and when

Ct ≤ 0 for every t):

πR =
θU − θL

2 (1 + ωψ0)
≥ 0⇒


θU ≥ θL and ψ0 > −

1

ω

or

θU ≤ θL and ψ0 < −
1

ω
.

(48)

πRR,i =
φi − ωψi
1 + ωψ0

≥ 0⇒


φi ≥ ωψi and ψ0 > −

1

ω

or

φi ≤ ωψi and ψ0 < −
1

ω
.

(i = 1, . . . , p) (49)

It is important to recall that these conditions are also valid when ω = 1 (standardized

weights).

In practice, the above conditions have to be verified by the parameter estimates ensuring

that the predicted values of the upper bound are not less than those of the lower bound

and that the predicted values of the radius are not negative.

Thus, realizing that a STAR(p) model is appropriate for an ITS leads to the conclusion

that its center and radius do not follow a bivariate STAR model, but an SVAR(p).When the

weight matrix is symmetric, i.e., when ωL = ωU = ω or when these weights are standardized

to sum 1 (ωL = ωU = 1), the center and the radius follow univariate AR(p) models each.

Finally, the interval bounds may be predicted from their STAR(p) model and the center

and radius may be predicted from their SVAR(p). It is also possible to predict the former

from the latter and vice-versa. Sufficient conditions on the model parameters were derived
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in order to ensure that the upper bound predicted value is not smaller than that of the

lower bound, or, equivalently, that the predicted value of the radius is not negative.

5 Comparing predictive accuracy through simulation

In order to compare the predictive performance of the models discussed above, we con-

ducted two simulation experiments where 1,000 time series of 6,010 observations each were

generated from different STAR(p) models with p = 1, . . . , 6.

In the first experiment, the data were generated from (8) with parameter values given

below and the minimum and the maximum at each time period were retained forming

the lower and upper bounds of the interval time series respectively. The first six models

considered are STAR processes with n = 4, weight matrix W (this matrix is standardized

so that all rows add up to one), residual covariance matrix Σa and vector of intercepts Θ,

W =



0.000 0.333 0.133 0.533

0.233 0.000 0.419 0.349

0.148 0.667 0.000 0.185

0.444 0.417 0.139 0.000


; Σa =



0.11 0.10 0.05 0.01

0.10 0.20 0.07 0.03

0.05 0.07 0.05 0.04

0.01 0.03 0.04 0.08


; Θ =



1

0.5

0.3

0.8


.

The autoregressive parameters are as follows.

Model 1 — STAR(1) with ψ0 = −0.6, ψ1 = 0.1, φ1 = 0.2.

Model 2 — STAR(2) with ψ0 = 0.3, ψ1 = 0.2, ψ2 = −0.25, φ1 = 0.4, φ2 = −0.2.

Model 3 — STAR(3) with ψ0 = 0.5, ψ1 = 0.2, ψ2 = −0.2, ψ3 = 0.05, φ1 = 0.25, φ2 =

−0.15, φ3 = 0.1.

Model 4 — STAR(4) with ψ0 = 0.4, ψ1 = −0.2, ψ2 = −0.17, ψ3 = 0.05, ψ4 = 0.02, φ1 =

−0.15, φ2 = −0.1, φ3 = 0.08, φ4 = 0.04.

Model 5 — STAR(5) with ψ0 = 0.5, ψ1 = −0.25, ψ2 = −0.2, ψ3 = −0.12, ψ4 =

0.05, ψ5 = 0.03, φ1 = −0.2, φ2 = −0.15, φ3 = 0.1, φ4 = 0.08, φ5 = 0.05.

Model 6 — STAR(6) with ψ0 = −0.6, ψ1 = 0.1, ψ2 = 0.1, ψ3 = −0.12, ψ4 = 0.08, ψ5 =

0.05, ψ6 = −0.04, φ1 = 0.2, φ2 = 0.15, φ3 = −0.1, φ4 = 0.1, φ5 = 0.08, φ6 = −0.03.
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We also considered six STAR processes with n = 5, standardized weight matrix, residual

covariance matrix and vector of intercepts,

W =



0.000 0.270 0.108 0.432 0.189

0.182 0.000 0.327 0.273 0.218

0.114 0.514 0.000 0.143 0.229

0.340 0.319 0.106 0.000 0.234

0.184 0.316 0.211 0.289 0.000


; Σa =



0.80 0.60 0.40 0.25 0.70

0.60 1.20 0.35 0.40 0.80

0.40 0.35 0.55 0.25 0.30

0.25 0.40 0.25 0.40 0.30

0.70 0.80 0.30 0.30 1.50


;

ΘT = (1 0.5 0.3 0.8 0.6) .

The autoregressive parameters are as follows.

Model 7 — STAR(1) with ψ0 = −0.6, ψ1 = 0.1, φ1 = 0.3.

Model 8 — STAR(2) with ψ0 = −0.6, ψ1 = 0.2, ψ2 = 0.1, φ1 = 0.3, φ2 = 0.2.

Model 9 — STAR(3) with ψ0 = 0.5, ψ1 = 0.2, ψ2 = −0.2, ψ3 = 0.05, φ1 = 0.25, φ2 =

−0.15, φ3 = 0.1.

Model 10 — STAR(4) with ψ0 = −0.7, ψ1 = −0.25, ψ2 = −0.2, ψ3 = 0.05, ψ4 =

0.02, φ1 = −0.2, φ2 = −0.15, φ3 = 0.1, φ4 = 0.08.

Model 11 — STAR(5) with ψ0 = 0.5, ψ1 = −0.25, ψ2 = −0.2, ψ3 = −0.12, ψ4 =

0.05, ψ5 = 0.03, φ1 = −0.2, φ2 = −0.15, φ3 = 0.1, φ4 = 0.08, φ5 = 0.05.

Model 12 — STAR(6) with ψ0 = −0.45, ψ1 = 0.1, ψ2 = 0.1, ψ3 = −0.12, ψ4 =

0.08, ψ5 = 0.05, ψ6 = −0.04, φ1 = 0.2, φ2 = 0.15, φ3 = −0.1, φ4 = 0.1, φ5 = 0.08, φ6 =

−0.03.

In the second experiment, the interval bounds were generated from (11) with parameter

values given below and a single standardized weight ω, i.e., ωL = ωU = ω = 1, since this is

a bivariate model. The residual covariance matrix Σa and the vector of intercepts Θ are

Σa =

 0.5 0.6

0.6 0.75

 ; Θ =

 0.8

0.4

 .
The autoregressive parameters are as follows.
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Model 13 — STAR(1) with ψ0 = 0.5, ψ1 = −0.3, φ1 = 0.6.

Model 14 — STAR(2) with ψ0 = −0.6, ψ1 = 0.5, ψ2 = 0.1, φ1 = 0.6, φ2 = 0.2.

Model 15 — STAR(3) with ψ0 = −0.6, ψ1 = 0.3, ψ2 = −0.25, ψ3 = 0.05, φ1 = 0.4, φ2 =

−0.2, φ3 = 0.1.

Model 16 — STAR(4) with ψ0 = −0.5, ψ1 = 0.2, ψ2 = 0.1, ψ3 = −0.1, ψ4 = −0.07,

φ1 = 0.25, φ2 = 0.2, φ3 = −0.1, φ4 = −0.05.

Model 17 — STAR(5) with ψ0 = −0.65, ψ1 = 0.25, ψ2 = 0.1, ψ3 = −0.1, ψ4 =

−0.08, ψ5 = 0.02, φ1 = 0.3, φ2 = 0.15, φ3 = 0.1, φ4 = −0.08, φ5 = 0.05.

Model 18 — STAR(6) with ψ0 = −0.45, ψ1 = 0.1, ψ2 = 0.1, ψ3 = −0.12, ψ4 =

0.08, ψ5 = 0.05, ψ6 = −0.04, φ1 = 0.2, φ2 = 0.15, φ3 = −0.1, φ4 = 0.1, φ5 = 0.08, φ6 =

−0.03.

In both experiments, the last 10 observations were left out from the data for an assess-

ment of the models’ out-of-sample predictive performance. For each time series, model (11)

was estimated by three-stage least squares (we considered a symmetric matrix W with a

single standardized weight ω, i.e., ωL = ωU = ω = 1, since this is a bivariate model) and

the VAR model (2) (Arroyo, 2008; Garćıa-Ascanio and Maté, 2009) and the univariate AR

models of the center and radius (Maia, De Carvalho and Ludemir, 2008) were estimated by

ordinary least squares or maximum likelihood.

The 10 out-of-sample observations of the interval time series were then predicted with

the fitted models (the predictions of the center and radius of the univariate AR approach

were used to compute those of the interval bounds). The accuracy of those predictions

was measured by the interval bounds’ Mean Absolute Error (MAE) and Root Mean Square

Error (RMSE) and by computing interval distance measures between the actual and the

predicted values (since the data have an interval form). To this purpose, different measures

are available in the literature and we will consider three interval distance measures: the

Hausdorff distance, the interval Euclidean distance and the interval City-Block distance.

Let Ii = [li, ui] and Ij = [lj , uj ] two intervals to be compared. The Hausdorff distance,

the interval Euclidean distance and the interval City-Block distance between Ii and Ij are

22



respectively
dH(Ii, Ij) = max {{|li − lj | , |ui − uj |}

d2(Ii, Ij) =
√

(li − lj)2 + (ui − uj)2

d1(Ii, Ij) = |li − lj |+ |ui − uj | .

The Hausdorff distance between two sets is the maximum distance of a set to the nearest

point in the other set, i.e., two sets are close in terms of the Hausdorff distance if every

point of either set is close to some point of the other set. Interval Euclidean and City-Block

distances are just the counterparts of the corresponding distances for real values; if we

embed the interval set in IR2, where one dimension is used for the lower and the other for

the upper bound of the intervals, then these distances are just the Euclidean and City-Block

distances between the corresponding points in the two-dimensional space.

Table 1 (in the Appendix) shows the values of the accuracy measures for the different

models considered in both experiments and for the three approaches, namely the STAR

model (11), the VAR model (2) and the univariate AR models of the center and radius,

denoted by STAR, VAR and AR respectively. The results show that none of the approaches

outperforms the others, since their predictive accuracy is always extremely close or even

coincident. It is also interesting to note that the predictive accuracy is better for models

with ψ0 < 0, i.e., when the interval bounds are contemporaneously related in the opposite

direction. Many other STAR models were tried as data-generating processes in the two

experiments with similar results.

6 Application

As a practical application, we consider the Irish wind data of Haslett and Raftery (1989),

available at Statlib (http://lib.stat.cmu.edu/datasets/), which consists of time series of daily

average wind speed at eleven synoptic metereological stations in Ireland in the period 1961-

1978. Detailed information on this dataset can be found in Haslett and Raftery (1989),

in Gneiting, Genton and Guttorp (2007) and in the references therein. From the eleven

stations, we selected five: Birr, Dublin, Kilkenny, Shannon and Valentia. The observations

for February 29 were removed for a better estimation of the seasonal trend component. The

year of 1978 was left out from the dataset for an out-of-sample evaluation of predictive

performance and therefore only the 1961-1977 data will be modeled. Following the authors
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mentioned above, the square root transform was first applied to the time series of daily aver-

age wind speed stabilizing the variance over both stations and time periods and bringing the

marginal distributions closer to normality. The seasonal effect was estimated by calculating

the average of the square root of the daily means over all years and stations for each day of

the year and then regressing the results on a small set of annual harmonics. Subtraction of

the estimated seasonal effect from the square root of the daily means yields deseasonalized

data. The station-specific means were also removed and the result will be referred to as

the time series of velocity measures. The same transformations were applied to the year of

1978 with the seasonal trend component and the station-specific means estimated from the

1961-1977 period.

The minimum and the maximum of the daily velocity measures at the five selected

stations are respectively the lower and upper bounds of an interval time series to which the

bivariate STAR(p) model (11) was fitted. We consider a symmetric matrix W with a single

standardized weight ω, i.e., ωL = ωU = ω = 1, since this is a bivariate model. The order

of the model, i.e., the value of p, was determined by starting with a large value, estimating

the parameters, applying tests sequentially and decreasing that order until a suitable model

is found. We started with p = 8 and selected p = 6, since the estimated parameters for

both p = 7 and p = 8 were not statistically significant. Order selection criteria were also

used (Lütkepohl and Krätzig, 2004) such as the Akaike Information Criterion (AIC), the

Hannan-Quinn Criterion (HQC) and the Schwarz Criterion (SC) and they suggest p = 3,

but the model diagnostic checking showed a better fit with p = 6. Therefore, model (11)

with p = 6 was estimated by three-stage least squares and the results are given in table 2.

Model diagnostic checking shows a satisfactory fit. The estimated parameters up to

lag 3 are significant and, although φ̂4, φ̂5, ψ̂4 and ψ̂5 are not, we decided to keep p = 6

because φ̂6 and ψ̂6 are clearly significant (5% significance level). Moreover, as mentioned

above, model selection criteria such as AIC, HQC and SC suggest p = 3 (because of the

lack of significance of the parameters at lags 4 and 5) but, even though this would still be

acceptable, p = 6 shows a much better fit. In fact, the residuals of both equations âsL,t

and âsU ,t are approximately white noise, since their plots show no clear defficiencies and

their correlograms show very few significant autocorrelations that do not give rise to concern

because they occur only occasionally and at very high lags. The p-values of the portmanteau
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Table 2. Estimation results of the STAR(6) model of the ITS

Parameter Estimate t-stat p-value Parameter Estimate t-stat p-value

θL -0.0862 -4.6495 0.0000 ψ0 -0.5741 -5.4209 0.0000

θU 0.0726 3.8018 0.0001 ψ1 0.3989 8.7124 0.0000

φ1 0.4952 24.5542 0.0000 ψ2 -0.0654 -7.1079 0.0000

φ2 -0.0482 -3.6194 0.0003 ψ3 0.0265 2.6464 0.0081

φ3 0.0379 3.8799 0.0001 ψ4 0.0073 0.7747 0.4385

φ4 0.0131 1.3363 0.1815 ψ5 -0.0148 -1.5845 0.1131

φ5 -0.0030 -0.2908 0.7712 ψ6 0.0186 2.1327 0.0330

φ6 0.0282 3.0617 0.0022

σ̂2aL = 0.4619, σ̂2aU = 0.4229, σ̂aLU = 0.4364.

Ljung-Box statistic at lag 25 are respectively 0.764 and 0.897, which is not significant. The

residuals are also approximately Normal, as shown by their histograms and by the Jarque-

Bera test whose p-values are respectively 0.132 and 0.053, both nonsignificant at the 5%

level (the latter value is not far from being significant, but this could be expected because of

the deviations from normality of the original data). The residual cross-correlations are also

generally nonsignificant at nonzero lags. Thus, we may conclude that this model is adequate

for the data. We also note that a VAR(6) model would require a much larger number of

parameters than the STAR(6) model above, i.e., the latter provides a good fit and is much

more parsimonious. Futhermore, it also shows the contemporaneous relationship between

the interval bounds, as given by ψ̂0 = −0.5741 (table 2), which is an important feature of

an interval time series that the other approaches cannot uncover.

We can now derive the models for the center and radius of the ITS, given by (30) and

(31) respectively, since ψ̂0 = −0.5741 6= ±1 as required. Both are AR(6) models with their

parameters given by (25) and (26) whose estimates, given in table 3, are computed from

the estimation results of the STAR(6) model given in table 2. From (27) and (28), the

estimated residual variances are respectively σ̂2ηC = 0.1773 and σ̂2ηR = 0.0165.

The estimated STAR(6) model above was next used for prediction of the velocity mea-

sures. For this purpose, we first check if the parameter estimates given in table 2 satisfy
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Table 3. Estimation results of the AR models of the center and radius

Parameter Estimate Parameter Estimate

πC -0.0043 πR 0.1864

πCC,1 0.5680 πRR,1 0.2261

πCC,2 -0.0722 πRR,2 0.0404

πCC,3 0.0409 πRR,3 0.0268

πCC,4 0.0130 πRR,4 0.0136

πCC,5 -0.0113 πRR,5 0.0277

πCC,6 0.0297 πRR,6 0.0225

the conditions ensuring the predicted value of the upper bound is not smaller than that of

the lower bound and that the predicted radius is not negative. Since ωL = ωU = ω = 1, the

appropriate condition on the STAR(6) model parameter estimates is (46) or (47); it is clear

that the former is satisfied which also implies that conditions (48) and (49) concerning the

model of the radius are also satisfied (in fact, the parameter estimates of this model given

in table 3 are all positive).

We considered 10-day forecasts in several periods covering the 12 months of the year of

1978, the test period. The data before each forecasting period were subject to the same

procedure described above for the years 1961 to 1977 and the model was re-estimated (the

estimates were extremely stable, i.e., they showed only minor changes everytime the model

was re-estimated). To assess the forecasting performance, table 4 shows the mean absolute

error (MAE), the root mean square error (RMSE) and the mean and the standard deviation

of the three interval distance measures (Hausdorff, Euclidean and City-Block distances)

between the actual and the forecast intervals for each 10-day period and for the whole of

the 1978 forecasts. The forecasting performance is generally satisfactory. In fact, it is similar

to and is often better than that obtained by Gneiting, Genton and Guttorp (2007) for 1-day

forecasts at each station, while we have 10-day forecasts of the minimum and maximum

of 5 stations which is more difficult to predict and therefore favors our results. The upper

bound forecasts generally outperform those of the lower bound, since they have a smaller

MAE and RMSE most of the months as well as for the whole test period. Center and
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radius forecasts were also computed from their respective AR(6) models (table 3) and used

to obtain the forecasts of the upper and lower bounds as mentioned above. As expected,

the results were coincident, i.e., predicting the upper and lower bounds from their STAR(6)

model or from the corresponding AR(6) models of the center and radius leads to the same

forecasts.

Table 4. Predictive Performance of the STAR Model

MAE RMSE

Month Days XsL XsU XsL XsU

January 1− 10 0.433 0.321 0.510 0.408

February 19− 28 0.401 0.299 0.520 0.394

March 1− 10 0.498 0.360 0.605 0.456

April 21− 30 0.259 0.366 0.323 0.416

May 1− 10 0.373 0.415 0.440 0.484

June 21− 30 0.342 0.230 0.388 0.288

July 21− 30 0.463 0.277 0.516 0.359

August 11− 20 0.224 0.241 0.279 0.296

September 16− 25 0.516 0.294 0.634 0.351

October 16− 25 0.390 0.351 0.440 0.384

November 16− 25 0.240 0.278 0.280 0.311

December 21− 30 0.448 0.371 0.514 0.418

Total 0.382 0.317 0.468 0.385

Hausdorff Euclidean City-Block

Month Days Mean Std. dev. Mean Std. dev. Mean Std. dev.

January 1− 10 0.443 0.288 0.548 0.374 0.754 0.535

February 19− 28 0.480 0.307 0.540 0.384 0.701 0.548

March 1− 10 0.540 0.326 0.644 0.422 0.859 0.605

April 21− 30 0.373 0.205 0.461 0.268 0.625 0.381

May 1− 10 0.438 0.271 0.563 0.352 0.788 0.497

June 21− 30 0.356 0.187 0.425 0.242 0.572 0.349
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Table 4 (cont.). Predictive Performance of the STAR Model

Hausdorff Euclidean City-Block

Month Days Mean Std. dev. Mean Std. dev. Mean Std. dev.

July 21− 30 0.471 0.231 0.555 0.310 0.739 0.458

August 11− 20 0.278 0.184 0.340 0.234 0.466 0.332

September 16− 25 0.527 0.377 0.602 0.426 0.810 0.578

October 16− 25 0.456 0.189 0.545 0.221 0.741 0.311

November 16− 25 0.302 0.140 0.375 0.197 0.518 0.286

December 21− 30 0.533 0.206 0.625 0.232 0.819 0.325

Total 0.433 0.254 0.519 0.315 0.699 0.443

Finally, the predictive accuracy of the other two approaches considered was also com-

puted for comparison purposes. Therefore, a VAR(p) model (Arroyo, 2008; Garćıa-Ascanio

and Maté, 2009) was first fitted to the interval bounds and used to forecast. Following

the same steps as for the STAR model above (order identification, estimation with OLS

and diagnostic checking), a VAR(2) model seemed appropriate for the interval time series.

Futhermore, univariate autoregressive models (Maia, De Carvalho and Ludermir, 2008)

were also fitted to the center and radius, respectively AR(6) and AR(5) processes, and used

to obtain forecasts of the upper and lower bounds as mentioned above. The predictive accu-

racy of the two approaches is given in table 5. The comparison of tables 4 and 5 shows that

the predictive accuracy of the STAR model and of the univariate AR models are extremely

similar, almost coincident, which could be expected because the latter can be derived from

the former, as previously shown. Moreover, they outperform the VAR model since, with

very few exceptions and even though the differences are not large, the latter generally yields

less accurate forecasts.

It is important to recall that, unlike the other approaches, STAR models also display

the contemporaneous relationship at time period t between the interval bounds (measured

by the parameter ψ0) which is an important aspect in interval time series analysis.
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Table 5. Predictive Performance of the VAR Model and of the Univariate AR Models

MAE RMSE

VAR AR VAR AR

Month Days XsL XsU XsL XsU XsL XsU XsL XsU

January 1− 10 0.448 0.339 0.434 0.319 0.524 0.424 0.511 0.406

February 19− 28 0.411 0.312 0.401 0.299 0.530 0.406 0.519 0.392

March 1− 10 0.510 0.357 0.497 0.361 0.618 0.463 0.604 0.458

April 21− 30 0.280 0.377 0.261 0.363 0.329 0.426 0.323 0.414

May 1− 10 0.381 0.419 0.376 0.415 0.441 0.483 0.442 0.484

June 21− 30 0.340 0.214 0.342 0.233 0.382 0.276 0.387 0.291

July 21− 30 0.465 0.279 0.463 0.276 0.517 0.361 0.516 0.358

August 11− 20 0.240 0.246 0.230 0.234 0.291 0.301 0.286 0.291

September 16− 25 0.493 0.276 0.516 0.291 0.601 0.323 0.636 0.349

October 16− 25 0.411 0.370 0.392 0.350 0.456 0.400 0.442 0.383

November 16− 25 0.246 0.294 0.237 0.280 0.306 0.339 0.275 0.315

December 21− 30 0.454 0.354 0.446 0.371 0.515 0.400 0.514 0.416

Total 0.390 0.320 0.383 0.316 0.472 0.388 0.469 0.384

Hausdorff Distance Euclidean Distance

VAR AR VAR AR

Std. Std. Std. Std.

Month Days Mean Dev. Mean Dev. Mean Dev. Mean Dev.

January 1− 10 0.458 0.291 0.444 0.289 0.570 0.380 0.548 0.374

February 19− 28 0.490 0.322 0.479 0.306 0.556 0.390 0.539 0.384

March 1− 10 0.546 0.337 0.539 0.326 0.652 0.436 0.643 0.423

April 21− 30 0.392 0.197 0.375 0.201 0.483 0.251 0.460 0.267

May 1− 10 0.445 0.259 0.439 0.271 0.571 0.337 0.564 0.352

June 21− 30 0.353 0.179 0.355 0.186 0.419 0.229 0.426 0.242

July 21− 30 0.473 0.228 0.471 0.232 0.559 0.307 0.555 0.310

August 11− 20 0.292 0.179 0.281 0.184 0.356 0.232 0.342 0.236
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Table 5 (cont.). Predictive Performance of the VAR Model and of the Univariate AR Models

Hausdorff Distance Euclidean Distance

VAR AR VAR AR

Std. Std. Std. Std.

Month Days Mean Dev. Mean Dev. Mean Dev. Mean Dev.

September 16− 25 0.504 0.350 0.527 0.379 0.576 0.387 0.600 0.429

October 16− 25 0.478 0.176 0.458 0.191 0.573 0.208 0.547 0.221

November 16− 25 0.311 0.186 0.302 0.144 0.390 0.250 0.374 0.198

December 21− 30 0.535 0.189 0.531 0.210 0.619 0.214 0.623 0.235

Total 0.440 0.251 0.433 0.255 0.527 0.310 0.518 0.315

City-Block Distance

VAR AR

Std. Std.

Month Days Mean Dev. Mean Dev.

January 1− 10 0.787 0.542 0.753 0.536

February 19− 28 0.724 0.547 0.699 0.547

March 1− 10 0.866 0.629 0.858 0.605

April 21− 30 0.657 0.357 0.625 0.381

May 1− 10 0.800 0.475 0.791 0.495

June 21− 30 0.554 0.332 0.575 0.348

July 21− 30 0.745 0.454 0.739 0.458

August 11− 20 0.486 0.331 0.465 0.335

September 16− 25 0.769 0.521 0.807 0.583

October 16− 25 0.780 0.298 0.741 0.311

November 16− 25 0.540 0.358 0.517 0.285

December 21− 30 0.808 0.301 0.817 0.329

Total 0.710 0.437 0.699 0.444
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7 Concluding remarks

When interval-valued symbolic data are collected as an ordered sequence through time,

they form an interval time series (ITS). In this paper, we proposed to model an ITS with a

Space-time autoregressive process STAR(p), which appears to be appropriate for such data,

given the link between the lower and upper bounds of the observed intervals. Based on

this model for the ITS bounds we also showed that its center and radius follow a bivariate

Structural Vector Autoregressive process SVAR(p) whose parameters are functions of those

in the STAR(p) model; two especially relevant particular cases were analyzed. Concerning

prediction, we derived the minimum mean square error predictor and sufficient conditions

on the parameters to ensure that the predicted upper bound is not less than the lower bound

or that the predicted values of the radius are not negative. A simulation study showed that

the predictive accuracy of the different approaches discussed is very similar and that none

of them outperforms the others. Finally, these models were applied to an ITS of the Irish

wind speed and 10-day forecasts were computed showing good accuracy. We may thus

conclude that modeling an interval time series with a Space-time Autoregressive process is

appropriate and provides accurate forecasts.
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Table 1. Predictive Performance of Different Approaches

STAR processes with n = 4

MAE

STAR VAR AR

Model XsL XsU XsL XsU XsL XsU

Model 1 0.166 0.204 0.166 0.204 0.166 0.204

Model 2 0.425 0.423 0.423 0.419 0.423 0.419

Model 3 0.566 0.560 0.572 0.558 0.566 0.557

Model 4 0.466 0.452 0.467 0.447 0.462 0.446

Model 5 0.598 0.584 0.605 0.585 0.602 0.584

Model 6 0.160 0.220 0.160 0.220 0.159 0.220

RMSE

STAR VAR AR

Model XsL XsU XsL XsU XsL XsU

Model 1 0.210 0.250 0.209 0.250 0.209 0.249

Model 2 0.508 0.505 0.510 0.504 0.510 0.504

Model 3 0.663 0.657 0.693 0.677 0.687 0.676

Model 4 0.554 0.536 0.564 0.538 0.559 0.538

Model 5 0.686 0.672 0.730 0.706 0.728 0.705

Model 6 0.200 0.270 0.200 0.269 0.200 0.269

Hausdorff distance Euclidean distance

Model STAR VAR AR STAR VAR AR

Model 1 0.266 0.266 0.266 0.293 0.293 0.293

Model 2 0.497 0.494 0.494 0.616 0.612 0.612

Model 3 0.629 0.640 0.632 0.816 0.815 0.808

Model 4 0.526 0.531 0.526 0.642 0.663 0.658

Model 5 0.655 0.669 0.666 0.835 0.855 0.853

Model 6 0.277 0.276 0.276 0.303 0.302 0.302
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Table 1 (cont.). Predictive Performance of Different Approaches

City-Block distance

Model STAR VAR AR

Model 1 0.371 0.370 0.370

Model 2 0.847 0.842 0.842

Model 3 1.136 1.131 1.124

Model 4 0.908 0.914 0.908

Model 5 1.182 1.189 1.186

Model 6 0.381 0.379 0.379

STAR processes with n = 5

MAE

STAR VAR AR

Model XsL XsU XsL XsU XsL XsU

Model 7 0.524 0.484 0.523 0.486 0.523 0.486

Model 8 0.543 0.512 0.546 0.516 0.546 0.516

Model 9 1.578 1.572 1.591 1.577 1.580 1.574

Model 10 0.505 0.479 0.507 0.479 0.507 0.479

Model 11 1.650 1.641 1.640 1.629 1.637 1.628

Model 12 0.533 0.505 0.536 0.505 0.536 0.505

RMSE

STAR VAR AR

Model XsL XsU XsL XsU XsL XsU

Model 7 0.625 0.588 0.642 0.598 0.642 0.598

Model 8 0.649 0.616 0.667 0.631 0.667 0.631

Model 9 1.869 1.856 1.928 1.906 1.916 1.904

Model 10 0.616 0.587 0.626 0.591 0.626 0.591

Model 11 1.988 1.978 1.976 1.964 1.972 1.963

Model 12 0.642 0.612 0.657 0.620 0.657 0.620

37



Table 1 (cont.). Predictive Performance of Different Approaches

Hausdorff distance Euclidean distance

Model STAR VAR AR STAR VAR AR

Model 7 0.704 0.714 0.714 0.764 0.793 0.793

Model 8 0.726 0.748 0.748 0.809 0.832 0.832

Model 9 1.771 1.796 1.780 2.259 2.284 2.271

Model 10 0.695 0.703 0.702 0.756 0.777 0.777

Model 11 1.840 1.831 1.828 2.359 2.349 2.345

Model 12 0.715 0.726 0.726 0.810 0.812 0.811

City-Block distance

Model STAR VAR AR

Model 7 0.973 1.009 1.009

Model 8 1.030 1.062 1.062

Model 9 3.154 3.169 3.154

Model 10 0.974 0.986 0.985

Model 11 3.285 3.269 3.265

Model 12 1.039 1.041 1.041

STAR processes with n = 2

MAE

STAR VAR AR

Model XsL XsU XsL XsU XsL XsU

Model 13 1.569 1.467 1.569 1.467 1.569 1.467

Model 14 0.621 0.301 0.620 0.300 0.546 0.300

Model 15 0.631 0.365 0.633 0.363 0.628 0.361

Model 16 0.596 0.354 0.595 0.352 0.595 0.352

Model 17 0.650 0.330 0.657 0.330 0.651 0.328

Model 18 0.586 0.362 0.589 0.359 0.588 0.359
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Table 1 (cont.). Predictive Performance of Different Approaches

RMSE

STAR VAR AR

Model XsL XsU XsL XsU XsL XsU

Model 13 1.879 1.758 1.879 1.758 1.879 1.758

Model 14 0.754 0.366 0.752 0.364 0.364 0.631

Model 15 0.766 0.444 0.768 0.442 0.439 1.904

Model 16 0.726 0.430 0.725 0.428 0.724 0.428

Model 17 0.787 0.401 0.793 0.401 0.786 0.399

Model 18 0.695 0.439 0.716 0.436 0.714 0.435

Hausdorff distance Euclidean distance

Model STAR VAR AR STAR VAR AR

Model 13 1.589 1.588 1.588 2.152 2.152 2.152

Model 14 0.666 0.665 0.665 0.730 0.727 0.728

Model 15 0.706 0.707 0.702 0.781 0.782 0.777

Model 16 0.637 0.636 0.636 0.724 0.722 0.722

Model 17 0.717 0.725 0.718 0.783 0.790 0.783

Model 18 0.622 0.626 0.624 0.695 0.716 0.715

City-Block distance

Model STAR VAR AR

Model 13 3.036 3.036 3.036

Model 14 0.923 0.920 0.920

Model 15 0.996 0.995 0.989

Model 16 0.950 0.947 0.947

Model 17 0.982 0.987 0.979

Model 18 0.944 0.948 0.947
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