
Optimal positioning of autonomous marine vehicles
for underwater acoustic source localization

using TOA measurements
Bruno Ferreira, Anı́bal Matos, Nuno Cruz

INESC TEC, Faculty of Engineering, University of Porto
Rua Dr. Roberto Frias, 378
4200-465 Porto, Portugal

bm.ferreira@fe.up.pt

Abstract—In opposition to the surface, no common solution
is available for localization of active objects underwater. Typical
solutions use acoustics as a means to implicitly measure ranges or
angles and consequently determine the position of a transmitter.
If the receivers are synchronized among themselves, the position
of the transmitter can be estimated based on the time-of-arrivals
(TOA). The confidence on the estimate varies with respect to
the relative positions of the receivers and the transmitter. In this
paper, we present recent developments for optimal 3D positioning
of TOA sensors based on the a metric that uses the Fisher
information matrix. We give the necessary conditions to obtain
the best possible estimate. To our best knowledge, no analytical
solution has been yet presented for this problem. We complete
and validate our study with a simulation of optimal positioning
of four TOA sensors.

I. INTRODUCTION

Underwater localization and positioning is still a consider-
able challenge due to environmental and technological con-
straints. Such limitations have been restraining the growth of
autonomous robotic system in such environments and therefore
the localization of underwater targets, including mobile robots,
has attracted the interest of several researchers over the last
years [1]–[8]. In this paper, we tackle the optimal three-
dimensional positioning of time-of-arrival (TOA) sensors to
track an underwater sound source. Although motivated by un-
derwater applications, the work presented here has applications
in general networks of distributed sensors that make use of
TOA measurements to estimate the position of a source.

Underwater localization solutions predominantly include
two types of methods: Range-based and combined
angle/range-based. Range based solutions use trilateration to
determine the position of an active transmitter underwater.
The so-called Long Baseline (LBL) has been employed in
many georeferentiation applications for which bounded error
localization is required [1]–[4]. LBL systems may require
precise synchronization between of the transmitter and the
receivers for one-way travel time (OWTT) [8]. In opposition,
two-way travel time (TWTT) based systems do not need
synchronization [2]. While the former can be composed by
two set of sensors (active transmitters and passive receivers),
the second scheme must use both in each beacon or use

transducers that accumulate the two roles.
The Ultra-Short Baseline (USBL) systems (see, for exam-

ple, [9]) use the bearing and ranging capabilities of acoustic
receivers and transmitters. Receivers are placed closely mea-
suring the time difference of arrival, thus making it possible
to compute the angle of arrival. The range measurements are
obtained in a similar fashion to the one of LBL.

Self localization can still be achieved by means of Inertial
Navigation Systems (INS) composed by Inertial Measurement
Units (IMU) to measure angles, angle rates and accelerations,
and possibly a Doppler Velocity Log (DVL) to measure the
linear velocity of the robotic platform. Note that localization
using inertial measurements corrupted by biases does not
ensure bounded error on the position estimate for unlimited
time.

All these technique have been used in several self-
localization problems, which are a fundamental part of au-
tonomous vehicle navigation. In order to estimate its position,
a vehicle measure its relative ranges or angles to one or more
beacons, whose positions are known. Complementary, tracking
techniques typically have to measure variables in different
places in order to infer the position of the target object.
This is the case of tracking using TOA sensors. Under some
conditions, LBL and USBL systems can also be used for target
tracking. However, the combined use of simple hydrophones
and acoustic pingers remains considerably less expensive than
LBL and USBL systems.

Optimal sensor positioning for tracking purposes has re-
cently attracted the attention of several researchers [10]–[17].
Numerous algorithm have been developed for estimation. The
most recurrent in the literature are the Kalman filter [18],
the particle filter and least-squares methods. We refer to [19]
for an overview on estimation applied to robotics. In several
problems, the estimate variance depends on the state itself
and some works have tackled the problem so that the state is
guaranteed to be in the vicinity of the optimal observability
points. The Cramer-Rao lower bound (CRLB), which provides
a measure of the achievable performance of an efficient
estimator, has been used in several works to assess such
measure of observability (see, for example, [10], [11], [20]).
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Mostly based on the analysis of the Fisher information matrix
(FIM), whose determinant is the inverse of the CRLB, several
results have been developed for different scenarios, including
two- and three-dimensional problems with homogeneous and
heterogeneous sensors. Different types of sensors that provide
measurements on the bearing, range, received signal strength,
time of arrival, time difference of arrival have been considered.
Significant contributions have been given in [10], [11], [14]
and two common approaches are considered in the literature:
Minimization of the average of the variances (A-optimality)
or minimization of the volume of the confidence regions (D-
optimality) (we refer to [13] for further details).

Aiming at minimizing the volume of the confidence regions,
in [10], Bishop et al. present a summary of the main results for
bearing, ranging, TOA and time-difference-of-arrival (TDOA).
The sensors are considered to be homogeneous with same
variance. The authors provide interesting results presenting the
necessary conditions for optimal positions of the sensors in
two-dimensional problems.

The optimal positioning of TDOA sensors has also been
considered in [12], where the A-optimality criterion was
used to optimize the average variance of the estimate for
homogeneous sensors in 2D scenarios. A solution considering
an extended Kalman filter (EKF) and a nonlinear programming
problem to find the optimal trajectories of the sensor illustrate
the work with interesting simulation results.

Using a common approach for three different optimization
problems, [14] provides an overview on range-only, bearing-
only and received signal strength optimal positioning, in two-
and three-dimensional spaces, extending the work in [21].
Beyond the unification of the theory for the three methods,
the extension of the localization problem to three-dimensional
space constitutes the main contributions of the work.

In the absence of theory supporting the optimal placement of
TOA sensors in three-dimensional spaces, Ray and Mahajan
[16] have proposed a genetic algorithm to solve a geomet-
rically constrained optimization problem, assuming that the
position of the sound source is known. The results obtained
from simulation are very interesting and are in agreement with
the result presented latter on in this paper.

Other works also include the analysis for bearing-only and
combined bearing/ranging optimal positioning of sensors in
[15] and range-only in [17]. Martinez and Bullo [11] proposed
an optimal positioning algorithm for a network of ranging
sensors, which uses an EKF and a decentralized control
method to drive the sensors towards their optimal positions.

As mentioned in previous works ( [14], [16]), the extension
of the optimal positioning of sensor to 3D is not trivial.
Motivated by marine applications, in this paper we present our
results in the context of TOA-only sound source localization
in an unconstrained three-dimensional space. The remainder
of this paper is organized as follows: The section II presents
the main the measurement model and the metric used to
infer about the impact of the measurements on the estimate
confidence. In section III, we present the main result of this
paper and exploit it in a tracking and positioning algorithm

presented in section IV. We finally present the simulation
results in section V.

II. BACKGROUND

As seen before, several methods can be used for localization
of sound source underwater. We are particularly interested in
the TOA problem for which, a minimum of four sensor is
required to solve the problem of position estimation. Note that,
in addition to the position, the time of emission is unknown.
Next, we present the main theoretical background, including
the measurement model and the specific FIM used in this
paper to find the optimal relative positions of the sensors, with
respect to the target, to obtain the best possible estimate, i.e.,
with the least possible uncertainty.

A. Time-of-arrival measurements
Consider a set of N sensors. We write the vector of

observations as

z =

⎡
⎢⎢⎢⎣
z1
z2
...
zN

⎤
⎥⎥⎥⎦ = t+ws =

⎡
⎢⎢⎢⎣
t1
t2
...
tN

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣
ws1

ws2
...

wsN

⎤
⎥⎥⎥⎦ , (1)

where t ∈ R
N is the vector of the times-of-arrival

(TOA), which is corrupted by a noise vector ws =
[ws1 ws2 . . . wsN ]T ∈ R

N .
Note that wsi are variable and depends on several quantities

such as the temperature along the water column, which also
varies according to the horizontal position, and the positions of
both emitter and receivers. Moreover, effects such as multipath
or occlusions influence the distribution followed by wsi . In this
paper, we assume that, due to the proximity of the sensors
to the target, such effects are negligible and we can model
the noise variables to be drawn from a normal distribution
wsi ∼ N (0, σ2

i ), where σ2
i is the variance. We also assume

that the wsi are uncorrelated.
Let us define the position of the target by the vector ηt =

[xt yt zt]
T and the position of the i-th sensor placed on the

robots as ηsi = [xsi ysi zsi ]
T , i = 1, ..., N , where N ≥ 4 in

the present case. Therefore, the relative positions are given by

η̃i = ηsi − ηt, i = 1, ..., N. (2)

The entries of the vector t are then given by:

ti =
√

η̃Ti η̃i/cs + tt. (3)

We can note that η̃i and tt are unknown, hence the need for
four sensors to determine the three-dimensional position of the
target.

B. The Fisher information matrix
We define the measurement likelihood function ft

(
z, t(ηt)

)
and determine the entries of the Fisher information matrix
I(ηt) ∈ R

4×4, given by (see [10] and [11]) as

[I(ηt)]kl = (4)

E
{ ∂

∂(ηt)k
ln

(
ft
(
z, t(ηt)

)) · ∂

∂(ηt)l
ln

(
ft
(
z, t(ηt)

))}
,



Fig. 1. Optimal positions of receivers (circles). The target (cross) is located
at the origin. The parameters considered are σi = 10−4 s ∀i.

where E{·} denotes the expected value and the notation [·]ij
is used to identify the matrix entry in the i-th row and j-th
column. Similarly, the notation (·)i is used to denote the i-th
element of a vector.

By assuming that the likelihood ft
(
z, t(ηt)

)
is a Gaussian

function, one can show that the Fisher information matrix
results into

I(ηt) =
(
Jt(ηt)

)T
Σ−1Jt(ηt), (5)

where Jt(ηt) is the Jacobian of the t(ηt) vector function and
Σ = diag(σ2

1 , σ
2
2 , ..., σ

2
N ) is the covariance matrix.

The Jacobian of t(ηt) can be written as

Jt(ηt) = − 1

cs

⎡
⎢⎢⎢⎣
η̃T1 /||η̃1|| cs
η̃T2 /||η̃2|| cs

...
...

η̃TN/||η̃N || cs

⎤
⎥⎥⎥⎦

and, after some algebra, we can write the Fisher information
matrix as follows:

I(ηt) =
1

c2s

⎡
⎣

∑N
i=1

η̃iη̃
T
i

σ2
i ||η̃i||2 −cs

∑N
i=1

η̃i

σ2
i ||η̃i||

−cs
∑N

i=1
η̃T
i

σ2
i ||η̃i||

∑N
i=1

c2s
σ2
i

⎤
⎦ . (6)

In the next section, we present the necessary conditions to
minimize the volume of the confidence region.

III. OPTIMAL POSITIONS OF SENSORS

This section presents the analysis and the conditions to ob-
tain the best achievable performance of an efficient estimator
tracking the position of a sound source using TOA measure-
ments. For the sake of illustration, the Fig. (1) and (2) show the
optimal positions of the sensors and the corresponding FIM
determinant, respectively.

We decompose the Fisher information matrix (6) as

I(ηt) =
1

c2s

[
I1(ηt) I2(ηt)
I3(ηt) I4(ηt)

]
(7)

Fig. 2. Metric value as a function of target position as a function of the
target position in the plane defined by zt = 0. The parameters considered are
cs = 1500 m/s, σi = 10−4 s ∀i ∈ {1, ..., N}.

where

I1(ηt) =

N∑
i=1

η̃iη̃
T
i /(σ

2
i ||η̃i||2)

I2(ηt) = I3(ηt)
T = −cs

N∑
i=1

η̃i/(σ
2
i ||η̃i||)

I4(ηt) = c2s

N∑
i=1

1

σ2
i

.

In order to explore the FIM under the relative angular
position of the target and of the sensors, we express the matrix
in terms of spherical coordinates.⎧⎨

⎩
x̃i = ||η̃i||sθicψi

ỹi = ||η̃i||sθisψi

z̃i = ||η̃i||cθi
, (8)

where s · = sin(·) and c · = cos(·).
The submatrices of the Fisher information matrix thus

become

I1(ηt) =

N∑
i=1

1

σ2
i

⎡
⎣ sθ2i cψ

2
i sθ2i cψisψi sθicθicψi

sθ2i cψisψi sθ2i sψ
2
i sθicθisψi

sθicθicψi sθicθisψi cθ2i

⎤
⎦

I2(ηt) = I3(ηt)
T = −cs

N∑
i=1

1

σ2
i

⎡
⎣sθicψi

sθisψi

cθi

⎤
⎦

I4(ηt) = c2s

N∑
i=1

1

σ2
i

It is interesting to note that, under this scenario, the Fisher
information matrix does not depend on the range between the
sensors and the target but only on the relative angles.

In order to find the optimal position of the sensor to observe
the target, we choose the determinant of the Fisher information
as the metric M for this scenario:

M = det(I(ηt)). (9)



This metric quantifies the amount of information given by
a set of measurements collected by the sensors. Our objective
now is to maximize the amount of information. Therefore our
problem is reduced to finding the set of angles θi and ψi that
maximizes M . We use the D-optimality criterion to derive
the optimal positions of the sensors, that is, we minimize the
volume of the uncertainty ellipsoid [13]. Mathematically, we
want to find the pairs

{θ∗i , ψ∗
i } = argmax

{θi, ψi}
i=1,...,N

M({θi, ψi}). (10)

The main result of this paper is summarized next.
Theorem 1: Consider a set of N TOA sensors with vari-

ances {σ2
i }Ni=1 and relative orientations {θi, ψi}Ni=1, with

respect to the sound source position. The determinant of the
Fisher information matrix, M(·), is maximal and equal to

M∗ = 1
27c6s

(∑N
i=1

1
σ2
i

)4

when the following conditions are
simultaneously satisfied:

N∑
i=1

sθicψi

σ2
i

= 0,

N∑
i=1

sθisψi

σ2
i

= 0,

N∑
i=1

cθi
σ2
i

= 0, (11)

N∑
i=1

s2θicψi

σ2
i

= 0,

N∑
i=1

s2θisψi

σ2
i

= 0, (12)

N∑
i=1

sθ2i c2ψi

σ2
i

= 0,

N∑
i=1

sθ2i s2ψi

σ2
i

= 0, (13)

N∑
i=1

cθ2i
σ2
i

=
1

3

N∑
i=1

1

σ2
i

. (14)

Proof: We first note that the Fisher information matrix is
symmetric. The metric, M , i.e., the determinant of the matrix
can be written in an alternative form as

det
(
I({θi, ψi})

)
=

1

c8s
det(I4)det(I1 − I2I

−1
4 I3) (15)

where the arguments of the matrix Ik, k = 1, ..., 4, were
dropped for clarity.

Since I4 is scalar and positive definite, we note that
I2I

−1
4 I3 ≥ 0 (the proof is simply based on the fact that, for

any x ∈ R
3, xT I2I

−1
4 I3x = I−1

4 xT I2I
T
2 x = I−1

4 (xT I2)
2 ≥ 0

which, in turn, implies that I2I−1
4 I3 is positive semi-definite)

and therefore

M({θi, ψi}) =
1

c8s
det(I4)det(I1 − I2I

−1
4 I3)

≤ 1

c8s
det(I4)det(I1). (16)

Hence, we can conclude that the equality is achieved when
I2 = IT3 = 0 and prove (11).

We focus now our attention on the determinant of I1.
Similarly to the previous step, we decompose the matrix in
blocks as follows:

I1 =

[
A B
C D

]
(17)

with

A =

N∑
i=1

1

σ2
i

[
sθ2i cψ

2
i sθ2i cψisψi

sθ2i cψisψi sθ2i sψ
2
i

]
,

B = CT =

N∑
i=1

1

σ2
i

[
sθicθicψi

sθicθisψi

]
,

D =
N∑
i=1

1

σ2
i

cθ2i .

Under the assumption that I2 = IT3 = 0, we can write

M({θi, ψi}) = 1

c8s
det(I4)det(D)det(A−BD−1C) (18)

Using the same reasoning as above and noting that D is
positive semi-definite and invertible, we have BD−1C ≥ 0.
Therefore, the choice of

B = CT =
N∑
i=1

1

σ2
i

[
s2θicψi

s2θisψi

]
= 0

maximizes the metric M over B = CT . Note that we used
the fact that sθicθi = s2θi. This proves the necessity of (12).
Under this condition, the metric M becomes

M({θi, ψi}) =
1

c8s
det(I4)det(D)det(A)

=
1

c8s
I4Ddet(A) (19)

We concentrate now on maximizing det(A). Using the equal-
ities cψ2

i = (1+ c2ψi)/2 and sψ2
i = (1− c2ψi)/2, we rewrite

the matrix A as

A =
N∑
i=1

1

σ2
i

[
sθ2i (

1
2 + c2ψi

2 ) sθ2i cψisψi

sθ2i cψisψi sθ2i (
1
2 − c2ψi

2 )

]

whose determinant becomes

det(A) =
( N∑

i=1

1

2σ2
i

sθ2i

)2

−
( N∑

i=1

1

2σ2
i

sθ2i c2ψi

2

)2

−
( N∑

i=1

1

2σ2
i

sθ2i s2ψi

)2

(20)

Hence, setting
∑N

i=1
1

2σ2
i

sθ2
i c2ψi

2 =
∑N

i=1
1

2σ2
i
sθ2i s2ψi = 0

maximizes the determinant of A over these terms and verifies
the necessity of (13).

Finally, if the conditions (11)-(13) are verified, the metric
is given by

M =
1

c8s
c2s

N∑
i=1

1

σ2
i

N∑
i=1

1

σ2
i

cθ2i

( N∑
i=1

1

2σ2
i

sθ2i

)2

,

which can be rewritten as

M =
1

c8s
c2s

N∑
i=1

1

σ2
i

N∑
i=1

1

σ2
i

cθ2i

( N∑
i=1

1

2σ2
i

−
N∑
i=1

1

2σ2
i

cθ2i

)2

. (21)



We define ξ =
∑N

i=1
1
σ2
i
cθ2i and the constant α =

∑N
i=1

1
σ2
i

and write, by substitution,

M =
1

c6s
αξ

(1
2
α− 1

2
ξ
)2

.

Note that ξ ∈ [0, α]. It can be shown (by finding the roots of
the derivative with respect to ξ) that the maximal value of M
is reached when ξ = α

3 , or equivalently

N∑
i=1

1

σ2
i

cθ2i =
1

3

N∑
i=1

1

σ2
i

,

which is the same condition as in (14). This ends the proof.

IV. POSITIONING AND ESTIMATION

In the previous section, we have considered that the target
position is perfectly known, which is very unlikely in most of
the real estimation problems. In this section, we propose an
algorithm for estimation and positioning. The estimation algo-
rithm is based on a well-known nonlinear Newton’s method
to solve a nonlinear least-square formulated problem.

The algorithm implemented is composed of two sequential
steps that are iteratively ran whenever a new measurement set
is available:

1) Estimation: Given a set of TOA measurements, the
position of the target is estimated using a least-squares
method. Since the problem is nonlinear, we implement
a Newton’s method which, for each new measurement,
iterates until the difference between the new estimate
and the previous is less than a threshold value or exceeds
a maximum number of iterations;

2) Positioning: Given the estimate, the optimal positions
of the receivers are moved towards their (estimated)
optimal relative positions. We use a gradient descent
algorithm that iteratively computes the directions to
follow and stops after a predefined number of iterations.

We do not address the convergence issues in this paper,
which have a large coverage in specialized literature. Never-
theless, we anticipate that the overall speed performances and
number of iterations that each algorithm requires to obtain the
same estimate and positioning depend on the gains used in the
Newton’s and gradient descent methods.

A. Estimation

In order to estimate the target position, we have formulated
the estimation problem as a nonlinear least-square problem.
The Newton’s method is then applied to find the optimal point
that minimizes a given error function.

We define the state estimate

X̂k =
[
η̂t(k)

T t̂t(k)
]T ∈ R

4 (22)

as the concatenation of the estimated position vector and the
time of emission, where k ∈ N.

Recall that the relative positions of the receivers are given
by η̃i = ηsi − ηt and that the times of arrival are given by
t = [t1, ..., tN ] and define the error vector as

g(ηt, tt) =

⎡
⎢⎣
||η̃1||2 − ν2s (t1 − tt)

2

...
||η̃N ||2 − ν2s (tN − tt)

2

⎤
⎥⎦ . (23)

Given an initial guess estimate of the state estimate X̂0

and a set of measurements composing the entries of z =
[z1, ..., zN ], the state estimate is recursively estimated, until
a given criterion is met, by the Newton’s method applied to
multidimensional nonlinear equations:

X̂k+1 = X̂k −K(Jg(X̂k))
†g

(
η̂t(k), t̂t(k)

)
, (24)

where K > 0 is a scalar gain, Jg(X̂k) stands for the Jacobian
of g evaluated at X̂k for the set of measured times of arrival,
which is given by

Jg(X̂k) = 2·

⎡
⎢⎣
−η̃T1 c2s(t1 − tt)

...
...

−η̃TN c2s(tN − tt)

⎤
⎥⎦
|η̃i=ηsi

−η̂t(k),tt=t̂t(k),ti=zi

,

and (·)† denotes the pseudo-inverse.

B. Positioning algorithm

A very simple positioning algorithm can be obtained by
applying a gradient descent algorithm to a function that takes
into account the individual errors of the constraints in (11)-
(14). For this purpose, we define the error functions ei as the

square of the conditions above, i.e. e1 =
(∑N

i=1
1
σ2
i
sθicψi

)2

,

e2 =
(∑N

i=1
1
σ2
i
sθisψi

)2

, e3 =
(∑N

i=1
1
σ2
i
cθi

)2

, e4 =(∑N
i=1

1
σ2
i
s2θicψi

)2

, e5 =
(∑N

i=1
1
σ2
i
s2θisψi

)2

, e6 =(∑N
i=1

1
σ2
i
sθ2i c2ψi

)2

, e7 =
(∑N

i=1
1
σ2
i
sθ2i s2ψi

)2

, e8 =(∑N
i=1

1
σ2
i
cθ2i − 1

3

∑N
i=1

1
σ2
i

)2

.
We formulate the problem using a potential function

V (ηs1 , ..., ηsN ) =

8∑
i=1

ei(ηs1 , ..., ηsN ), (25)

which is used to iteratively update the receiver positions using
the straightforward gradient descent algorithm:
⎡
⎢⎣
ηs1(l + 1)

...
ηsN (l + 1)

⎤
⎥⎦ =

⎡
⎢⎣
ηs1(l)

...
ηsN (l)

⎤
⎥⎦+KV

⎡
⎢⎣
∇ηs1

V
...

∇ηsN
V

⎤
⎥⎦∣∣

ηsi
=ηsi

(l)

, (26)

where KV > 0 is a scalar gain and ∇v(·) denotes the gradient
of a function with respect to a vector v.



Fig. 3. Error evolution

Fig. 4. Step increment

V. RESULTS

We have conducted simulations to validate our approach
and assess its robustness. For the results presented next, we
assumed that the variances are equal for all the sensors, i.e.
σi = σ for all i, and we have considered the gains K = 10−1

and KV = 10−1 · σ4.
The initial positions of the receivers were generated ran-

domly within a cube of side equal to 100 meters. To ensure
that the position is observable, we have considered the initial
configurations that verify M ≥ M only. Otherwise, the
estimation algorithm can originate poor estimates, which could
lead to divergence. For the simulations, we have set the noise
distribution to be uniform in the interval [−σ, σ]. Two cases
were considered: σ = 10−4 s and σ = 10−2 s. In underwater
environments, the former value is realistic when using digital
signal processing. The latter was exaggerated in order to assess
the robustness of the method.

For each epoch, a new set of times of arrival is drawn, which
is subsequently used to estimate the position of the target. For
what concerns optimal placement of sensors, the positioning
algorithm is iterated five times in each epoch, after the esti-
mate has been computed. The recursive estimation algorithm
is stopped after the sum of the increment squares verifies
(K(Jg(X̂k))

†g)T (K(Jg(X̂k))
†g) < 10−30 (see (24)) or has

been iterated more than one thousand times. These values have
been selected according to practice and are justified in Fig. (3)
and Fig. (4), where one can see the evolution of the estimate
error and the respective estimate increment for a simulation
considering σ = 10−4 s. In Fig. (3), the plot shows that most
of the estimation steps do not use more than five hundred
iterations because the increment becomes small and satisfies
the first condition.

The Fig. 5 depicts the trajectories (lines) and the final
positions (circles) of the mobile receivers for σ = 10−4 s.
The cross (at the origin) indicates the position of the sound
source. The trajectories are smooth and remain very stable

Fig. 5. Optimal positioning
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after tracking the sound source. In Fig. 8, we show the position
error resulting from the estimation algorithm. The estimate
error rapidly decreases from the first to the second epoch and
remains around 0.1 meters.

The Fig. 7 shows the evolution of the trajectories of the
receivers. The lines display coarser trajectories than in the
previous case. This is the result of a larger noise that originates
coarser estimates that vary more significantly. The optimal
positions of the sensor are adjusted after each new estimate
and consequently become more noisy. Larger relative distances
would make the trajectory smoother as the sensitivity of a
change on the estimate would become smaller, i.e., the corre-
sponding angles {θi, ψi} would suffer less from variations on
estimate.

VI. CONCLUSIONS

In this paper, we have presented the solution for optimal
placement of TOA sensors in three-dimensional spaces. Based
on the FIM, we have derived the necessary conditions to min-
imize the volume of the confidence region and consequently
improve the estimate. Using the geometric properties of the
optimal sensor positions, we illustrated the results obtained
in this paper using a two-step algorithm that sequentially
considers estimation and placement. The simulation demon-
strated the robustness of the approach and leaves space for
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further improvements and analysis. The implementation of this
approach into real robots would require special attention on
sensor motions. In particular, the limited speed of the vehicles
and the precision on positioning would constitute the main
constraints. A proper tuning of gain and/or saturating the
position increments would surely solve the former. The second
constraint implies that robotic platform equipped with precise
navigation sensors and control laws have to be employed to
improve the tracking process.
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