Advances in Manufacturing Technology XXX

The urgent need to keep pace with the accelerating globalization of manufacturing in the 21st century has produced rapid advancements in manufacturing technology, research and expertise.

This book presents the proceedings of the 14th International Conference on Manufacturing Research (ICMR 2016), entitled Advances in Manufacturing Technology XXX. The conference also incorporated the 31st National Conference on Manufacturing Research, and was held at Loughborough University, Loughborough, UK, in September 2016. The ICMR conference is renowned as a friendly and inclusive environment which brings together a broad community of researchers who share the common goal of developing and managing the technologies and operations key to sustaining the success of manufacturing businesses.

The proceedings is divided into 14 sections, including: Manufacturing Processes; Additive Manufacturing; Manufacturing Materials; Advanced Manufacturing Technology; Product Design and Development, as well as many other aspects of manufacturing management and innovation. It contains 92 papers, which represents an acceptance rate of 75%.

With its comprehensive overview of current developments, this book will be of interest to all those involved in manufacturing today.
Advances in Transdisciplinary Engineering

Advances in Transdisciplinary Engineering (ATDE) is a peer-reviewed book series covering the developments in the key application areas of product quality, production efficiency and overall customer satisfaction. ATDE will focus on theoretical, experimental and case history-based research, and its application in engineering practice. The series will include proceedings and edited volumes of interest to researchers in academia, as well as professional engineers working in industry.

Editor-in-Chief
Josip Stjepandić, PROSTEP AG, Darmstadt, Germany

Co-Editor-in-Chief
Richard Curran, TU Delft, The Netherlands

Advisory Board
Cees Bil, RMIT University, Australia
Milton Borsato, Federal University of Technology, Paraná-Curitiba, Brazil
Shuo-Yan Chou, "Taiwan Tech, Taiwan, China
Fredrik Egl, Linköping University
Parisa Ghodous, University of Lyon, France
Kazuo Hikata, University of Tokyo, Japan
John Mo, RMIT University, Australia
Essam Shabah, Cranfield University, UK
Mike Sobolewski, TTU, Texas, USA
Amy Trappey, NTU, Taiwan, China
Wim J.C. Verhagen, TU Delft, The Netherlands
Wensheng Xu, Beijing, Huazhong University, China

Volume 3

Recently published in this series:

Vol. 2.

Vol. 1.

ISSN 2352-751X (print)
ISSN 2352-7528 (online)
Contents

Preface and Acknowledgements
Yee Mey Goh and Keith Case

Organising Committee

Part 1. Keynote

The Hidden Information and Its Potential in Manufacturing Data (abstract)
Tom Neat and Felix Ng

Part 2. Manufacturing Processes

Toolpath Geometry and High Speed Machine Axis Motion
L. Chanda and R.J. Cripps

Numerical Modelling and Simulation of Temperature Distributions in End Milling
Sunday Joshua Ojolo, Ikukunoluwa Aina
and Gbeminiyi Musibau Sobamowo

Investigating the Sensitivities of Tool Wear When Applied to Monitoring Various Technologies for Micro Milling and Drilling
James M. Griffin and Hala Abdelaziz

Vibro-Impact Machining – An Application in Surface Grinding
Andre D.L. Batako, Heisum Ewad, Grzegorz Bechcinski and Witold Pawlowski

Structural Transformations of Polymers Using Laser Irradiation
Jimshier N. Aneli, Nana V. Bakradze, Teimuraz N. Dumbadze and Andre D.L. Batako

Finite Element Analysis of Single Point Incremental Forming
Spyridon Kotis and Jonathan Corney

Injection Moulding – Properties Customisation by Varying Process Conditions
Tino Meyer, Paul Sherratt, Andy Harland, Barry Haworth, Chris Holmes and Tim Lucas

Simulation of Material Removal in Mould Polishing for Polymer Optic Replication
Rui Almeida, Rainer Börret, Wolfgang Rimkus, David K. Harrison and Anjali De Silva

Fabrication of Micro Components with MSZ Material Using Electrical-Field Activated Powder Sintering Technology
Hasan Hijji, Yi Qin, Kunlan Huang, Song Yang, Muhammad Bin Zulkibli and Jie Zhao
Part 3. Additive Manufacturing

Challenges of Redesigning a Planetary Transmission to Be Made by Additive Manufacturing
Adrian Cubillo and Suresh Perinpanayagan 31

Investigating Relationships Between Laser Metal Deposition Deployment Conditions and Material Microstructural Evolution
Mike Wilson, Grant Payne, Abdul Ahmad, Stephen Fitzpatrick, William Ion and Paul Xirochakis 37

Remanufacturing H13 Steel Moulds and Dies Using Laser Metal Deposition
Grant Payne, Abdul Ahmad, Stephen Fitzpatrick, Paul Xirochakis, William Ion and Michael Wilson 33

Additive and Hybrid Manufacturing Processes
Mark Ethy and Dean Carran 99

Advancement in Additive Manufacturing & Numerical Modelling
Considerations of Direct Energy Deposition Process
Quanren Zeng, Zhenhai Xu, Yankang Tian and Yi Qin 104

Part 4. Manufacturing Materials

The Effects of Composite Microstructure on Normalized Maximum Principal Stress Under Transverse Tension and Shear of a Unidirectional Carbon Fibre Reinforced Composite
Rui Cai and Jesper Christensen 113

Factors Influencing Structural Properties of Low Silicon Bairite Cast Irons
Nugzar Khidasheli, Gocha Botaradze, Nana Botaradze, Temurzaz Dumbadze and Andre D.L. Batako 119

Investigation of Machining Parameters for Different Microstructures of AISI P20 in Wire-Cut EDM
Sadaf Zainoo, Adeel Shehzad, Muhammad Quaiser Saleem, Muhammad Ayyaz, M. Ehsan and Ali Masqood 125

Nanoscale Elastic Recovery of Silicon While Cutting at Different Temperatures: An MD Simulation-Based Study
Saeed Zare Chavoshi and Xichun Luo 131

Part 5. Advanced Manufacturing Technology

A Path Planning Algorithm for a Materials Handling Gantry Robot and its Validation by Virtual Commissioning
Ruth Fleisch, Robert Schöch, Thorsten Prante and Reinhard Pfafferott 169

Integrating Optimisation with Simulation for Flexible Manufacturing System
Boyang Song, Winda Hutabarat, Ashutosh Tiwari and Shane Enticott 175

Automatic Generation of a Detailed Outfitting Planning and Determining the Effect of Multi-Skilled Mounting Teams
Christopher Rose and Jenny Coenen 181

Development of PID Controller for Vibratory Milling
Wael Najj Alharbi, Andre Batako and Barry Gomm 187

An Application of Autoregressive Hidden Markov Models for Identifying Machine Operations
Dimitrios Pantazis, Adrian Ayastuy Rodriguez, Paul P. Conway and Andrew A. West 193

Improving Data Accuracy in Simulation of Flexible Manufacturing Systems
Jasmina Rybicka, Ashutosh Tiwari and Shane Enticott 199

AFRC's Image Processing Platform: A High Speed User-Friendly Architecture for Real Time Object Detection in Forging Processes
Daniel Kahani and Remi Zante 205

A Multi Degree of Freedom Actuation System for Robot and Machine Vision Industrial Applications
Mfortaw Elvis Asu, Mahmoud Shafig and Ilia Oraifge 211

A Study of Linear Heat Transfer Gradients on 3D Printed Specimens
Robert Benham and Foyaz Rehman 137

Analysis and Impacts of Chips Formation on Hole Quality During Fibre-Reinforced Plastic Composites Machining
Sikiru Olanrewaju Ismail, Hom Nath Dhakal, Ivan Popov and Johnny Beanbrand 143
Part 6. Human Aspects of Manufacturing

Deployment of Assisted Living Technology Using Intelligent Body Sensors Platform for Elderly People Health Monitoring
Riyad Elsaleh and Mahmoud Shafik

Motivation and Learning in Manufacturing Industries
Shahtal Mat, Keith Case, Shahrul Mohamad and Yee Mey Goh

Cognitive Aspects Affecting Human Performance in Manual Assembly
Anna Brolin, Keith Case and Peter Thorvald

Ergonomic Risk Assessment – A Case Study of a Garment Manufacturing Industry
Anjiad Hussain, Iqra Javed, Keith Case, Ashfaq Ahmad and Nadeem Safdar

Distributed Cognition in Manufacturing: Collaborative Assembly Work
Rebecca Andreasson, Jessica Lindblom and Peter Thorvald

Agile Assembly Planning for Multi-Variant Production Based on 3D PDF
Felix Kuhl, Stefan Rathoff, Josip Stipanidić and Klaus Thaterkorst

The Impacts of Ageing on Manufacturing Sectors
Renuga Naganajan and Patricia Ramos

Part 7. Product Design and Development

Design Optimisation of Passive Humidification Device for Intensive Care Medical Applications
Mahmoud Shafik and Anne Lechevrel

Evaluation of 3D Renewable Micro Power Station for Smart Grid Applications
Moglo Komlavi, Mahmoud Shafik and Mforfaw Elvis Ashu

Design & Development of a Bicycle Cleat Adapter
Fayyaz Rehman and Santiago Diaz Montalvo

3D Alignment for Interactive Evolutionary Design
Theodora Retepiti, Ian J. Graham and Yee Mey Goh

Design and Manufacturing of a Miniature Insulin Administration Device for Non Compliant Diabetic Patients of Kingdom of Saudi Arabia (KSA)
Ifan Anjum Manarvi and Nader Mahir Kamel Matta

Identifying Sequence Maps or Locus to Represent the Genetic Structure or Genome Standard of Styling DNA in Automotive Design
Shahriman Zainal Abidin, Azlan Othman, Zafruddin Shamsuddin, Zaidi Samudin, Halim Hassan and Wan Aeri Wan Mohamed

Design and Manufacturing of a Fire Protection Suit Through Reverse Engineering
Ifan Anjum Manarvi and Haris Rehman

Part 8. Digital Manufacturing (Industrie 4.0)

An Intelligent Anti-Collision System for Electric Vehicles Applications
Ikenma Chinaziokpere Ijeh and Mahmoud Shafik

A Case Study Analysis of the Application of Design for Manufacture Principles by Industrial Design Students
Russell Marshall and Tom Page

Industrie 4.0 Implementations in the Automotive Industry
Diana Segura-Velandia, Aaron Neal, Paul Goodall, Paul Conway and Andrew West

Component Detection with an On-Board UHF RFID Reader for Industrie 4.0 Capable Returnable Transit Items
Aaron Neal, Diana Segura-Velandia, Paul Conway and Andrew West

Factory Automation and Information Technology Convergence in Complex Manufacturing
Ip-Shing Fan and Leon Oswin

Optimising Mixed Model Assembly Lines for Mass Customisation: A Multi Agent Systems Approach
Olutunde Banjo, David Stewart and Maria Fasli

A Data Management System for Identifying the Traceability of Returnable Transit Items Using Radio Frequency Identification Portals
Paul Goodall, Aaron Neal, Diana Segura-Velandia, Paul Conway and Andrew West

Product Lifecycle Management Enabled by Industrie 4.0 Technology
Filipe Ferreira, José Faria, Américo Azevedo and Ana Luisa Marques

Part 9. Sustainable Manufacturing

Development of a Simulation-Based Approach to Smart Management of Energy Consumption in Buildings and Their Implementation
A.N.R. Pour and K. Cheng

A Decision Support Tool for Improving Value Chain Resilience to Critical Materials in Manufacturing
Liam Gardner and James Colwill

Lean & Green, How to Encourage Industries to Establish Pro-Environmental Behaviour
Elbieta Pawlik, Dagmara Gutowska, Remigiusz Horbal, Zofia Mańczuk, Robert Miehe, Ivan Bogdanov and Ralph Schneider

A Manufacturing Approach to Reducing Consumer Food Waste
Aicha Jellli, Elliot Woolley, Guillermo Garcia-Garcia and Shahn Rahimfard
Part 12. Cost Engineering and Forecasting

Process Selection Using Variation and Cost Relations
Vincent McKenna, Yan Jin, Adrian Murphy, Michael Morgan, Caroline McCloy, Colm Higgins and Rory Collins
465

Cost Modelling for Aircraft in a Multi-Disciplinary Design Context
Davide Di Pasquale, David Gore, Mark Sovill, Timoleon Kipourou and Carren Holden
471

Management of Promotional Activity Supported by Forecasts Based on Assorted Information
Cátia Ribeiro, José Manuel Oliveira and Patricia Ramos
477

Sales Forecasting in Retail Industry Based on Dynamic Regression Models
José Manuel Pinho, José Manuel Oliveira and Patricia Ramos
483

Evaluating the Forecasting Accuracy of Pure Time Series Models on Retail Data
Patricia Ramos, José Manuel Oliveira and Rui Rebeiro
489

Part 13. Lean and Quality Management

Development of Lean Six-Sigma Conceptual Implementation Model for Manufacturing Organisations
Sameh M. Saad and Mohamed Khambham
497

Do Inspections Really Help?
Moshe Eben Chaim
503

The Quality Journey of Greek SMEs
G. Sainis, G. Haritos, Th. Kriemadis and M. Fowler
508

Creating Industrially Relevant Environments for Teaching Lean Manufacturing at Karlstad University
Lasse Jacobsson, Anders Wickberg and Leo De Vin
514

Part 14. Decision Support and Optimisation

Critical Success Factors for In-House Production, Partial Production or Outsourcing in Garment Industry
C.S. Libânio, Fernanda Gonçalves Amaral and Sérgio Almeida Migowski
523

Fuzzy Analytic Hierarchy Process for the Selection of Maintenance Policies Within Petroleum Industry
Abdel M. Mohamed and Sameh M. Saad
529

Application of a Multivariate Process Control Technique for Set-Up Dominated Low Volume Operations
Steven Cox, Scott Anderson, Neil Gray, Oliver Vogt and Apostolos Kotsialos
535
Standardization of Smart Manufacturing Change Management
Nils Macke, Stefan Buhlendorf and Josip Sjepandić
541

An Analytical Hierarchy Process Based Evaluation of Global Facility Location Methodologies
Haji Muhammad Khurram Ali, Khalid Akhtar and Mirza Jahanzaib
247

Influencing Factors for Implementing Automation in Manufacturing Businesses – A Literature Review
Simon Micheler, Yee Mey Goh and Niels Lohse
553

Part 15. Manufacturing Business Innovation

Productisation Business Model in Non-OEM Aero-Engine MRO Service Providers
Aris Wibowo, Benny Tjahjono and Tetsuo Tomiyama
561

Operational Acceptance Testing of Manufacturing Process Innovation Initiatives
Alireza Javaeherna and Funlade T. Sunmola
297

Selecting Innovation Deployment Risk Response Strategies via Simulation Optimisation
Funlade T. Sunmola and Alireza Javaeherna
572

Subject Index
579

Author Index
583
5. Conclusions

Sales forecasting is a major challenge in retail industry particularly in the context of continuous promotional activity. In this work dynamic regression models based on price and promotional information of the focal product and its competitors, and Fourier terms to accommodate multiple seasonality, are used for sales forecasting. The forecasting models overall performance is analyzed for the full test period and for the periods with and without promotions. The results show that the dynamic regression models generate substantially more accurate forecasts than pure time series models for all periods studied.

Acknowledgements

Project “TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of Concept with Industrial Impact/NORTE-01-0145-FEDER-000020” is financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and the European Regional Development Fund (ERDF).

References

Evaluation of the Forecasting Accuracy of Pure Time Series Models on Retail Data

Patricia RAMOS, José Manuel OLIVEIRA and Rui REBELO

*INESC Technology and Science, Campus da FEUP, 4145-465 Porto, PORTUGAL.
*School of Accounting and Administration of Porto, Polytechnic Institute of Porto, 4465-004 S. Mamede de Infesta, PORTUGAL.
*Faculty of Economics, University of Porto, 4200-464 Porto, PORTUGAL.

Abstract. Forecasting future sales is one of the most important issues that is beyond all strategic and planning decisions in effective operations of retail supply chains. For profitability retail businesses, accurate sales forecasting is crucial in organizing and planning purchasing, production, transportation and labor force. Retail sales series belong to a special type of time series that typically contain strong trend and seasonal patterns, presenting challenges in developing effective forecasting models. This paper compares the forecasting performance of state space models and ARIMA models. The forecasting performance is demonstrated through a case study of retail sales of five different categories of women footwear: Boots, Booties, Flats, Sandals and Shoes. An approach based on cross-validation is used to identify automatically appropriate state space and ARIMA models. The forecasting performance of these models is also compared by examining the out-of-sample forecasts. The results indicate that the overall out-of-sample forecasting performance of ARIMA models evaluated via RMSE, MAE and MAPE is better than state space models. The performance of both forecasting methodologies in producing forecast intervals was also evaluated and the results indicate that ARIMA produces slightly better coverage probabilities than state space models for the nominal 95% forecast intervals. For the nominal 80% forecast intervals the performance of state space models is slightly better.

Keywords. Pure time series models; forecasting accuracy; retailing; cross-validation

1. Introduction

Time series often exhibit strong trend and seasonal variations presenting challenges in developing effective forecasting models. How to effectively model time series in order to improve the quality of forecasts is still an outstanding question. State space and Autoregressive Integrated Moving Average (ARIMA) models are the two most widely-used approaches to time series forecasting, and provide complementary methodologies to the problem. While exponential smoothing methods are based on a description of trend and seasonality in the data [1], ARIMA models aim to describe the autocorrelations in the data [2]. The ARIMA forecasting framework originally developed by Box et al. [3] involves an iterative three-stage process of model selection, parameter estimation and model checking. A statistical framework for exponential
smoothing methods was recently developed for state space models called ETS models [4]. Identifying the proper autocorrelation structure of a time series is not an easy task in ARIMA modelling. Identifying an appropriate state space model for a time series can also be difficult. However, the usual forecast accuracy measures can be used for identifying a model provided the errors are computed from data in a test set and not from the same data that were used for model estimation. In this work, a cross-validation procedure is used to automatically identify an appropriate state space model and an appropriate ARIMA model for a time series. That is, the in-sample data are split into a training set and a testing set. The training set is used to estimate the models' parameters and the testing set is used to choose the final model. This approach is presented in the paper through a case study of retail sales time series of different categories of women's footwear from a Portuguese retailer that by exhibiting complex patterns present challenges in developing effective forecasting models. After identifying appropriate state space and ARIMA models, it is reasonable to compare the forecasting accuracy of both methodologies by examining the out-of-sample forecasts, which is also done in the paper. The remainder of the paper is organized as follows.

2. Data

The brand Foreva was born in September 1984. Since the beginning, the company is known for offering a wide range of footwear for all seasons. The geographical coverage of Foreva shops in Portugal is presently vast as it has around 70 stores opened to the public with most of them in Shopping Centers. In this study, monthly sales of the five categories of women's footwear of the brand Foreva: Boots, Booties, Flats, Sandals, and Shoes, from January 2007 to April 2012 (64 observations), are analyzed. These time series are plotted in Figure 1. The Boots and Booties categories are sold primarily during the winter season while the Flats and Sandals categories are sold primarily during the summer season. The Shoes category is sold throughout the year. The winter season starts on September 30th of one year and ends on February 27th of the next year. The summer season starts on February 28th and ends on September 29th of each year. With the exception of Flats, the series of all the other footwear present a strong seasonal pattern and are obviously non-stationary. The Boots series remains almost constant in the first two seasons, decreases slightly in 2009-2010, then recovers in 2010-2011 and finally decreases again in 2011-2012. The Booties series also remains fairly constant in the first two seasons and then maintains an upward trend movement in the next three seasons. The Flats series seems more volatile than the other series and the seasonal fluctuations are not so visible. In 2007 the sales are clearly higher than the rest of the years. An exceptional increase of sales is observed in March and April of 2012. The Sandals series increases in 2008 remaining almost constant in the next season, then increases again in 2010 remaining almost constant in the last season. The Shoes series presents an upward trend in the first two years and then reverses to a downward movement in the last three years. The seasonal behavior of this series shows more variation than the seasonal behavior of the other series. In general there is a small variation in the variance with the level, and so it may be necessary to make a logarithmic transformation to stabilize the variance. In each case, the in-sample period for model fitting and selection was specified from January 2007 to October 2011 (first 58 observations), while the out-of-sample period for forecast evaluation was specified from November 2011 to April 2012 (last 6 observations). The last 6 observations of in-sample data (May-October 2011) were used as the validation and testing sample and the rest of observations were used for model estimation (January 2007 to April 2011). The model whose performance in the testing sample was selected as the final model for further evaluation in the out-of-sample.

Figure 1. Monthly sales of the five footwear categories between January 2007 and April 2012.

3. Empirical study

To find appropriate ETS and ARIMA models for a time series is not an easy task. Both forecast methodologies are subjective and usually difficult to apply [5]. The challenge was to specify a procedure to automatically identify an appropriate ETS and an appropriate ARIMA model for a time series. We started by calculating the sample ACF and the sample PACF for the five time series (not shown). In general the sample ACF's decayed very slowly at regular lags and at multiples of seasonal period 12 and the sample PACFs had a large spike at lag 1 and cut off to zero after lag 2 or 3. This suggested a monthly seasonal difference and, if necessary, regular differences to achieve stationarity. To be fair and to be able to compare more accurately the forecasting performance of both modeling approaches, for each time series all possible ETS models and all ARIMA \((p, d, q) \times (P, D, Q)\)$_m$ models where p and q could take
values from 0 to 5 and \(P \) and \(Q \) could take values from 0 to 2 were fitted using the training set from January 2007 to April 2011. Twelve types of data were considered on both cases: raw data \((d = D = 0)\), first differenced data \((d = 1, D = 0)\), second differenced data \((d = 2, D = 0)\), seasonally differenced data \((d = 0, D = 1)\), first and seasonally differenced data \((d = 2, D = 1)\), and second and seasonally differenced data \((d = 2, D = 1)\); the same orders of differencing were also applied to logarithm transformed data. Higher orders of differencing are unlikely to make much interpretable sense and should be avoided [4]. The model which had the lowest Root Mean Squared Error (RMSE) value on the forecasts of the testing sample (from May 2011 to October 2011) and passed the Ljung-Box test with a significance level of 5% was selected from all fitted ETS and ARIMA models. RMSE was used for the model selection since it is more sensitive than the other measures of large error. It should be mentioned that when models are compared using Akaike’s Information Criterion (AIC) or Bayesian Information Criterion (BIC) values, it is essential that all models have the same orders of differencing and the same transformation. However, when comparing models using a testing set, it does not matter how the forecasts were produced, the comparisons are always valid even if the models have different orders of differencing and/or different transformations. This is one of the advantages of the cross-validation procedure used here – to be able to compare the forecast performance of models that have different orders of differencing and/or different transformations. Table 1 gives for each time series the selected model on each approach. For the Shoes series none of the fitted ETS models passed the Ljung-Box test [4] and so the model with the lowest RMSE value on the forecasts of the testing sample was selected. It can be observed that both transformation and differencing are important for improving ARIMA’s ability to model and forecast time series that contain strong trend and seasonal components. The log transformation was applied to three of the five time series. With the exception of Flats, all other time series were differenced: second-order differences were made in Boots and Sandals series and first differences were made in Booties and Shoes series. Only the Sandals time series was seasonally differenced. Transformation and differencing are not so significant for ETS models. Log transformation is made only on Boots series and none of the series is differenced. After identifying appropriate ETS and ARIMA models, it is reasonable to compare the forecasting accuracy of both approaches. Then, for each time series, both selected models were re-estimated using the in-sample data (January 2007 to October 2011) and then used to forecast on the out-of-sample period (from November 2011 to April 2012). The results of the forecast error measures (Root Mean Squared Error - RMSE, Mean Absolute Error - MAE, Mean Absolute Percentage Error - MAPE) define in [6] for this period are presented in Table 1. The results show that the overall out-of-sample forecasting performance of ARIMA models evaluated via RMSE, MAE and MAPE is better than ETS models. For Boots time series, the RMSE, MAE and MAPE are respectively 73%, 80% and 44% smaller. For Booties time series, the RMSE, MAE and MAPE are respectively 55%, 43% and 56% smaller. For Flats time series, the MAE and MAPE are respectively 2% and 7% smaller. The RMSE value of the ETS model is smaller than the RMSE value of the ARIMA model but only by 4%. For Sandals time series, the RMSE, MAE and MAPE are respectively 39%, 33% and 90% smaller. For Shoes time series, the RMSE and MAE are respectively 38% and 19% smaller. The MAPE value of ETS model is smaller than the MAPE value of ARIMA model but only by 11%. Another observation from Table 1 is that judging from MAPE, which does not vary with the magnitude of the actual values of the time series, both the ARIMA and ETS models forecast Shoes series more accurately than the other time series (23.87% vs. 26.33%, 33.75%, 51.25%, 101.01% and 21.15% vs. 46.98%, 77.20%, 55.22%, 1013.69%) despite the variation present in its seasonal behavior. It is also interesting to observe that although the ETS model selected for the Shoes series have failed the Ljung-Box test, it gave better results than the ARIMA model in terms of MAPE (21.15% vs. 23.87%), which reinforces the robustness of our rule for model selection. The performance of both forecasting methodologies in producing forecast intervals was also evaluated. Table 1 shows the percentage of times that the nominal 80% and 95% forecast intervals contain the true observations. The results indicate that ARIMA produces slightly better coverage probabilities than ETS for forecast intervals. For the nominal 80% forecast intervals, the performance of ETS is slightly better. ETS produces better coverage probabilities in Booties and Flats time series and ARIMA produces better coverage probabilities in Shoes series. It can also be observed that these forecasting methods slightly underestimate the coverage probabilities for the nominal 80% forecast intervals. To see the individual point forecasting behavior, the actual data versus the forecasts from both ETS and ARIMA models were plotted (Figure 2). In general, it can be seen that both state space and ARIMA models have the capability to forecast the trend movement and seasonal fluctuations fairly well. As expected, the exceptional increase in the sales of Flats observed in March and April 2012 was not predicted by both models which under-forecasted the situation. This fact explains the larger value of MAPE especially in the case of the ARIMA model (51.24% vs. 26.35%/33.75%/23.87%). One of the limitations of MAPE is having huge values when data may contain very small numbers. The large value of MAPE of both models for the Sandals time series is explained by this fact since during the out-of-sample period there are almost no sales (close to zero).

Table 1. Out-of-sample comparison between state space models and ARIMA models.

<table>
<thead>
<tr>
<th>Time series</th>
<th>Model</th>
<th>RMSE</th>
<th>MAE</th>
<th>MAPE</th>
<th>Nominal coverage 80%</th>
<th>Nominal coverage 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boots</td>
<td>Log ETS(A,A,A)</td>
<td>3077.71</td>
<td>2267.08</td>
<td>46.98</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Log ARIMA (2, 2, 3) × (0, 0, 2)</td>
<td>828.13</td>
<td>469.01</td>
<td>26.35</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>ETS(M,M,M)</td>
<td>954.10</td>
<td>654.59</td>
<td>77.20</td>
<td>83</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>ARIMA (1, 1, 2) × (0, 0, 1)</td>
<td>429.19</td>
<td>371.44</td>
<td>33.75</td>
<td>67</td>
<td>100</td>
</tr>
<tr>
<td>Booties</td>
<td>ETS(A,A,A)</td>
<td>1194.47</td>
<td>881.57</td>
<td>55.22</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Log ARIMA (4, 0, 2) × (0, 0, 1)</td>
<td>1244.01</td>
<td>861.65</td>
<td>51.25</td>
<td>33</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>ETS(M,M,M)</td>
<td>2832.59</td>
<td>1415.86</td>
<td>1013.69</td>
<td>83</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>ARIMA (1, 1, 2) × (0, 1, 0)</td>
<td>1728.71</td>
<td>945.07</td>
<td>101.01</td>
<td>83</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>ETS(M,M,M)</td>
<td>1279.73</td>
<td>878.08</td>
<td>21.15</td>
<td>50</td>
<td>67</td>
</tr>
<tr>
<td>Sandals</td>
<td>Log ARIMA (5, 1, 3) × (0, 0, 1)</td>
<td>791.62</td>
<td>712.53</td>
<td>23.87</td>
<td>67</td>
<td>100</td>
</tr>
</tbody>
</table>

4. Conclusions

In this work, a cross-validation procedure is used to automatically identify an appropriate ARIMA model and an appropriate ETS model for a time series. The modeling results indicate that both transformation and differencing are important for improving ARIMA’s ability to model and forecast time series that contain strong trend and seasonal components. The out-of-sample forecasting results show that the overall
performance of ARIMA models evaluated via RMSE, MAE and MAPE is slightly better than state space models. The improvements in RMSE found were between 38% and 73%; in MAE were between 2% and 80%; and in MAPE were between 7% and 90%.

Figure 2. Out-of-sample forecasting comparison for the five footwears categories.

Acknowledgements

Project "TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of Concept with Industrial Impact/NORTE-01-0145-FEDER-000020" is financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund.

References