
User-Friendly Spreadsheet Querying: An Empirical Study∗

Rui Pereira, João Saraiva
HASLab/INESC TEC & Minho

University, Portugal
{ruipereira,jas}@di.uminho.pt

Jácome Cunha
Universidade Nova de Lisboa

Portugal
jacome@fct.unl.pt

João Paulo Fernandes
RELEASE, Universidade da

Beira Interior, Portugal
jpf@di.ubi.pt

ABSTRACT
Spreadsheets are nowadays used in a variety of contexts, in-
cluding in in manipulatin large and complex data. This data
is stored in a large unstructured matrix, which is hard to un-
derstand and to manipulate. Recent research has been done
to manipulate and query such unstructured data, namely
by proposing different query approaches to spreadsheets. In
this paper we present an empirical study evaluating three
recent query approaches to spreadsheets assessing their us-
age to query spreadsheets. The results of our study show
that the end-users’ productivity increases when using visual,
model-driven queries are used.

CCS Concepts
•Human-centered computing → Empirical studies in
HCI; •Information systems → Query representation;

Keywords
Spreadsheets; Querying; Empirical Studies

1. INTRODUCTION
Spreadsheets are the programming language of choice for
non-professional software programmers, like teachers, man-
agers, engineers, accountants, etc, (often called “end-user”
programmers) who write programs mainly for their own use.
In fact, spreadsheet systems are not only used to implement
spreadsheet specific tasks (for example, to implement com-
panies’ budgets), but also to manipulate large and complex
data. Spreadsheets can be seen as the poor mans database

∗This work has been supported by Fundação para a Ciência
e a Tecnologia, under grant SFRH/BPD/112733/2015.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copy-
rights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permis-
sions@acm.org.
SAC 2016,April 04-08, 2016, Pisa, Italy
c©2016 ACM. ISBN 978-1-4503-3739-7/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2851613.2851910

programming language, used to store data in a simple and
visual way, but not having the specific features of a database
system. It is surprising to see that 56% of spreadsheets in
the large EUSES corpus do not contain formulas, only data!
In order to efficiently manipulate such data, spreadsheets
need to provide the data normalization mechanisms and a
powerful query language, as databases do. However, it may
be hard and time consuming for inexperienced users to pose
structured queries that satisfy their query intent, since the
users are required to be proficient in writing the query lan-
guages and have a thorough understanding of how query
mechanisms work. On the other hand, they may encounter
comprehension difficulties, formulation problems, and incor-
rect queries. There has been several research work study-
ing the usability of query systems mainly in the context of
databases [1, 2]. To the best of our knowledge there has
been no work on studying how queries make spreadhseet
users more productive, and which query framework (textu-
al/visual) they find easier to understand.

In this paper we assess the usability of three approaches
that support querying of spreadsheet data: Google’ QUERY
function [3], and the two model-driven querying systems: the
textual QuerySheet [4, 5] and the visual Graphical-QuerySheet
[6]. The three query systems provide powerful abstractions
to query spreadsheets, and, as a consequence, it is impor-
tant to assess how end users understand and take advantage
of them. We conduct an empirical study with spreadsheet
users in order to compare end user productivity, and the
framework understandability and intuitiveness, when using
the three query systems.

2. SPREADSHEET QUERYING
This section presents our running example: a spreadsheet
used to store information relative to the budget of a research
group (Fig. 1). This spreadsheet contains information about
the Category of budget used and the Year. The relationship
between Category and Year provides us with the informa-
tion on the Quantity, Cost, and the Total Costs (defined by
spreadsheet formulas), per year per category.

Figure 1: Spreadsheet Example

Using this spreadsheet, we will answer the next question: In
what category did we have the most expenses (last 5 years)?

202

Next, we introduce the three systems to query spreadsheets

Google QUERY function: Google provides a querying
function called QUERY. This QUERY function performs a
query, using a SQL-like syntax, over an array of values such
as the Google Docs spreadsheets, in which the function is
built in. Google’s QUERY function (GQF) is a two argu-
ment function, consisting of a range and query string. The
range argument is used to state the range of the data cells
to be queried, for example A1:Q13 in our spreadsheet. The
query string is the SQL-like query written by the user.

While the GQF is a powerful query function, it still has
some flaws. To run this function, the user needs to repre-
sent his/her spreadsheet information in a single table, with
each attribute represented in each column (in other words,
with headers). This means that someone, who has their
spreadsheet divided into various entities with or without re-
lations, would first need to manually denormalize their data
(as shown in Fig. 2). Such a process is difficult enough for
professionals, let alone for end users.

Figure 2: Spreadsheet example denormalized

In QUERY, the query writer must use column letters in
the query, instead of column names/labels as is normal in
database querying. Regardless, the query engine is very effi-
cient, being able to handle very big spreadsheets. To answer
our previous question, we would have to write in a spread-
sheet cell, the following query function:
=query(A1:E58;"SELECT B,sum(E) WHERE A>=2010 GROUP BY B

ORDER BY sum(E) DESC LIMIT 1")

QuerySheet system: To overcome the issues identified
with the GQF, researchers turned to model-driven engineer-
ing methodologies to design a query language and system for
spreadsheets. In this case model-driven spreadsheet mod-
els were used, specifically ClassSheets [7]: a high-level and
object-oriented formalism, using the notion of classes and
attributes, to express business logic spreadsheet data. Us-
ing ClassSheets, one can define the business logic of spread-
sheet data in a concise and abstract manner. This results in
users being able to understand, evolve, and maintain com-
plex spreadsheets by just analyzing the ClassSheet models,
avoiding the need to look at large and complex data [8].
Indeed, as shown in [9], users need a bridge between spread-
sheet data and the real world.

Figure 3: Spreadsheet example conforming to model

Fig. 3 presents a ClassSheet model and conforming instance
for our running example. In this ClassSheet model, a Budget

has a Category (with a Name attribute) and Year class (with
a Year attribute), expanding vertically and horizontally, re-
spectively. The joining of these two gives us a Quantity,
Cost, and Total of a Category in a given Year, each with
their own default values.

Using this spreadsheet model concept, we designed a query-
ing language based on the attributes/labels in classes, as
done in the database realm when using attribute names from
tables. This querying system was named QuerySheet is built
on top of GQF: it automatically denormalizes the spread-
sheet models, translates the model-driven query to the query
function counterpart and sends both translated function and
denormalized data to be executed on Google’s system. In
QuerySheet, by just look at the (concise) model, it is very
simple to answer our question:

SELECT Name, sum(Total) WHERE Year >= 2010
GROUP BY Name ORDER BY sum(Total) DESC LIMIT 1

Graphical-QuerySheet System: Because end-users are
not familiar with SQL syntax (and textual programming,
in general), we developed a graphical user interface for vi-
sual query construction [6]. This visual interface, named
Graphical-QuerySheet, hides syntax peculiarities and lets
users to choose attributes based on the spreadsheet’s model.

Figure 4: Graphical query

Fig. 4 shows Graphical-QuerySheet where we can easily an-
swer the running question: Click on Choose Attributes and
check Name and Total; Click on the aggregation combo box
(it is visible when using the tool) under Total and choose
Sum; Click on the order by combo box under Total and
choose DESC; Click on Add Filter; Select the Year.Year at-
tribute and greater or equal to operation using the combo
boxes, and fill in 2010 in the text box; Finaly, click Execute.

3. EMPIRICAL STUDY
To assess the three querying systems in practice, we executed
an empirical study with 14 users, obtaining and recording
the results of their experiences and productivity. All par-
ticipants were male, between ages 19-28, with background
in computer sciences/informatics. Their knowledge of SQL
also varied between no/little knowledge to very experienced
users. All have previously worked with spreadsheets, with
different levels of experience. The 14 participants were ran-
domly divided into two groups. One was to test GQF vs.
QuerySheet, and the other to test GQF vs. Graphical-
QuerySheet. The study was done with one participant at
a time, in a think-aloud session. Doing this allowed us to
see each participant using the systems and learn the difficul-
ties they were facing. These results are shown in Figure 5.

For the study, we used a real-life spreadsheet obtained from
our hometown food bank. This spreadsheet represents the

203

(a) GQF vs. QuerySheet (b) GQF vs. Graphical-QuerySheet
Figure 5: Result comparison

distribution of basic products to specific institutions: it con-
tains 85 institutions, with 14 types of products, and over
1190 lines of unique information. We denormalized the spread-
sheet data for the participants to use with Google’s QUERY
function, and prepared the spreadsheet model and conform-
ing instance in the model-driven environment.

In the study, we asked participants to implement queries
to answer the following four questions regarding the infor-
mation present in the distributions spreadsheet: What is
the total distributed for each product?, What is the total
stock? What are the names of each institution without repe-
titions? Which were the products with more than 500 units
distributed, and which institution were they delivered to?

In answering each question, the participants had to imple-
ment a query using both systems (either GQF vs. QuerySheet
or GQF vs. Graphical-QuerySheet); alternating between the
starting systems (the initial starting system was chosen by
each participant). We recorded the time answering the ques-
tions and after they were asked to answer a short question-
naire to choose which system they felt was more: Intuitive,
Faster (constructing the queries), Easier (constructing the
queries), and Understandable (easy to interpret the queries).

3.1 Results
Fig. 5a and Fig. 5b can be interpreted as follows: The Y-Axis
represents the average number of minutes the participants
took to answer the questions. The X-Axis represents the
question the participants answered. The green bars repre-
sent the GQF, and the blue bars represent the QuerySheet
and Graphical-QuerySheet system respectively.

For easy referencing, we will refer to the first study group,
Google QUERY function vs. QuerySheet, as Group A, and
for the second study group, Google QUERY function vs.
Graphical-QuerySheet, as Group B.

As we can see in both groups, the participants spent sub-
stantially less time to construct the queries, and in turn were
more productive, using the model-driven approach (both
QuerySheet and Graphical-QuerySheet). In Group A, par-
ticipants spent 62.8% to 87.8% less time, averaging to an
overall of 67.5%. Looking at the graphical querying ap-
proach, in Group B, the participants spent 65.5% to 87.9%
less time, averaging to an overall 79.4%. Almost all chose
the model-driven querying approaches, in terms of the four
previously mentioned points (Intuitive, Faster, Easier, and
Understandable). In Group A, 111 out of 112 (4 points *
4 questions * 7 participants) chose QuerySheet. While in
Group B 104 out of 112 chose Graphical-QuerySheet, pro-
viding us with interesting information, allowing us to detect
some of the drawbacks of the graphical system, which will

be explained further on.

In general the query error rates were low. There were 9
(out of 11) and 6 (out of 7) errors, Group A and B re-
spectively, using Google’s QUERY function. These errors
varied between incorrect column letters chosen, bad query
construction and incorrect ranges.

4. CONCLUSION
In this paper, we compared one visual and two textual DSL
for querying spreadsheets, two of which are model-driven
based. We have presented an empirical study with real users
where they were asked to perform similar tasks in the three
languages. Overall, the model-driven querying approaches
have proven themselves to be much more efficient and easier
to use than their counter part data oriented one.

5. REFERENCES
[1] J. Fan, G. Li, and L. Zhou, “Interactive sql query

suggestion: Making databases user-friendly,” in Int.
Conf. Data Eng. (ICDE), April 2011, pp. 351–362.

[2] H. Lu, H. C. Chan, and K. K. Wei, “A survey on usage
of sql,”ACM SIGMOD Record, vol. 22, no. 4, pp.
60–65, 1993.

[3] Google, “Google query function,” https://developers.
google.com/chart/interactive/docs/querylanguage,
September 2015.

[4] J. Cunha, J. P. Fernandes, J. Mendes, R. Pereira, and
J. Saraiva, “Querying model-driven spreadsheets,” in
VL/HCC’13. IEEE, 2013, pp. 83–86.

[5] J. Cunha, J. Fernandes, J. Mendes, R. Pereira, and
J. Saraiva, “Design and implementation of queries for
model-driven spreadsheets,” in CEFP School, ser.
LNCS. Springer, 2015, vol. 8606.

[6] J. Cunha, J. P. Fernandes, R. Pereira, and J. Saraiva,
“Graphical querying of model-driven spreadsheets,” in
Int. Conf. on Human-Computer Intercation, ser. LNCS,
vol. 8521. Springer, 2014, pp. 419–430.

[7] G. Engels and M. Erwig, “Classsheets: automatic
generation of spreadsheet applications from object-
oriented specifications,” in ASE’05. ACM, 2005, pp.
124–133.

[8] J. Cunha, J. Fernandes, J. Mendes, and J. Saraiva,
“Embedding, evolution, and validation of model-driven
spreadsheets,” Software Engineering, IEEE Trans. on,
vol. 41, no. 3, pp. 241–263, March 2015.

[9] B. Kankuzi and J. Sajaniemi, “An empirical study of
spreadsheet authors’ mental models in explaining and
debugging tasks,” in VL/HCC’13. IEEE, 2013, pp.
15–18.

204

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20160203085439
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 2
 3

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 3
 0
 1

 1

 HistoryList_V1
 qi2base

