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Abstract In this work we address the Single-Source Uncapacitated Mini-
mum Cost Network Flow Problem with concave cost functions. This problem
is NP-hard, therefore we propose a hybrid heuristic to solve it. Our goal is
not only to apply an Ant Colony Optimization (ACO) algorithm to such a
problem, but also to provide an insight on the behaviour of the parameters in
the performance of the algorithm. The performance of the ACO algorithm is
improved with the hybridization of a local search procedure. The core ACO
procedure is used to mainly deal with the exploration of the search space,
while the Local Search is incorporated to further cope with the exploitation
of the best solutions found. The method we have developed has proven to be
very efficient while solving both small and large size problem instances. The
problems we have used to test the algorithm were previously solved by other
authors using other population based heuristics. Our algorithm was able to im-
prove upon some of their results in terms of solution quality, proving that the
HACO algorithm is a very good alternative approach to solve these problems.
In addition, our algorithm is substantially faster at achieving these improved
solutions. Furthermore, the magnitude of the reduction of the computational
requirements grows with problem size.
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1 Introduction

The Minimum Cost Network Flow Problem (MCNFP) includes a wide range
of combinatorial optimization problems such as the shortest path problem, the
assignment problem, the transportation problem, and the max-flow problem,
each of which has its own special cases. Generally speaking, in this problem
the objective is to distribute some commodity from the sources to the demand
nodes while minimizing the total cost incurred. Thus, many practical applica-
tions exist for the MCNFP and in many different fields, for instance in supply
chains, logistics, production planning, communications, facility location, and
transportation, just to mention but a few (Ahuja et al, 1995; Geunes and
Pardalos, 2005).

MCNFPs with linear costs are solvable in polynomial time: they are con-
sidered easy to solve. In this work, we consider nonlinear costs comprising fixed
costs as well as variable costs, associated with the flow in each arc. Regarding
the variable costs, we consider both linear and nonlinear concave costs. As
such, the total cost incurred when using an arc is always nonlinear and con-
cave. Concave costs are, in many applications, more realistic than linear ones
because of the association of prices with economies of scale. A frequent exam-
ple of this situation is the toll charge. A vehicle pays its toll charge regarding
the vehicle class to which it belongs, whether it travels with its full capacity
or not. Therefore, the cost per unit transported will necessarily decrease with
the increase on the number of transported items. Initial costs incurred with
facilities and equipment are another example leading to concave costs. When
concave costs are introduced in MCNFPs, the difficulty to solve them increases
and they become NP-Hard (Guisewite and Pardalos, 1991). The complexity
arises from the fact that in the minimization of a concave function (even over
a convex feasible region) a local optimum is not necessarily a global optimum.
The special case of the Single-Source Uncapacitated Minimum Cost Network
Flow Problem (SSU MCNFP) with fixed-charge costs has also been proven to
be NP-Hard by Hochbaum and Segev (1989). Kennington and Unger (1976),
Barr et al (1981), and Palekar et al (1990) discuss the difficulty of MCNFPs re-
garding the case of fixed-charge cost functions. One of the main attractiveness
of concave MCNFPs is that any Network Flow Problem (NFP) with general
nonlinear costs can be transformed into a concave NFP in an expanded network
(Lamar, 1993), and also capacitated and multiple sources can be transformed
into uncapacitated and single-source NFPs (Wagner, 1958; Zangwill, 1968).
Thus, SSU MCNFPs have a major utility.

ACO algorithms were initially developed to solve hard combinatorial op-
timization problems (Dorigo and Stützle, 2004; Dorigo and Blum, 2005), and
were firstly applied to solve the well-known NP-Hard Travelling Salesman
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Problem, where the shortest circular route between a given set of nodes is
to be defined, without visiting any node twice. Furthermore, ACO algorithms
have also been successfully applied to solve flow problems with concave cost
functions, such as the Transportation Problem (Altiparmak and Karaoglan,
2007). The SSU MCNFP can be viewed as the problem of finding shortest
paths (i.e. least cost paths) between a source node and every single demand
node in a network having into account the flow to be routed between pairs
of nodes. Therefore, we believe that ACO will also have a good performance
while solving the SSU concave MCNFP, since this problem joins together these
three characteristics: concave costs, shortest paths, and flow between pairs of
nodes. Moreover, ACO algorithms are inspired on the natural behaviour of
ants while searching for the best paths between the nest and food sources.
The similarities between nature ants problem and the MCNFP are easy to
find, which can be another motivation to expect ACO to perform well for this
particular problem.

SSU MCNFPs have already been solved with Genetic Algorithms (GAs)
with very good results (Fontes and Gonçalves, 2007), and GAs are known to
have very good performance in solving combinatorial optimization problems
regarding both solution values and computational effort. Nevertheless, several
optimization problems have been solved by ACO algorithms with improved
results when compared with other heuristics, such as GAs, among others, see
e.g. (Bui and Zrncic, 2006; Yin and Wang, 2006; Bin et al, 2009; Faria et al,
2006; Putha et al, 2012). Therefore, even before starting this work we expected
ACO to have a competitive performance, in comparison with other heuristic
methods already used to solve this problem. Our expectations were confirmed
by the results.

In this work we propose an Ant Colony Optimization algorithm hybridized
with a local search procedure to solve Single-Source Uncapacitated Minimum
Cost Network Flow Problems with concave cost functions. The cost functions
have a fixed and a variable component and this latter component might be
linear or nonlinear. In order to further improve the best solution found at
each iteration, a Local Search (LS) procedure, based on swap moves, is incor-
porated into the ACO. The results show the effectiveness and efficiency of our
ACO algorithm for both small and large size problems, proving ACO to be an
alternative solution method for MCNFPs with nonlinear concave costs. This
work is an extension of a preliminary work presented at GECCO (Monteiro
et al, 2011).

Our contribution is twofold. On the one hand, the application of an ACO
based algorithm to solve MCNFPs is, to the best of our knowledge, here pro-
posed for the first time. We also provide a study on the variation of the ACO
parameters values and their influence on the solution quality. On the other
hand, we are able to improve previous results that have been obtained with
other population based heuristics, by substantially reducing the time spent to
run the algorithm (which is achieved due to the reduction in the number of
solutions that are evaluated), and also by further improving the gap to the
optimum or the best solutions found so far. In fact, HACO is able to reduce
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up to 10 times the computational time of the HGA and up to 5.7 times the
computational time of the commercial optimization software CPLEX. Further-
more, the larger reductions are achieved for larger size problems.

The remainder of this paper is organized as follows. In Section 2, we give
a formal description of the SSU concave MCNFP along with its mathematical
formulation. A literature review on MCNFPs is provided in Section 3. In Sec-
tion 4, we review some work on ACO. In Section 5 we develop our approach
to solve the SSU concave MCNFP. The results obtained and the subsequent
analysis are reported and discussed in Section 6. Finally, Section 7 provides
some conclusions of what has been done and discusses future work.

2 Problem definition and mathematical formulation

In the SSU MCNFP the objective is to find a network defined on a given graph,
as well as the flows to be routed through the chosen arcs. The commodity flows
from a single source to a set of demand nodes, such that all demand nodes
are satisfied and costs are minimized. As we are considering the uncapacitated
version of the problem, there are no upper or lower bounds on the arcs capacity.
Formally, the problem can be defined as follows.

Consider a directed graph G = (N,A), where N is a set of n+1 nodes, with
one source node t and n demand nodes j ∈ N \{t}, and A(⊆ N ×N \{t}) is a
set of m available arcs (i, j). Since there is only one source node, the number
of available arcs m is at most n ·(n+1). Consider a commodity that flows from
the single source t to the n demand nodes j ∈ N \ {t}, each node requiring
a demand dj to be satisfied. Let the decision variables xij be the amount of
flow routed through arc (i, j) and yij be a binary variable assuming the value
1 if arc (i, j) is chosen and 0 otherwise. Consider gij(xij , yij), representing the
cost incurred with arc (i, j), is given by the sum of the cost of using arc (i, j)
with the cost of routing flow xij through it. A single-source uncapacitated
concave minimum cost network flow problem is a problem that minimizes the
total costs g(X,Y ) incurred with the network while satisfying the demand of
all nodes.

The mathematical model for the SSU MCNFP can then be written as
follows:

min:
∑

(i,j)∈A

gij(xij , yij) (1)

s.t.:
∑

{i|(i,j)∈A}

xij −
∑

{k|(j,k)∈A}

xjk = dj , ∀j∈N\{t}, (2)

xij ≤Myij , ∀(i,j)∈A, (3)

xij ≥ 0, ∀(i,j)∈A, (4)

yij ∈ {0, 1}, ∀(i,j)∈A. (5)
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The objective in this problem is to minimize the total cost incurred with the
network, as given in Eq. (1). Constraints (2) are called the flow conservation
constraints. The first term of these constraints,

∑
{i|(i,j)∈A} xij , represents the

flow entering node j and the second term,
∑

{k|(j,k)∈A} xjk, represents the
flow leaving node j. Therefore, the flow conservation constraints state that
the difference between the flow entering a node and the flow leaving the same
node must be the demand of the node. Constraints (3) guarantee that no flow
is sent through an arc, unless it has been chosen as part of the network. Here,

M is a positive large number (say M ≥
∑

j∈N\{t}

dj). Constraints (4) and (5)

refer to the nonnegative and binary nature of the decision variables.

We assume that the commodity stored at the source node t equals the sum
of all the demands dj , that is,

∑
j∈N

dj = 0. (6)

2.1 Cost Functions

In this work, three types of polynomial concave cost functions are considered:

– Type I: A first-order polynomial cost function, representing a linear flow
cost and a fixed-charge cost,

gij(xij , yij) =

{
bij · xij + cij , if yij = 1,
0, otherwise.

(7)

– Type II: A second-order polynomial cost function representing a concave
cost without the fixed charge component,

gij(xij , yij) =

{
−aij · x2

ij + bij · xij , if yij = 1,
0, otherwise.

(8)

– Type III: A complete second-order polynomial cost function, incorporat-
ing both concave and fixed-charge costs,

gij(xij , yij) =

{
−aij · x2

ij + bij · xij + cij , if yij = 1,
0, otherwise.

(9)

where aij , bij , and cij ∈ Z+. The use of polynomial cost functions is motivated
by the easiness of approximation of any analytic function by the first few terms
of a Taylor series.
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3 Literature Review on MCNFPs

The works developed around concave MCNFPs can be differentiated regarding
the type of concave cost function used.

Some works consider SSU MCNFPs with nonlinear concave routing costs
that do not include a fixed component. Among exact methods to solve such
concave MCNFPs we can find branch-and-bound (BB) and Dynamic Pro-
gramming (DP). Both methods usually start with a main problem dividing
it into smaller subproblems which, in turn, are further divided into smaller
subproblems, and so on. These methods are commonly used to find upper
bounds for the solution cost, thus reducing the number of extreme points to
be searched for. In Gallo et al (1980) a BB algorithm is developed to solve
SSU concave MCNFPs. The branching part of the algorithm is performed by
adding arcs extending the current subtree. Then, lower bounds are obtained
by using linear underestimation. Guisewite and Pardalos (1991) improve these
lower bounds by projecting them on the cost of extending the current path.
Horst and Thoai (1998) consider the capacitated version of concave MCNFPs.
A branch-and-bound algorithm based on the work of Soland (1974) has been
developed. This BB uses linear underestimation by convex envelopes, where
rectangles are defined by the capacity flow constraints to partition the search
space, to improve the lower bounds.

Other works solving concave MCNFPs consider costs with both a fixed-
charge and a linear routing component. Kim and Pardalos (1999) developed a
technique called Dynamic Slope Scaling (DSS) in order to solve the well-known
NP-Hard Fixed-charge Network Flow Problem. The idea behind it is to find a
linear factor that can represent the variable and fixed costs at the same time.
Then, at each iteration the cost function is updated by using the information
of the solution found in the previous iteration. Latter on, Kim and Pardalos
(2000) extended the use of DSS by joining it with Trust Interval Techniques
to solve concave piecewise linear NFPs. A recent work on MCNFPs is the
one of Nahapetyan and Pardalos (2008), where the authors consider a concave
piecewise linear cost function. The problem is transformed into a continuous
one with a bilinear cost function, through the use of a nonlinear relaxation
technique and it is then solved with a dynamic slope scaling method, based
on the one proposed by (Kim and Pardalos, 1999). Rebennack et al (2009)
propose a continuous bilinear formulation for the fixed-charge network flow
problem from which an exact algorithm is derived, based on these two previous
works. Ortega and Wolsey (2003) also provide an exact algorithm using a
branch-and-cut method by extending the cutting planes previously used to
solve uncapacitated lot sizing problems.

As far as we are aware of, only a few works consider concave cost func-
tions made of nonlinear concave routing costs and fixed costs simultaneously.
Burkard et al (2001) consider concave cost functions on the arcs of uncapaci-
tated acyclic single-source networks. The authors develop a DP algorithm to
solve it and prove that with the use of approximated linear cost functions
the method converges towards an optimal solution. Upper bounds based on
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local search are obtained in (Fontes et al, 2003) to solve MCNFPs, while lower
bounds derived from state space relaxations are given in (Fontes et al, 2006b).
These lower bounds are used in the bounding phase of a branch-and-bound
procedure that is developed in (Fontes et al, 2006a) in order to solve SSU
concave MCNFPs. Fontes et al (2006c) use DP to optimally solve MCNFPs.
The state space graph is gradually expanded by using a procedure working in
a backward-forward manner on the state space graph. The dynamic part of
the algorithm is related to the identification of only the states needed for each
problem being solved.

Exact methods can be very expensive in terms of computational effort,
even for small sized problems. As heuristic methods can easily overcome this
problem they have become very popular in recent years, although they may
provide only a local optimum. Smith and Walters (2000) provide a heuristic
method based on Genetic Algorithms to find minimum cost optimal trees on
networks and apply it to the solution of SSU concave MCNFPs. Randomly
generated feasible trees are considered for the initial population and the mu-
tation operator is defined so that extra arcs are added to the tree in such a
way as to maintain its feasibility. The problems solved by this GA have con-
cave flow costs given by the square root of the flow, and their sizes range from
15 to 25 nodes. However, no results are reported regarding the computational
time spent by the algorithm nor regarding the quality of the solution. Fontes
et al (2003) propose a local search procedure to solve MCNFPs that uses in-
formation about the structure of the network obtained with a lower bound
solution derived from a state space relaxation. The local search is based on
swaps of arcs and is performed repeatedly with different initial solutions, this
way avoiding getting trapped into a local optimum.

Fontes and Gonçalves (2007) use a genetic algorithm coupled with a lo-
cal search procedure to solve the SSU MCNFP with general concave costs.
Random keys are used to encode the chromosome, as they allow all solutions
generated by crossover to be feasible solutions. The local search procedure op-
erates through swap operations between arcs already in the solution tree and
arcs not in the solution. Arcs (i, j) belonging to the solution tree are sorted and
considered in descending order of nodes priority, given by the random keys.
Then each arc (k, j) outside the solution tree, is considered in descending or-
der of node k priority, and the first one that does not introduce a cycle in the
solution is the one chosen to substitute the leaving arc (i, j). More recently,
Dang et al (2011) have developed a deterministic annealing algorithm for the
capacitated version of the concave MCNFP, that can be used to solve both
single-source and multiple-source cases. Two cost functions are considered, a
linear cost function without a fixed-charge component, and a second-order
concave polynomial function. The use of a Hopfield type barrier function is a
notion borrowed from the theory of neural networks, and is used to cope with
the lower and upper bounds on the capacities of the arcs. The barrier param-
eter has a behaviour similar to the temperature on the simulated annealing,
decreasing towards zero, from a large positive number. The linear constraints
are dealt with by using Lagrangean Multipliers. Computational results are
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provided on networks with 5 up to 12 nodes.

4 Ant Colony Optimization

ACO algorithms were initially developed based on the natural behaviour of
ants while searching for a path between their nest and some food source. Al-
though their goal may not be to find the shortest path, in the end, and with
their behaviour, that is exactly what they end up achieving, and that is what
it makes them so attractive to optimization research investigators. The first
experiences with real ants unravelling the reasons for ants to choose between
paths were made by Goss et al (1989) and by Deneubourg et al (1990). They
discovered that ants, while travelling several times between their nest and a
food source, deposit in the path a chemical substance called pheromone1. If
a path has a large concentration of pheromone, this is probably due to its
shorter length that allows ants to travel faster, resulting in a larger number of
travellers and thus of ants depositing pheromone throughout the path. When
an ant is faced with the decision to choose between paths to follow to reach
the food source, the ant will choose with higher probability the path with the
largest pheromone concentration. It was the observation of this sort of com-
munication developed by the ants that inspired Dorigo et al (1996) to develop
the first ACO algorithm which was called Ant System (AS). The AS was orig-
inally used to solve the Travelling Salesman Problem (TSP), a well known
NP-Hard problem. The ant system has two main phases, the construction of
the solution and the pheromone update. Nevertheless, other decisions have
to be made before the ants can start finding a solution, such as defining the
structure of the solution, deciding on the number of ants to use and on the
initial pheromone quantity to spread in each path.

From the results of the experiences that took place following the definition
of the AS (for example the definition of the elitist AS, the Rank-based AS, or
the Ant Colony System), the Ant System structure was improved, leading to
one of the most important developments that followed which was the descrip-
tion of the Ant Colony Optimization metaheuristic by Dorigo and Di Caro
(1999). The main difference from the basic structure of the AS algorithm is
the introduction of an optional daemon. The daemon can perform operations
that use global knowledge of the solutions, thus having a very active and im-
portant role in the algorithm. In contrast to the AS algorithm, where each
ant was supposed to deposit pheromone in its solution despite what the other
solutions were like. This is a task that has no equivalence in nature. The dae-
mon, having an overall knowledge of what is happening at each stage of the
algorithm, can perform tasks that no individual ant can do. For example, it
can control the feasibility of each solution by evaporating a percentage of the
pheromone quantity in its arcs, as a way of penalizing such a solution, or decide
to completely disregard the solution. Most commonly it is used to identify the

1 This behaviour is shared by several animal species and even by some plants.
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best solution ever and the best solution of the current iteration, which are the
only ones that are usually allowed to deposit pheromone in their solution, as
opposing to the AS where all ants deposited pheromone. This is done mainly
to prevent premature convergence of the algorithm.

In an ant algorithm, ants move on the network by going from one node to
another. The one where it moves to is probabilistically chosen based on the
pheromone quantities deposited on the arcs outgoing from the current node.
After the ants have constructed their respective solutions, the pheromone trails
are updated. The update is done in two ways: on the one hand pheromone val-
ues are decreased through evaporation, that is its values are decreased by a
constant decay; on the other hand, pheromone values are increased in the
parts of the network which are present in the best solution(s). Such increase
is proportional to the solution(s) quality. The process of solution construction
and pheromone updating is repeated until some stopping criterion, initially
defined, has been reached.

A major feature, commonly used by authors in ant algorithms that were
developed ever since, is the introduction of a Local Search procedure following
the construction of the solutions by the ants and just before pheromone up-
date. This is an optional feature but it has been proved to be very important
in the exploitation of the search space nearby good solutions, leading almost
always to better performances.

Although initially applied to solve the TSP, ACO algorithms have become
very popular and have been applied to solve a broad set of combinatorial opti-
mization problems, mainly due to their versatility and easiness of adaptation.

Rappos and Hadjiconstantinou (2004) use ACO to solve two-edge con-
nected network flow design problems making use of flow ants to construct
the network and of reliability ants to deal with the reliability of the network.
While solving degree-constrained Minimum Spanning Trees, Bui and Zrncic
(2006) define maximum and minimum allowed pheromone values, based on
the differences between the cost of the most expensive and of the least expen-
sive arcs. Reimann and Laumanns (2006) use saving values as the heuristic
information in an ACO algorithm developed to solve Capacitated Minimum
Spanning Tree problems. Many other problems have also been solved with
ACO algorithms. Shyu et al (2006) define two heuristic information matrices
to solve the Cell Assignment Problem. These are associated with the choice of
to which switch to move to when located at a certain cell and vice-versa. Two
colonies are used by Chen and Ting (2008) to solve Single Source Capacitated
Facility Location Problems, one to find the location of facilities and the other
to assign customers to locations. Lessing et al (2004) studied the influence
of the heuristic information, in the performance of ant algorithms when solv-
ing Set Covering Problems. The Terminal Assignment problem is solved in
(Bernardino et al, 2009) by means of an ACO algorithm, with a Local Search
procedure embedded in it, that uses the pheromone quantity laid in each path
to modify the solutions obtained previously. Other areas of research have also
been using ACO algorithms such as Image Processing (Meshoul and Batouche,
2002), Data Mining (Parpinelli et al, 2002), Protein Folding (Hu et al, 2008),
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Power Electronic Circuit Design (Zhang et al, 2009), Grid Workflow Schedul-
ing Problem (Chen and Zhang, 2009), just to mention but a few.

In the past few years authors have also developed hybrid algorithms be-
tween ACO algorithms and other Metaheuristic methods. Simulated Annealing
(SA) and an Ant Colony System (ACS) are joined together in (Bouhafs et al,
2006) to solve Capacitated Location-Routing problems. The SA component
of the algorithm is used to locate the distribution centres (DC) and assign-
ing customers to each DC, while the best routes are defined by the ACS.
Crawford and Castro (2006) solve both Set Covering and Set Partitioning
benchmark problems with ACO algorithms, and with hybridizations between
ACO and Constraint Programming techniques, Forward Checking, Full Looka-
head, Arc Consistency, and Post Processing procedures. In (Altiparmak and
Karaoglan, 2007) the authors hybridize ACO with a Genetic Algorithm to
solve Transportation Problems with square root concave costs. They intro-
duce a twofold mechanism to identify whenever the algorithm has stagnated.
All the pheromones are set to a maximum value whenever more than 50%
of the arcs in the network have reached the minimum value allowed for the
pheromones. Also, whenever the global best solution has not been updated for
50 iterations 10% of the worst chromosomes of the population are replaced
with randomly generated ones.

Many more works could be cited, but it would be beyond the objective of
this work. For the interested reader, besides the works already mentioned here
and the references therein, (Cordon et al, 2002; Garćıa-Mart́ınez et al, 2007),
and (Mullen et al, 2009) provide excellent surveys on ant colony algorithms
and applications.

Although a preliminary version of this study was published and presented
at GECCO (Monteiro et al, 2011), as far as the authors are aware of, the SSU
concave MCNFP has not yet been solved by an ACO algorithm. Next, we will
describe the ACO approach we have developed and implemented to solve the
SSU concave MCNFP.

5 Hybrid Ant colony optimization approach for the SSU concave
MCNFP

Ant colony algorithms have a set of characterising features that can be con-
sidered as their step stones or building blocks. These characteristics should
be specified when describing an ant algorithm, so that it can be differentiated
from other algorithms. These characteristics are:

– method chosen to construct the solution,
– heuristic information,
– pheromone updating rule,
– probability function,
– parameter values, and
– termination condition.
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In the following sections we describe the algorithm that we have developed,
following this list.

5.1 Defining and constructing a solution

As ACO is a probabilistic constructive method that builds a solution by adding
to it one component at a time, it can be applied to any sort of combinatorial
problem. The big question is how to represent the problem so that ants can
be used to solve it (Dorigo and Stützle, 2004). Therefore, the first and most
important decision to be taken is the representation of the solution to the
problem being solved, because a poor representation can lead to poor solutions.

Concave MCNFPs have the combinatorial property that if a finite solution
exists, then there exists an optimal solution that is a vertex (extreme point) of
the corresponding feasible domain (defined by the network constraints). SSU
MCNFPs have a finite solution if and only if there exists a direct path going
from the source node to every demand node and if there are no negative cost
cycles; otherwise an unbounded negative cost solution would exist. Therefore,
for the SSU MCNFP, an extreme flow is a tree rooted at the single source
spanning all demand nodes. For detail and proofs see (Zangwill, 1968). As
we have already mentioned, a feasible extreme solution for the SSU MCNFP
with concave costs is a set of existing arcs forming a tree, in other words a
connected graph without cycles. So, each ant solution consists on a number of
directed arcs that equals the number of demand nodes.

The method that is used to construct solutions for the SSU MCNFP guar-
antees that a solution is always feasible. All ants begin their solution con-
struction at the source node. Initially, an ant selects an existing arc linking
the source node t and one of the demand nodes j ∈ N \{t}. Consider a network
with four demand nodes {1, 2, 3, 4} and assume that the first arc entering the
solution is arc (t, 2). Then, the ant selects another arc, from the set of avail-
able arcs linking the source node or one of the demand nodes already in the
partial solution to another demand node not yet considered. In the example
given, the set of arcs that could be chosen to enter the solution, assuming a
fully connected network, would be {(t, 1), (t, 3), (t, 4), (2, 1), (2, 3), (2, 4)}. This
last step is repeatedly performed until all demand nodes are in the solution.
Therefore the feasibility of the solution is guaranteed. The arc entering the
solution is chosen by using the probability function defined in Eq. (10).

Pij =
[τij ]

α · [ηij ]β∑
(i,j)∈A [τij ]α · [ηij ]β

, (10)

where τij is the pheromone value associated to arc (i, j) at the current iteration;
ηij is the visibility (heuristic information) of arc (i, j), which is a value defined
and calculated only once at the beginning of the algorithm, and in our case
is given by ηij = 1

cij+bij
; α and β are both positive parameters weighting

the relative importance of the pheromone value and the heuristic information,
respectively, in the choice of a new arc entering the solution.
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5.2 Updating Pheromones

After all ants have finished the construction of their solutions for the current
iteration, the best solution is identified, and the algorithm proceeds to the up-
date of the pheromone values. The pheromone update is performed according
to the update function given in Eq. (11).

τij = (1− ρ) · τij +∆τij . (11)

The pheromone values are reduced in every existing arc (i, j) ∈ A, which
is an attempt at simulating the natural process of evaporation, and is repre-
sented by the first component of Eq. (11), where ρ represents the pheromone
evaporation rate, with ρ ∈]0, 1]. The value of the evaporation rate indicates
the relative importance given to the pheromone values from one iteration to
the following one. A small value of ρ will increase the importance of the arcs
throughout a large number of iterations or period of time, whereas if ρ takes a
value near to 1 the pheromone trail will not have a lasting effect. The second
component of Eq. (11) represents the pheromone quantity to be deposited in
arc (i, j), at the current iteration. The pheromone quantity ∆τij to be de-
posited in arc (i, j) depends on g(Si), i.e., on the cost of the best solution Si

found at the current iteration, and on a positive proportionality parameter Q,
and is given by:

∆τij =

{ Q
G(Si) if (i, j) belongs to solution Si,

0 otherwise.
(12)

Note that, although the evaporation process is applied to all available arcs
(i, j) ∈ A, only the n arcs belonging to the best solution found at the current
iteration will have an increase on their pheromone values. This means that,
although for small problem instances the pheromone evaporation rate may
take a small part, its role increases with problem size, due to the increase of
the feasible solution space to be explored. In this latter case, a small value for
ρ allows the algorithm to retain old solutions in memory a lot longer. Thus,
potentiating the use of good arcs in the following iterations in an attempt to
search nearby good solutions. Given the form of Eq. (12), it is easy to conclude
that the quantity of pheromone to be deposited in each arc depends on the
cost of the solution.

5.2.1 Pheromone bounds

Stützle and Hoos (1997) have made an important contribution for the ant
colony optimization research area as they were able to avoid the fast conver-
gence of the pheromone trail, which usually induces stagnation of the algo-
rithm. Typically, if one or a few solution components have more pheromone
than the others, ants tend to include those components into their solutions,
thus generating over and over again the same solution. Stützle and Hoos, by
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proving the convergence of the pheromone trail, in certain conditions, devel-
oped lower and upper bounds for the pheromone trail. This approach has been
found helpful in other works, such as in Rappos and Hadjiconstantinou (2004),
Venables and Moscardini (2006), and Altiparmak and Karaoglan (2007). We
now describe the method that is used in this work.

Initially, the algorithm starts by depositing an equal amount of pheromone
in all arcs (i, j) ∈ A, so that every arc has the same chance of being chosen,
as can be seen in Eq. (13).

τij = τ0, ∀(i, j) ∈ A. (13)

At each iteration, after the pheromone update is performed a check is done
to find out if its value is bounded in the interval [τmin, τmax], following the
work of (Stützle and Hoos, 1997). The initial pheromone bounds are only set
at the end of the first iteration, after the best solution is identified.

The τmax value depends on the cost of the best solution found so far G∗

and on the pheromone evaporation rate ρ, see Eq. (14).

τmax =
1

ρ ·G∗ . (14)

The τmin value depends on the upper bound for the pheromone value τmax

and on the probability of constructing the best solution, hereby represented
by parameter pbest, as given in Eq. (15).

τmin =
τmax · (1− n

√
pbest)

(n2 − 1) · n
√
pbest

. (15)

Since both τmin and τmax depend on the cost of the best solution found
so far, they only have to be updated each time the best solution is improved.
After the pheromone update, a check is made to ensure that pheromone values
are within the limits. If some pheromone value is bellow τmin, then it is set to
τmin, while if some pheromone value is above τmax, then it is set to τmax.

5.3 Algorithm

In Algorithm 1 we provide an outline of the ACO algorithm that we have
developed to solve the SSU MCNFP with concave costs. The algorithm starts
by initializing the necessary parameters, such as pheromone trails and the
best global solution. Then, each ant will construct its solution, by using the
method described earlier in section 5.1. After all ants have constructed their
solutions, the algorithm identifies the best solution found by the ants at the
current iteration, Si. This action is usually identified as a daemon action since
it uses the global knowledge of what has happened in the iteration. The local
search procedure, described in Sec 5.4, is then applied to a subset W of the
solutions found at the current iteration. At the end of the local search a new
best solution is returned if one is found; otherwise the iteration best solution,
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previously found, is returned. Then, this solution Si is compared with the
best global solution Sg. If Si has a lower cost, then the best global solution is
updated, Sg ← Si; otherwise Sg remains the same. The next step is to update
pheromone trails, first by evaporating the trails, using the evaporation rate ρ,
and then by adding to each component of solution Si a pheromone quantity
inversely proportional to the cost of the solution.

Algorithm 1 Pseudo-code of the proposed ACO algorithm
1: Initialize τij ← τ0, ∀(i, j) ∈ A
2: Initialize τmin, τmax

3: Initialize Sg ← ∅, Si ← ∅, G(Sg)←∞, and G(Si)←∞
4: Set ρ,Q, α, β, and pbest values
5: Create ants
6: while it ≤ maxIter do
7: for all ants a do
8: Let a construct solution Sa

9: end for
10: Identify Si ← {S : min{G(S1), . . . , G(Sn)}}
11: Construct W = {Si ∪ 4 randomly chosen Sa}
12: Apply local search to all solutions S ∈W and return W ′

13: Identify SLS ← {S ∈W ′ : min{G(S)}}
14: Si ← {S : min{G(Si), G(SLS)}}
15: Update G(Si) accordingly
16: if G(Si) < G(Sg) then
17: Sg ← Si

18: G(Sg)← G(Si)
19: Update τmax and τmin

20: end if
21: Evaporate pheromone values τij ← (1− ρ)τij , ∀(i, j) ∈ A

22: Reinforce pheromone values τij ← τij + Q
G(Si)

,∀(i, j) ∈ Si

23: for all arcs (i, j) ∈ A do
24: if τij < τmin then
25: τij ← τmin

26: else if τij > τmax then
27: τij ← τmax

28: end if
29: end for
30: it← it+ 1
31: end while
32: return Sg and G(Sg)

Before the algorithm starts the next iteration, all pheromone trails are
checked for violations to either the upper or the lower pheromone bounds. If
any arc has a pheromone value in this situation, it is corrected accordingly,
that is, it is set to τmax in case it exceeds it, or it is set to τmin if its value is
lower than τmin. The algorithm runs until the maximum number of iterations
allowed maxIter is reached.
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5.4 Local Search

Although the first experimental results in the test set achieved good solutions,
as it can be seen in Section 6.2, there was still some room for improvement.
Therefore we have developed a local search procedure in order to further im-
prove the results.

After all ants have constructed their solutions Sa, where a = {1, 2, . . . , n},
and after the best solution of the iteration Si is found (see Algorithm 1), the
local search procedure takes place. Five ants are selected from the current it-
eration to perform local search on their respective solutions. One is always the
ant that has found the best solution for the current iteration, while the other
four are randomly selected from the remaining n − 1 ants. The local search
allows the algorithm to search, in the neighbourhood of a particular solution,
for another solution that might have a lower cost. Given a solution S for the
SSU MCNF problem, the 1-opt neighbourhood of S, denominated N (S), con-
sists of all solutions S′ that can be obtained by swapping an arc (i, j) ∈ S
with another arc (k, j) /∈ S, i.e. N (S) = {S′ : S′ = S \ {(i, j)} ∪ {(k, j)}},
provided that certain conditions are observed, as explained next. Whenever
an arc is removed from S we have two disjoint graphs, T 1 and T 2. The choice
of the arc (k, j) /∈ S is made from the set of arcs satisfying k ∈ T 1 if j ∈ T 2

and k ∈ T 2 otherwise. This way only arcs that do not introduce a cycle into
the solution are considered. The first candidate to improve the cost is the one
chosen for the swap. Furthermore, the arcs leaving and the arcs entering S are
considered in a specific order. Candidate arcs are removed, one at the time
from S, in ascending order of pheromone. In opposition, candidate arcs are
added to the solution in descending order of pheromone. We are then trying
to replace arcs with lower pheromone values with arcs with higher pheromone
values. The first cost improving solution is accepted and the search continues
with the following arc to be removed from S. Therefore, the local search we
have defined is a greedy one.

The pseudo-code for the local search procedure is given in Algorithm 2.

Given a solution S to be improved, we start by sorting the arcs in S in
ascending order of their pheromone value. For each of these arcs we try to find
an alternative one that improves the cost of the current solution. In order to
do so, we find all the arcs that can replace the current one while maintaining
solution feasibility, i.e. without forming a cycle. We attempt to replace the
original arc, starting with the ones with a higher pheromone concentration.
If one of the replacements improves the cost of the solution S, it is accepted
and we proceed to the next arc in the solution S without attempting the
remaining options. At the end of the local search procedure, if the solution
found S′ improves the cost of the original solution S, then the new solution
S′ is the one used in the remaining of the algorithm.
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Algorithm 2 Pseudo-code for the Local Search procedure that was incorpo-
rated into the ACO algorithm developed

1: W = {Si ∪ 4 randomly chosen Sa}
2: for all S ∈W do
3: Sort all (i, j) ∈ S in ascending order of τij
4: for all arcs (i, j) ∈ S do
5: Identify P as the set of all arcs (k, j) ̸∈ S that can replace (i, j) ∈ S without

forming a cycle
6: Sort (k, j) ∈ P in descending order of τkj
7: for each arc (k, j) ∈ P do
8: S′ = S\{(i, j)} ∪ {(k, j)}
9: if G(S′) < G(S) then
10: S ← S′

11: GOTO next (i, j) ∈ S //Line 4
12: end if
13: end for
14: end for
15: end for
16: return All five improved solutions and their respective costs

5.5 Example

In order to better clarify this procedure let us give an example of a typical
iteration i of the algorithm, while considering a fully connected graph with four
demand nodes {1, 2, 3, 4} and a root node t. Let us assume that the HACO
parameters2 are given by: ρ = 0.1, pbest = 0.5, G(Sg) = 150, τmax = 0.067, and
τmin = 0.013. The heuristic information matrix ηij and the probability matrix
Pij are calculated according to ηij =

1
cij+bij

and to Eq. 10, respectively. Fig. 1

provides three pheromone matrices associated with this particular iteration
i of the algorithm. Matrix (A) provides the pheromone values to be used at
the construction of the solution of every ant (according to Sec. 5.1). Matrix
(B) is the pheromone matrix obtained after the pheromone values update (as
given in Sec. 5.2), and matrix (C) provides the pheromone values after all
pheromone bounds violations of matrix (B) are corrected (see Sec. 5.2.1). The
updating of pheromone matrices (B) and (C) is carried out towards the end
of the iteration and will be explained later.

At the beginning of iteration i all ants are created and every ant constructs
a solution. Then, a set W consisting of the best solution of iteration i, Si, and
four randomly chosen solutions is created and the local search procedure in
Algorithm 2 is applied to each solution in W 3. We will use Fig. 2 to illustrate
the evolution of a solution S ∈W with the application of local search.

Let us suppose that we are inspecting the neighbourhood of one particular
solution S ∈ W given by S = {(t, 2), (t, 4), (2, 1), (4, 3)}, see Fig. 2 (a). Note

2 Some parameters are not provided in this example because their values are not required
for the operations here exemplified.

3 Please note that, in this small example although we make reference to five solution in
W , there could only have been a maximum of four solutions given the number of nodes in
the problem.
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that, solution S is already sorted in ascending order of arc pheromone, i.e.
τt2 ≤ τt4 ≤ τ21 ≤ τ43 (see matrix (A) in Fig. 1).

We try to improve S by replacing each of the four arcs in S, one at a time,
with arcs that decrease the total cost of the solution tree.

First, we remove arc (t, 2), as given in Fig. 2 (b).
Then, we identify the set of candidate arcs (k, 2) ̸∈ S to substitute arc

(t, 2), which is given by P = {(4, 2), (3, 2)}. Note that P is already sorted in
descending order of arc pheromone, i.e. τ42 ≥ τ32. Fig. 2 (c) shows, in fine
dashed lines, all arcs that could be used to reconnect node 2 to the solution
tree S. Nonetheless, observe that arc (1, 2), in a dashed line, cannot be in the
set of candidate arcs P because it would introduce a cycle into the solution,
as well as a disconnected graph.

Following the algorithm, we replace arc (t, 2) with arc (4, 2) thus obtaining
S′ = {(4, 2), (t, 4), (2, 1), (4, 3)}.

Next, we calculate G(S′) and let us assume that G(S′) < G(S). Then, we
accept this arc swap, Fig. 2 (d), and continue with the local search procedure
considering this new solution S′ by making S ← S′. After this swap node 2
gets its demand from node 4 instead of from node t.

The local search will now try to replace arc (t, 4). It is important to notice
though that we never go backwards while trying to improve a solution, which
means that once a swap has been made, the procedure will not try to improve
the swaps that have already been performed. Let us go back to our example.

For arc (t, 4) the new P = ∅, because none of the arcs (k, 4) ̸∈ S can
provide a feasible solution (they would all introduce a cycle), see Fig. 2 (e).
Therefore, the procedure keeps arc (t, 4) in S, and continues the search with
the next arc, arc (2, 1), which will render P = {(t, 1), (4, 1), (3, 1)}, Fig. 2 (f).

The local search will continue until all arcs in the original solution S have
been tested, and then steps into the next solution S ∈W , until all five solutions
have been improved (or attempted to).

(A) 1 2 3 4 (B) 1 2 3 4
t 0.013 0.021 0.019 0.041 t 0.012 0.019 0.017 0.047
1 - 0.013 0.035 0.022 1 - 0.012 0.032 0.020
2 0.042 - 0.052 0.013 2 0.038 - 0.047 0.012
3 0.037 0.021 - 0.049 3 0.033 0.019 - 0.044
4 0.067 0.035 0.058 - 4 0.070 0.042 0.062 -

(C) 1 2 3 4
t 0,019 0,019 0,019 0,047
1 - 0,019 0,032 0,020
2 0,038 - 0,047 0,019
3 0,033 0,019 - 0,044
4 0,070 0,042 0,062 -

Fig. 1 Pheromone matrices for the example with solution Si = {(4, 2), (t, 4), (4, 1), (4, 3)}:
(A) Initial pheromone matrix (arcs in solution Si are indicated in bold), (B) Updated
pheromone matrix, and (C) Pheromone matrix with all values within the allowed pheromone
bounds interval
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Now, we return again to Algorithm 1. The algorithm identifies the best of

Fig. 2 Example of the Local Search procedure

the five solutions returned by the local search procedure, SLS . Let us assume
SLS = {(4, 2), (t, 4), (4, 1), (4, 3)} and G(SLS) = 100.

We compare G(SLS) with G(Si) and let us assume that G(SLS) < G(Si).
Then, we make Si ← SLS and G(Si)← G(SLS).

Since G(Si) < G(Sg), 100 < 150, we update Sg ← Si and G(Sg)← G(Si).
The new pheromone bounds are calculated: τmax = 0.1 and τmin = 0.019

(see Section 5.2.1).
Next, pheromone values are updated: Firstly, by evaporating 10% of the

pheromone values of all arcs, τij ← 0.9 × τij ; Secondly, by adding ∆τij =
Q

G(Si) = 2
100 = 0.01 to the pheromone τij of each arc (i, j) ∈ Si (the arcs

signalled in bold in matrix (A)). The resulting pheromone matrix (B) in given
in Fig. 1.

The last step at iteration i is to check for violations on the upper and
lower bounds of pheromone values. In matrix (B) in Fig. 1, all pheromone
values smaller than τmin or larger than τmax are signalled in bold font. The
signalled values only violate the lower bound and thus are replaced by τmin,
as can be seen in matrix (C) of Fig. 1.

The HACO algorithm steps into iteration i+1, provided that the stopping
criteria is not satisfied, and starts all over again now using pheromone matrix
(C) as the initial pheromone matrix.
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6 Computational Experiments

In this section we report on the computational results obtained with the heuris-
tic described in the previous section. We also report literature results for the
same problems in order to compare the performance and effectiveness of our
algorithms. In order to evaluate an heuristic algorithm, it is not always clear,
a priori, what must be tested. The work of Rardin and Uzsoy (2001) provides
valuable guidelines that were adopted here.

The performance of the heuristics is evaluated by using two measures, Time
(in seconds) required to perform a full run of the algorithm, and % Gap. The
Gap is calculated by comparing two solutions, and is given by:

Gap(%) =
HS −OptS

OptS
× 100,

where OptS stands for the optimal solution, and the HS stands for the solution
found with the heuristic in question.

The algorithms proposed in this paper, the ACO and the ACO+LS which
we have named HACO, were implemented in Java and the computational
experiments were carried out in a PC with an Intel Core 2 processor at 2.4
GHz with 4MB of RAM. CPLEX was run in the same computer. The computer
used is the same of that of the HGA, with which we compare our results.

6.1 Test Problems

In order to test the algorithm that was developed to solve SSU concave
MCNFPs we downloaded the Euclidean test set of problems available from
(Beasley, 2010). The problems are divided into ten groups {g1, g2, . . . , g10},
with different ratios between variable and fixed costs, V/F , since it has been
proven by Hochbaum and Segev (1989) that the values of such ratios are the
main parameter in defining problem difficulty for fixed-charge MCNFPs. Re-
garding this ratio in the literature we find two distinct opinions. On the one
hand Kennington and Unger (1976) claim that the difficulty to solve fixed-
charge problems increases with this ratio. On the other hand Hochbaum and
Segev (1989) and Palekar et al (1990) suggest that only ratios with interme-
diate values are difficult to solve. Their reasoning is that if the ratio is very
small or very large the problem is easier to solve either because fixed costs
are negligible thus transforming the problem into a linear one, or because the
problem reduces to the one of minimizing fixed costs. The problems we have
solved have V/F ratios ranging from 0.01 to 10.

Another important difficulty parameter is the number of arcs with concave
arc costs. For example, SSU networks with a single nonlinear concave arc cost
have been proven to be solvable in polynomial time (Guisewite and Pardalos,
1993) and (Klinz and Tuy, 1993). Furthermore, Tuy (2000) proves the strong
polynomial-time solvability of SSU MCNFPs with a fixed number of concave
cost arcs. It is important to stress out that every single arc in the problems
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we solve has associated a concave cost and that Guisewite (1995) has demon-
strated that finding a strict local optimum for the SSU concave MCNFP is
NP-hard. Thus, we are considering problems with proven complexity. Further-
more, in the work by Horst and Thoai (1998), a concave cost is associated
with a subset of existing arcs, while the rest of the arcs have linear costs,
and the results empirically obtained, by using a branch-and-bound procedure,
show evidence of an increasing difficulty to solve problems with the same size
but with an increasing number of arcs with concave costs. In addition, the
concavity of the cost functions of Type II and III, given by aij , is defined
such that it takes the maximum value guaranteeing that the cost functions
are nondecreasing and that an equilibrium between all arcs costs is reached,
thus increasing the number of local optima solutions and making the problem
harder to solve.

For each of the 10 groups we can find three problem instances identified as
A, B, and C. Furthermore, the problems are also classified regarding the num-
ber of nodes considered, which varies within {10, 12, 15, 17, 19, 25, 30, 40, 50}.
For problems with 10, 12, 15, 17, 19, 25, and 30 nodes, all ten groups are
available, while for the remaining problems only the first five groups are avail-
able (For more details on these problems please refer to Fontes et al (2003)).
Therefore, there is a total of 240 problem instances to be solved. Since three
types of cost functions are considered, see Section 2.1, the number of prob-
lem instances to be solved increases to 720. Each problem instance is solved
five times and the average results obtained are reported and discussed in the
following sections.

In addition to the downloaded test set of problems, we have also generated
larger size problem instances with {60, 80, 100, 120} nodes, where we consider
five different groups, and for which we report on the CPLEX 9.0 solution
regarding cost function of Type I. (Problems with cost functions of Type II
and III cannot be solved by CPLEX) Furthermore, cost function of Type
III in addition to the nonlinear concave cost also incorporates a fixed-charge
component. All the problems used herein, the former and the newly generated
ones, have the source node always located at an extreme point of the grid,
as problems with this characteristic are known to be harder to solve (see e.g.
Fontes et al (2003); Dahl et al (2006)).

6.2 Parameters setting

In this section we study the influence of the values for some of the most
important parameters. The tests performed on the parameters use an ACO
algorithm that does not consider local search, thus the algorithm is hereby
solely identified as ACO. In order to make some tests, and following on the
work of Fontes and Gonçalves (2007), we have used a randomly drawn set of 3
problems with different sizes and from different groups, and we have retained
the three problem instances. Problems with 10 nodes from group 10, problems
with 25 nodes from group 7, and problems with 50 nodes from group 3 have
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been taken. In total we have used 9 problem instances. Therefore, we use, as
the experimental set, the same set as the one that was used in Fontes and
Gonçalves (2007).

To test the behaviour of the algorithm while varying the parameter values,
in order to identify the best ones, we had to come up with some values to
start with. The values used were mainly draw from literature because our first
objective was to infer on the order of magnitude. Their values were: α = 1,
β = 3, ρ = 0.1, Q = 2, τ0 = 1000000. The tests were conducted in such a
way as to fix a parameter value after identifying the best value for it and then
proceeding to the next parameter under evaluation. At the end, all parameter
values will be set and the algorithm will be ready to be tested in all the
problems that were already described in the previous section.

6.2.1 Setting the heuristic information

The heuristic information, which is usually a fixed value from the beginning
of the algorithm, is also called the visibility of arc (i, j) and originally, in the
Travelling Salesman Problem, it was seen as the information an ant has if it
can use its eyes (Afshar, 2005). Therefore, the closest the cities were the more
attractive they became. In our case, the distance is equivalent to the cost of
an arc therefore, cheapest arcs must have a higher visibility value, whereas the
others must have a lower one. The visibility function has been defined in several
different ways, for example in (Lessing et al, 2004) a study is performed both
regarding static and dynamic heuristic information. In our case, we consider
ηij =

1
bij+cij

for cost function Types I and III, and ηij =
1
bij

for cost function

Type II. Recall that, we use three polynomial cost functions, one linear concave
and the other two quadratic functions. The most important coefficient is, in
this case, the fixed-charge because it will add an extra cost, non-dependent
on the flow, at each arc. The other parameter, the coefficient of the first-order
term of the polynomial also influences the increase on the cost function. The
coefficient of the second-order term of the function is disregarded because its
main objective is to define the concavity of the cost function.

6.2.2 Setting α and β parameter values

The values α and β, appearing in the probability function defined in Eq. (10),
are two tunable parameters weighting the pheromone information and the
heuristic information, respectively. It has become common knowledge that if,
on the one hand, α has a very small value (close to 0), then the cheapest
demand nodes are more likely to be chosen, and the algorithm becomes closer
to a greedy algorithm. If, on the other hand, β is the parameter with a very
small value, then the algorithm will give priority to the pheromone information
and faster convergence to poor solutions may arise. Therefore, an equilibrium
must be reached and the value for these two parameters must be carefully
chosen.
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Fig. 3 Graphical representation of average gaps obtained while varying both α and β
parameter values within {0,1,2,3,4,5}, and considering Type I, Type II, and Type III cost
functions

As the impact of these two parameters are so connected, we have made an
intensive study extending the values reported in the literature, on the combi-
nation of values for the two of them. In Fig. 3 we present the results obtained
for the gap, for each cost function, while varying both α and β values within
{0,1,2,3,4,5}.
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It becomes clear, from the observation of Fig. 3, that the worst perfor-
mance of the algorithm occurs when the choice of the arc entering the solution
is performed completely at random, that is when α = β = 0. The bad per-
formance is observed for each of the three cost functions considered, leading
to a maximum average error of 15.31%. This behaviour is somehow expected
because only by chance the first guesses of the algorithm are good solutions,
and a lower gap is achieved. In the case of α = 0 the probability function
ignores the pheromone values and only the heuristic value is considered to
choose arcs into the solution. For this case, the algorithm becomes a greedy
algorithm only relying on local information. In a problem with such a complex-
ity as this, this is not sufficient to provide a good solution. Although initially
the ants may make more use of the heuristic information to perform a fast
exploration of the search space nearby solutions with lower cost components,
it is not sufficient to produce a good solution afterwards. In the case β = 0 the
heuristic information is completely disregarded and the algorithm only relies
on the pheromone values to make its choices. The performance in this case
is even worse since the algorithm will depend upon the solutions of the first
few iterations. Therefore, if in the first few iterations the algorithm is able to
find a relative good solution, then at the end it may have a reasonable perfor-
mance; Otherwise it will converge to a bad solution, as pheromones tend to
increase in bad components. This observation allows for the conclusion that
the heuristic information is of capital importance for this problem and it must
not be ignored.

The gap seems to concentrate on lower values in the middle of the interval
considered, increasing at the extremes. Therefore, the values associated to the
best results are the ones that can be found slightly at the middle of the interval
considered, leading the algorithm to the optimum value. In this case, the values
corresponding to the best gap averages are α = 1 and β = 2.

6.2.3 Setting the pheromone evaporation rate value

Evaporation plays an important role in an ACO algorithm. This operation sim-
ulates the natural process of evaporation preventing the algorithm from con-
verging too quickly (all ants constructing the same tour) and getting trapped
into a local optimum. The value of the evaporation rate indicates the relative
importance of the pheromone values from one iteration to the following one.

In order to infer the best possible value for the pheromone rate regarding
the solution of SSU concave MCNFPs, we have performed an intensive series
of tests having obtained the results that can be seen in Fig. 4. If ρ takes a
large value, in this case close to 50%, then the pheromone trail will not have
a lasting effect, potentiating the exploration of the solutions space. Whereas
small values increase the importance of the arcs a lot longer, potentiating
the exploitation of the search space near good solutions. The results obtained
show that small values for ρ, that is, below 10%, translate into a not so good
performance of the algorithm. The reason for this to happen is because the
behaviour is like the one of a blind ant, which will only follow the most intensive
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Fig. 4 Average gaps obtained while varying the pheromone evaporation rate ρ within
{0.01,0.02,0.05,0.1,0.2,0.3,0.5}, and considering Type I, Type II, and Type III cost func-
tions

pheromone trails, afraid of what it may encounter in “unknown” areas. If the
evaporation rate becomes larger than 10%, then the algorithm is so focused in
performing exploration that it ignores solutions in the neighbourhood that can
be better. The best performance, with zero gaps, are obtained for evaporation
rates of 10% and 20%. The algorithm, although presenting very small gaps,
cannot find an optimal solution to all problems.
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6.2.4 Other parameters

The stopping criterion may take several forms, such as a bound on the num-
ber of iterations, number of solutions evaluated, or even time. In our case, and
due to the comparison we want to make with other methodologies in litera-
ture, we have set it to a limit on the number of iterations. According to the
results obtained, with the test set, we have decided to limit the number of
iterations to 200, as suggested by the results that were obtained while testing
the parameters. Results obtained later confirmed this value.

Another parameter that can be tested is Q, the parameter controlling the
proportion of pheromone to be deposited in each solution component. After
setting the other parameters, already mentioned in the previous sections, we
came to the conclusion that no major difference was to be found with the
variation of this parameter, nonetheless Q = 2 was consistently giving good
results.

Regarding the number of ants allowed to perform local search, experiments
have been performed by both using a significantly larger number of ants and
a smaller number of ants. While in the former case similar results have been
achieved, although with larger computational time requirements, in the latter
case the improvement was quite smaller and in many cases nonexistent.

6.2.5 Final Parameters

The results reported above were obtained only with the training set. We have
proceeded with our experiences with the whole set of problems having used
the final parameter values that can be seen in Table 1, which were the ones
with the best average results for the training set.

Table 1 Final parameter values configuration for the Ant Colony Optimization procedure

Parameter Value
α 1
β 2
ρ 0.1
Q 2

pbest 0.5
τ0 1000000

no. of ants n
no. of iterations 200

6.3 Comparing our results with the ones in literature

In order to evaluate the efficiency of our algorithm, we compare our results
with the optimum values, whenever possible. For cost function Type I we have
the optimum values obtained with the software CPLEX 9.0, for all problem
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instances. For cost functions Type II and Type III, and for problems with 10
to 19 nodes the Dynamic Programming algorithm reported in (Fontes et al,
2006c) provides an optimal solution. For problems with 25 to 50 nodes and
function Type III we calculate the gap by comparing our results with upper
bounds reported in (Fontes et al, 2003). We also compare the results obtained
with our algorithm with results obtained with a Hybrid Genetic Algorithm
(HGA) reported in (Fontes and Gonçalves, 2007). Although the results ob-
tained with the HGA for Type II cost function were never published, the
authors were kind enough as to make them available to us.

Let us start by analysing the impact of the local search procedure on the re-
sults regarding the solution quality (gap). In order to do so, we have calculated
the ratio between the gaps obtained with HACO (ACO with local search) and
with the ACO algorithm. A value below 100 denotes an improvement brought
in by incorporating local search, otherwise we may conclude that no improve-
ment was achieved. Table 2 summarizes the average ratios obtained by group
and by problem size4.

There are two groups that are consistently improved with the introduction
of local search, they are group 1 and 6, at least for Types I and III cost func-
tions. Regarding cost function Type II group 4 is the one benefiting the most
with the introduction of local search. This is very curious because both group 1
and 6 have a V/F ratio of 0.01 while group 4 has a V/F ratio of 2. Therefore,
by observing the results obtained with ACO, we cannot defend neither the
argumentation of Kennington and Unger (1976) stating that the difficulty for
solving fixed-charge NFPs increases with V/F ratio, nor the argumentation
of Palekar et al (1990) stating that the most difficult problems to be solved
are the ones with intermediate values. Since Local Search has improved the
performance of our algorithm, regarding the quality of the solutions obtained,
we have hereafter abandoned the ACO algorithm and only report results for
the HACO.

Now let us compare the results obtained with HACO with the ones re-
ported in literature. Before continuing with the analysis of the results, let
us provide some details about the implementation of the HGA developed in
(Fontes and Gonçalves, 2007). In the HGA approach the authors use the fol-
lowing parameter settings: 10 times the number of nodes as the population size;
a crossover probability (CProb) of 70%; the top (TOP) 15% of chromosomes
are copied to the next generation; the bottom (BOT) 15% of chromosomes
of the next generation are randomly generated; the remaining 70% are ob-
tained by crossover; the fitness function is given by the cost; and finally the
number of generations allowed is 100. These values were chosen accordingly
to the results obtained with a pilot study on the parameter settings where
all possible combinations between the following values were considered: TOP
= (0.10, 0.15, 0.20), BOT = (0.15, 0.20, 0.25, 0.30), CProb = (0.70, 0.75, 0.80),
population size = (2, 5, 10, 15). The HGA algorithm also incorporates a local
search procedure that uses node priorities to select the arcs to enter and to

4 Please recall that, for problems with 40 and 50 nodes only the first 5 groups are available.
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Table 2 Average ratios between HACO and ACO, for each of the three cost functions
considered, and classified by group and by problem size

exit the solution. The local search heuristic is applied to all solutions in all
generations, i.e. to 1000×N solutions.

We provide results for the HACO algorithm and compare them with previ-
ous results obtained with the HGA already mentioned. Gaps are calculated, for
both of them and for Type I cost function, using the optimum value obtained
with CPLEX. In Table 3 we have the average times spent to run the algorithms
and the gaps for both of them, as well as the time spent by CPLEX. Problems
with 60 up to 120 nodes were only generated for this work, therefore we do
not present results on the performance of the HGA. It should be noticed that
all algorithms (HACO, CPLEX, and HGA) were run on the same computer.

As we can see, for problems with up to 50 nodes, HACO is able to find an
optimal solution in all results outperforming HGA that failed to reach that
value in all 5 runs of one problem instance with size 10 and one problem
instance with size 40.
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Table 3 Average computational results obtained for cost function Type I and grouped by
problem size

HGA HACO CPLEX

Size Gap Time Gap Time Time

10 0.005 0.82 0 0.08 0.31
12 0 1.23 0 0.12 0.19
15 0 2.11 0 0.22 0.24
17 0 3.15 0 0.32 0.27
19 0 4.00 0 0.42 0.41
25 0 9.51 0 0.85 0.58
30 0 14.61 0 1.49 0.69
40 0.005 31.67 0 3.77 1.27
50 0 59.22 0 7.71 2.03
60 - - 0 15.96 3.08
80 - - 0 46.41 21.37

100 - - 0 115.63 82.46
120 - - 0 226.20 1280.57

Fig. 5 Computational time results obtained for Type I cost functions, by problem sizes
from 10 up to 50

Computational times (required for a full run of the algorithms) increase
with problem size, as it is expected, see Figs. 5 and 6. Nonetheless, HACO
times are considerably smaller than those of the HGA, HACO being up to 11
times faster. Furthermore, the rate of increase in the computational times is
much larger for HGA than for HACO, which is most likely related to the num-
ber of solutions evaluated by each algorithm. The HGA time values reported
were obtained by implementing the HGA in Visual Basic 6 and the computa-
tional experiments were performed on the same computer of the HACO ones.
As both the HGA and the HACO algorithm use the number of nodes in the
problem to calculate the number of solutions constructed in each iteration,
we can compute the number of solutions evaluated by each of the algorithms.
The HGA evaluates 10 × n × 100 solutions and for each of these solutions
the local search heuristic is applied to look for a better neighbour solution.
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Fig. 6 Computational time results obtained for Type I cost functions, by problem size from
60 up to 120

The HACO evaluates n× 200 solutions and the LS heuristic is applied to only
5×n of such solutions, representing 80% less solutions evaluated, not account-
ing for the ones searched for by the LS heuristic. This means that although
with similar results, see the gaps, the HACO algorithm has the advantage of
requiring much less computational effort due to the reduced number of solu-
tions evaluated. Ants can locate and converge to the optimum value within a
small number of walks.

The HACO computational time requirements are similar to the ones of
CPLEX, for problems with up to 100 nodes. Regarding larger size problem
instances the average time spent by CPLEX and by the HACO algorithm is
quite different, see Fig. 6. Although for problem sizes with up to 100 nodes
running times are of the same order of magnitude, when the problem size is
larger the computational time spent by CPLEX shows a major increase. It
should be noticed that when increasing the problem size from a 100 to 120
nodes, the computational time of HACO increases twice, while the time of
CPLEX increases about 15 times.

Table 4 Average computational results for cost function Type II, grouped by problem size
ranging from 10 up to 50 nodes

HGA HACO

Size Time HACO/HGA Time

10 0.84 100.00 0.08
12 1.32 100.00 0.12
15 2.24 100.00 0.21
17 3.27 100.00 0.32
19 4.10 99.99 0.41
25 8.99 100.00 0.84
30 15.36 100.00 1.43
40 33.46 100.00 3.63
50 60.66 100.00 7.44



30 Marta S.R. Monteiro et al.

Fig. 7 Computational time results obtained for Type II cost, by problem size

In Table 4 we have the results obtained with cost functions of Type II
for the same algorithms. The quality of the solutions is measured by a ratio
computed as a percentage using the values obtained with the HGA. Both
HGA and HACO have good performances regarding the problems for which
an optimal value is known, and HACO was always able to find an optimal
solution. Furthermore, HACO found a solution with the same cost as the
HGA to all but one problem, a problem instance with 19 nodes, for which it
was able to improve the solution of the HGA. Regarding the time spent to
run the algorithm, HACO is up to 11 times faster than HGA, as can be seen
in Fig. 7. It should be noticed that the rate of increase of the computational
time with problem size is again much smaller for the HACO. This indicates
that the difference in performance for the two algorithms is expected to grow
with problem size.

Results for Type III cost functions are presented in Table 5, where BS
stands for the best solution known. For problems for which an optimal value
is known HACO was always able to find it.

Again the computational time, see Fig. 8, is considerably smaller for HACO
in relation to HGA. And again, increasing needs of computational times grow
much faster for the HGA.

7 Conclusions

We have described the algorithm that was developed, based on Ant Colony
Optimization and on Local Search, to solve the Single-Source Uncapacitated
Minimum Cost Network Flow Problem with concave cost functions. In the test
problems used three cost functions are considered: a fixed-charge function and
two second order polynomials, one with and another without a fixed charge
component. We have solved problems ranging from 10 up to 120 nodes. We
provide a study on the performance of the algorithm with the variation of
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Table 5 Average computational results for cost function Type III, grouped by problem size
ranging from 10 up to 50

HGA HACO

Size Time HACO/HGA Time HACO/BS

10 0.90 100.00 0.09 100
12 1.42 100.00 0.14 100
15 2.50 100.00 0.25 100
17 3.74 100.00 0.35 100
19 4.63 100.00 0.48 100
25 10.28 100.00 0.97 100.72
30 18.39 100.00 1.64 99.13
40 42.70 100.00 4.02 99.90
50 77.62 100.00 8.39 99.94

Fig. 8 Computational time results obtained for Type III cost, by problem size

the parameters values, which revealed that some are of vital importance for
the good performance of the algorithm, while others can be set to almost any
reasonable value within the problem context. We compare our results with the
ones in literature and our algorithm proved to be very efficient and effective.
The solutions obtained were always as good or better than the ones obtained
by an HGA presented in (Fontes and Gonçalves, 2007) even though the num-
ber of solutions evaluated by the HACO was much smaller. Nonetheless, the
greatest advantage of HACO is that it requires up to 11 times less compu-
tational time than HGA. Furthermore, although the computational time re-
quirements of the HACO also increase with problem size, the rate of increase
is much smaller than that of the HGA. When in comparison with CPLEX,
although for smaller problems the computational times are much alike, when
the problems to be solved have more than 100 demand nodes running times
for CPLEX increase rapidly. For example, for problems with 120 nodes the
CPLEX requires approximately 21 minutes to solve the problems, whereas for
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the HACO 4 minutes suffice. This is very important and leads us to believe
that for larger problems the HACO can be the best choice.

We have then proved HACO to be an alternative method to solve SSU
concave MCNFPs, with the advantage of representing a much lower compu-
tational effort, since it only evaluates about 20% of the number of solutions
evaluated by the HGA. Given the good results obtained, we are encouraged to
proceed our study on ACO algorithms and their applicability to other network
flow problems.

References

Afshar MH (2005) A new transition rule for ant colony optimization algo-
rithms: application to pipe network optimization problems. Eng Optimiz
37(5):525–540

Ahuja RK, Magnanti TL, Orlin JB, Reddy M (1995) Applications of network
optimization. In: Network Models, volume 7 of Handbooks in Operations
Research and Management Science, pp 1–83

Altiparmak F, Karaoglan I (2007) A genetic ant colony optimization approach
for concave cost transportation problems. In: IEEE Congress on Evolution-
ary Computation, 2007. CEC 2007., pp 1685 –1692

Barr F, Glover F, Klingman D (1981) A new optimization method for fixed
charge transportation problems. Oper Res 29:448–463

Beasley J (2010) Or-library. http://www.brunel.ac.uk/deps/ma/research/jeb-
/orlib/netflowccinfo.html

Bernardino EM, Bernardino AM, Sánchez-Pérez JM, Gómez-Pulido JA, Vega-
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