Advances in Manufacturing Technology XXX

The urgent need to keep pace with the accelerating globalization of manufacturing in the 21st century has produced rapid advancements in manufacturing technology, research and expertise.

This book presents the proceedings of the 14th International Conference on Manufacturing Research (ICMR 2016), entitled Advances in Manufacturing Technology XXX. The conference also incorporated the 31st National Conference on Manufacturing Research, and was held at Loughborough University, Loughborough, UK, in September 2016. The ICMR conference is renowned as a friendly and inclusive environment which brings together a broad community of researchers who share the common goal of developing and managing the technologies and operations key to sustaining the success of manufacturing businesses.

The proceedings is divided into 14 sections, including: Manufacturing Processes; Additive Manufacturing; Manufacturing Materials; Advanced Manufacturing Technology; Product Design and Development, as well as many other aspects of manufacturing management and innovation. It contains 92 papers, which represents an acceptance rate of 75%.

With its comprehensive overview of current developments, this book will be of interest to all those involved in manufacturing today.

Proceedings of the 14th International Conference on Manufacturing Research, incorporating the 31st National Conference on Manufacturing Research, September 6 – 8, 2016, Loughborough University, UK.
Advances in Transdisciplinary Engineering

Advances in Transdisciplinary Engineering (ATDE) is a peer-reviewed book series covering the developments in the key application areas of product quality, production efficiency and overall customer satisfaction. ATDE will focus on theoretical, experimental and case history-based research, and its application in engineering practice. The series will include proceedings and edited volumes of interest to researchers in academia, as well as professional engineers working in industry.

Editor-in-Chief
Josip Stjepandić, PROSTEP AG, Darmstadt, Germany

Co-Editor-in-Chief
Richard Curran, TU Delft, The Netherlands

Advisory Board
Cees Bil, RMIT University, Australia
Milton Borsato, Federal University of Technology, Parana-Curitiba, Brazil
Shuo-Yan Chou, "Taiwan Tech, Taiwan, China
Fredrik Egh, Linköping University
Parisa Ghodous, University of Lyon, France
Kazuo Hikata, University of Tokyo, Japan
John Mo, RMIT University, Australia
Essam Shehab, Cranfield University, UK
Mike Soholski, TTU, Texas, USA
Amy Trapey, NTUT, Taiwan, China
Wim J.C. Verhagen, TU Delft, The Netherlands
Wenhong Xu, Beijing, Huazhong University, China

Volume 3

Recently published in this series:

ISSN 2352-751X (print)
ISSN 2352-7528 (online)
Contents

Preface and Acknowledgements
Yee Mey Goh and Keith Case
Organising Committee

Part 1. Keynote
The Hidden Information and Its Potential in Manufacturing Data (abstract)
Tom Neat and Felix Ng

Part 2. Manufacturing Processes
Toolpath Geometry and High Speed Machine Axis Motion
L. Chanda and R.J. Cripps
Numerical Modelling and Simulation of Temperature Distributions in End Milling
Sunday Joshua Ojolo, Ibusunoluwa Aina and Gbeminiyi Musibau Sobamowo
Investigating the Sensitivities of Tool Wear When Applied to Monitoring Various Technologies for Micro Milling and Drilling
James M. Griffin and Hala Abdelaziz
Vibro-Impact Machining – An Application in Surface Grinding
Andre D.L. Batako, Heisum Ewad, Grzegorz Bechinski and Witold Pawlowski
Structural Transformations of Polymers Using Laser Irradiation
Jimsher N. Aneli, Nana V. Bakradze, Teimuraz N. Dumbadze and Andre D.L. Batako
Finite Element Analysis of Single Point Incremental Forming
Spyridon Kotsis and Jonathan Corney
Injection Moulding – Properties Customisation by Varying Process Conditions
Tino Meyer, Paul Sherratt, Andy Harland, Barry Haworth, Chris Holmes and Tim Lucas
Simulation of Material Removal in Mould Polishing for Polymer Optic Replication
Rui Almeida, Rainer Börret, Wolfgang Rimkus, David K. Harrison and Anjali De Silva
Fabrication of Micro Components with MSZ Material Using Electrical-Field Activated Powder Sintering Technology
Hasan Hijji, Yi Qin, Kunlan Huang, Song Yang, Muhammad Bin Zulkipli and Jie Zhao
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forming Alumina (Al₂O₃) by Micro-FAST</td>
<td>61</td>
</tr>
<tr>
<td>Hasan Hijji, Yi Qin, Kunlan Huang, Muhammad Bin Zulkipli, Song Yang</td>
<td></td>
</tr>
<tr>
<td>and Jie Zhao</td>
<td></td>
</tr>
<tr>
<td>A Methodology for Assessing the Feasibility of Producing Components</td>
<td>67</td>
</tr>
<tr>
<td>by Flow Forming</td>
<td></td>
</tr>
<tr>
<td>Daniele Marini, David Cunningham and Jonathan R. Conney</td>
<td></td>
</tr>
<tr>
<td>Texturing of Tool Insert Using Femtosecond Laser</td>
<td>72</td>
</tr>
<tr>
<td>Ashfaq Khan, Afrab Khan, Kamaran Shah, Jihar Ali Haq, Muehsaq Khan,</td>
<td></td>
</tr>
<tr>
<td>Syed Husnain Inan, Mohammad A. Sheikh and Lin Li</td>
<td></td>
</tr>
<tr>
<td>Part 3. Additive Manufacturing</td>
<td></td>
</tr>
<tr>
<td>Challenges of Redesigning a Planetary Transmission to Be Made by</td>
<td>81</td>
</tr>
<tr>
<td>Additive Manufacturing</td>
<td></td>
</tr>
<tr>
<td>Adrian Cibillo and Suresh Peripamayagam</td>
<td></td>
</tr>
<tr>
<td>Investigating Relationships Between Laser Metal Deposition Deployment</td>
<td>37</td>
</tr>
<tr>
<td>Conditions and Material Microstructural Evolution</td>
<td></td>
</tr>
<tr>
<td>Mike Wilson, Grant Payne, Abdul Ahmad, Stephen Fitzpatrick, William</td>
<td></td>
</tr>
<tr>
<td>Ion and Paul Xirochakis</td>
<td></td>
</tr>
<tr>
<td>Remanufacturing H13 Steel Moulds and Dies Using Laser Metal Deposition</td>
<td>33</td>
</tr>
<tr>
<td>Grant Payne, Abdul Ahmad, Stephen Fitzpatrick, Paul Xirochakisk,</td>
<td></td>
</tr>
<tr>
<td>William Ion and Michael Wilson</td>
<td></td>
</tr>
<tr>
<td>Additive and Hybrid Manufacturing Processes</td>
<td>99</td>
</tr>
<tr>
<td>Mark Elly and Dean Carran</td>
<td></td>
</tr>
<tr>
<td>Advancement in Additive Manufacturing & Numerical Modelling</td>
<td></td>
</tr>
<tr>
<td>Considerations of Direct Energy Deposition Process</td>
<td>104</td>
</tr>
<tr>
<td>Quanren Zeng, Zhenhai Xu, Yankang Tian and Yi Qin</td>
<td></td>
</tr>
<tr>
<td>Part 4. Manufacturing Materials</td>
<td></td>
</tr>
<tr>
<td>The Effects of Composite Microstructure on Normalized Maximum Principal</td>
<td>109</td>
</tr>
<tr>
<td>Stress Under Transverse Tension and Shear of a Unidirectional Carbon</td>
<td></td>
</tr>
<tr>
<td>Fibre Reinforced Composite</td>
<td></td>
</tr>
<tr>
<td>Rui Cai and Jesper Christensen</td>
<td></td>
</tr>
<tr>
<td>Factors Influencing Structural Properties of Low Silicon Bairite Cast</td>
<td>119</td>
</tr>
<tr>
<td>Irons Nuazr Khidashesi, Gocha Baradze, Nana Bakradze, Tetimraz</td>
<td></td>
</tr>
<tr>
<td>Dumbadze and Andrs D.L. Batako</td>
<td></td>
</tr>
<tr>
<td>Investigation of Machining Parameters for Different Microstructures</td>
<td>125</td>
</tr>
<tr>
<td>of AISI P20 in Wire-Cut EDM</td>
<td></td>
</tr>
<tr>
<td>Sadaf Zanoor, Adeeul Shehzad, Muhammad Quaiser Saleem, Muhammad</td>
<td></td>
</tr>
<tr>
<td>Ayyaz, M. Ehsan and Ali Mqsood</td>
<td></td>
</tr>
<tr>
<td>Nanoscale Elastic Recovery of Silicon While Cutting at Different</td>
<td>131</td>
</tr>
<tr>
<td>Temperatures: An MD Simulation-Based Study</td>
<td></td>
</tr>
<tr>
<td>Saeed Zare Chavoshi and Xichun Luo</td>
<td></td>
</tr>
<tr>
<td>A Study of Linear Heat Transfer Gradients on 3D Printed Specimens</td>
<td>137</td>
</tr>
<tr>
<td>Robert Benham and Foyaz Rehman</td>
<td></td>
</tr>
<tr>
<td>Analysis and Impacts of Chips Formation on Hole Quality During</td>
<td>143</td>
</tr>
<tr>
<td>Fibre-Reinforced Plastic Composites Machining</td>
<td></td>
</tr>
<tr>
<td>Sikuru Oluqarotimi Ismail, Hom Nath Dhakal, Ivan Popov and Johnny</td>
<td></td>
</tr>
<tr>
<td>Beanegrund</td>
<td></td>
</tr>
<tr>
<td>Wear Behaviour of Laser Cladded Ni-Based WC Composite Coating</td>
<td>149</td>
</tr>
<tr>
<td>for Inconel Hot Extrusion: Practical Challenges and Effectiveness</td>
<td></td>
</tr>
<tr>
<td>Lynne McIntosh, Jawad Falsafi, Stephen Fitzpatrick and Paul L.</td>
<td></td>
</tr>
<tr>
<td>Blackwell</td>
<td></td>
</tr>
<tr>
<td>Effect of Powder Metallurgy Parameters on the Performance of EDM</td>
<td>155</td>
</tr>
<tr>
<td>Tool Electrodes</td>
<td></td>
</tr>
<tr>
<td>Amoljit Singh Gill and Sanjeev Kumar</td>
<td></td>
</tr>
<tr>
<td>A Novel Adaptation of the T-Peel Bimetal Bond Test Based on the Thin</td>
<td>161</td>
</tr>
<tr>
<td>Film Bonding Theory Using Cold Roll Bonded AlSn/Stel Bimetal Laminate</td>
<td></td>
</tr>
<tr>
<td>Laurie Do Silva, Mahmoud El-Sharif, Colin Chisholm and Stuart Laidlaw</td>
<td></td>
</tr>
<tr>
<td>Part 5. Advanced Manufacturing Technology</td>
<td></td>
</tr>
<tr>
<td>A Path Planning Algorithm for a Materials Handling Gantry Robot and</td>
<td>169</td>
</tr>
<tr>
<td>Its Validation by Virtual Commissioning</td>
<td></td>
</tr>
<tr>
<td>Ruth Fleisch, Robert Schöch, Thorsten Prante and Reinhard Pfefferkorn</td>
<td></td>
</tr>
<tr>
<td>Integrating Optimisation with Simulation for Flexible Manufacturing</td>
<td>175</td>
</tr>
<tr>
<td>System Boyang Song, Winda Hutabarat, Ashutosh Tiwari and Shane Enticott</td>
<td></td>
</tr>
<tr>
<td>Automatic Generation of a Detailed Outfitting Planning and Determining</td>
<td>181</td>
</tr>
<tr>
<td>the Effect of Multi-Skilled Mounting Teams</td>
<td></td>
</tr>
<tr>
<td>Christopher Rose and Jenny Coenen</td>
<td></td>
</tr>
<tr>
<td>Development of PID Controller for Vibratory Milling</td>
<td>187</td>
</tr>
<tr>
<td>Wael Naj Alharbi, Andre Batako and Barry Gommon</td>
<td></td>
</tr>
<tr>
<td>An Application of Autoregressive Hidden Markov Models for Identifying</td>
<td>193</td>
</tr>
<tr>
<td>Machine Operations</td>
<td></td>
</tr>
<tr>
<td>Dimitrios Pantazis, Adrian Ayastuy Rodriguez, Paul P. Conway and</td>
<td></td>
</tr>
<tr>
<td>Andrew A. West</td>
<td></td>
</tr>
<tr>
<td>Improving Data Accuracy in Simulation of Flexible Manufacturing</td>
<td>199</td>
</tr>
<tr>
<td>Systems Jastyna Rybicka, Ashutosh Tiwari and Shane Enticott</td>
<td></td>
</tr>
<tr>
<td>AFRC's Image Processing Platform: A High Speed User-Friendly</td>
<td>205</td>
</tr>
<tr>
<td>Architecture for Real Time Object Detection in Forging Processes</td>
<td></td>
</tr>
<tr>
<td>Danial Kahani and Remi Zane</td>
<td></td>
</tr>
<tr>
<td>A Multi Degree of Freedom Actuation System for Robot and Machine</td>
<td>211</td>
</tr>
<tr>
<td>Vision Industrial Applications</td>
<td></td>
</tr>
<tr>
<td>Mfortaw Elvis Ashu, Mahmoud Shafik and Ilias Orafige</td>
<td></td>
</tr>
</tbody>
</table>
Part 6. Human Aspects of Manufacturing

Deployment of Assisted Living Technology Using Intelligent Body Sensors Platform for Elderly People Health Monitoring
Riyad Eltsaadi and Mahmoud Shafik

Motivation and Learning in Manufacturing Industries
Shahtial Mai, Keith Case, Shahrol Mohamaddin and Yee Mey Goh

Cognitive Aspects Affecting Human Performance in Manual Assembly
Anna Brolin, Keith Case and Peter Thorvald

Ergonomic Risk Assessment – A Case Study of a Garment Manufacturing Industry
Anjali Hussain, Iqra Javed, Keith Case, Ashfaq Ahmad and Nadeem Safdar

Distributed Cognition in Manufacturing: Collaborative Assembly Work
Rebecca Andreasson, Jessica Lindbom and Peter Thorvald

Agile Assembly Planning for Multi-Variant Production Based on 3D PDF
Felix Küh, Stefan Rathoff, Josip Stjepanić and Klaus Thatter Korst

The Impacts of Ageing on Manufacturing Sectors
Renuga Naganadan and Patricia Ramos

Part 7. Product Design and Development

Design Optimisation of Passive Humidification Device for Intensive Care Medical Applications
Mahmoud Shafik and Anne Lechevretel

Evaluation of 3D Renewable Micro Power Station for Smart Grid Applications
Mogol Konlami, Mahmoud Shafik and Mfotaw Elvish Ashu

Design & Development of a Bicycle Cleat Adapter
Fayyaz Rahman and Santiago Díaz Montalvo

3D Alignment for Interactive Evolutionary Design
Theodora Retepti, Ian J. Graham and Yee Mey Goh

Design and Manufacturing of a Miniature Insulin Administration Device for Non Compliant Diabetic Patients of Kingdom of Saudi Arabia (KSA)
Irfan Anjum Manvari and Nader Mahir Kamel Matta

Identifying Sequence Maps or Loci to Represent the Genetic Structure or Genomic Standard of Styling DNA in Automotive Design
Shahrizan Zainal Abidin, Azlan Othman, Zafuddin Shamsuddin, Zaidi Samsudin, Halim Hassan and Wan Asri Wan Mohammed

Design and Manufacturing of a Fire Protection Suit Through Reverse Engineering
Irfan Anjum Manvari and Haris Rehman

Part 8. Digital Manufacturing (Industrie 4.0)

An Intelligent Anti-Collision System for Electric Vehicles Applications
Ikenna Chinazuekpere Ifej and Mahmoud Shafik

A Case Study Analysis of the Application of Design for Manufacture Principles by Industrial Design Students
Russell Marshall and Tom Page

Industrie 4.0 Implementations in the Automotive Industry
Diana Segura-Velandia, Aaron Neal, Paul Goodall, Paul Conway and Andrew West

Component Detection with an On-Board UHF RFID Reader for Industrie 4.0 Capable Returnable Transit Items
Aaron Neal, Diana Segura-Velandia, Paul Conway and Andrew West

Factory Automation and Information Technology Convergence in Complex Manufacturing
Ip-Shing Fan and Leon Oswein

Optimising Mixed Model Assembly Lines for Mass Customisation: A Multi Agent Systems Approach
Obiunde Bajio, David Stewart and Maria Fasli

A Data Management System for Identifying the Traceability of Returnable Transit Items Using Radio Frequency Identification Portals
Paul Goodall, Aaron Neal, Diana Segura-Velandia, Paul Conway and Andrew West

Product Lifecycle Management Enabled by Industrie 4.0 Technology
Filipe Ferreira, José Faria, Américo Azevedo and Ana Luisa Marques

Part 9. Sustainable Manufacturing

Development of a Simulation-Based Approach to Smart Management of Energy Consumption in Buildings and Their Implementation
A.N.R. Pour and K. Cheng

A Decision Support Tool for Improving Value Chain Resilience to Critical Materials in Manufacturing
Liam Gardner and James Colwill

Lean & Green, How to Encourage Industries to Establish Pro-Environmental Behaviour
Elbieta Pavluk, Dagmara Gutowska, Remigiusz Horbal, Zofia Małuszczak, Robert Miehe, Ivan Bogdanov and Ralph Schneider

A Manufacturing Approach to Reducing Consumer Food Waste
Aicha Jellli, Elliot Woolley, Guillermo Garcia-Garcia and Shahn Rahimfard
Part 12. Cost Engineering and Forecasting

Process Selection Using Variation and Cost Relations 465
Vincent McKenna, Yan Jin, Adrian Murphy, Michael Morgan,
Caroline McElory, Colm Higgins and Rory Collins

Cost Modelling for Aircraft in a Multi-Disciplinary Design Context 471
Davide Di Pasquale, David Gore, Mark Savill, Timoleon Kipouro
and Carren Holden

Management of Promotional Activity Supported by Forecasts Based 477
on Assorted Information
Cátia Ribeiro, José Manuel Oliveira and Patricia Ramos

Sales Forecasting in Retail Industry Based on Dynamic Regression Models 483
José Manuel Pinho, José Manuel Oliveira and Patrícia Ramos

Evaluating the Forecasting Accuracy of Pure Time Series Models on Retail 489
Data
Patrícia Ramos, José Manuel Oliveira and Rui Rebelo

Part 13. Lean and Quality Management

Development of Lean Six-Sigma Conceptual Implementation Model 497
for Manufacturing Organisations
Sameh M. Saad and Mohamed Khakhm

Do Inspections Really Help? 503
Moshe Eben Chaime

The Quality Journey of Greek SMEs 508
G. Sámaris, G. Haritos, Th. Kriemadis and M. Fowler

Creating Industrially Relevant Environments for Teaching Lean Manufacturing 514
at Karlstad University
Lasse Jacobsson, Anders Wickberg and Leo De Vin

Part 14. Decision Support and Optimisation

Critical Success Factors for In-House Production, Partial Production 523
or Outsourcing in Garment Industry
C.S. Libânio, Fernando Gonçalves Amaral and Sérgio Almeida Migowski

Fuzzy Analytic Hierarchy Process for the Selection of Maintenance Policies 529
Within Petroleum Industry
Abdel M. Mohamed and Sameh M. Saad

Application of a Multivariate Process Control Technique for Set-Up 535
Dominated Low Volume Operations
Steven Cox, Scott Anderson, Neil Gray, Oliver Vogt
and Apostolos Kotsialos
Part 1

Keynote
3. Summary and Outlook

Through utilization of a 3D PDF based planning tool, the efficient design of assembly connection, the quality of planning results and planning processes can be increased, while simultaneously time and cost reduction can be realized. With this approach working schedules as planning results are based on field-tested assembly processes and contain the implicit knowledge used in similar assembly planning processes. The automatic generation of an adapted assembly process enables the fast customization to the concrete setting at the shopfloor. The presented approach contributes an important added value to production design and planning through usage of knowledge in the existing systems. The exploitation of this approach under productive conditions has recently been started. Further development of tool sets and methods could help to reduce the high initial effort for adjustment of the data even more. Besides the evaluation of the results based on product data, it is important to investigate the behaviour and results of the methodology for new assembly technologies.

Subsequently, basic research was described and requirements for the appropriate use case were collected. Using that knowledge, it was possible to develop a concept that demonstrates how 3D PDF technologies can contribute to streamlining the recycling process of end of life vehicles. The exact procedure, starting from the creation of the 3D data until the application of the document, was developed and described precisely. The 3D PDF template provides a basis for future realizations. In order to implement future developments efficiently, the template was designed as flexible as possible. The objective of this further development is the implementation of all of the derived requirements [10] [11].

References

The Impacts of Ageing on Manufacturing Sectors

Renuga NAGARAJAN\(^3\) and Patricia RAMOS\(^{1,4}\)

\(^1\) INESC Technology and Science, Campus da FEUP, 4200-465 Porto, PORTUGAL.
\(^2\) School of Accounting and Administration of Porto, Polytechnic Institute of Porto, 4465-004 S. Mamede de Infesta PORTUGAL.

Abstract. The progress in medical science and the decline of altruistic behavior of couples introduced to the world the ageing problem. The existence of ageing is more experienced by developed countries. Researchers and policy makers are constantly trying to find ways to study the impacts of ageing since the issue is unprecedented in our history. However, the majority of the literature focus more on immediate mechanisms such as public expenditures and somehow neglected the influence of ageing on manufacturing sector. Thus, through panel data, we studied the influence of ageing on manufacturing sectors. The empirical study was carried out on six developed countries namely Japan, Germany, Italy, Greece, Finland and Portugal that have high ageing population. Our results suggest that the growth of the old-age group over 65 years old will have significantly negative influence on percentage contribution of manufacturing to the GDP of these countries. Moreover, the results also demonstrate that a country with a higher proportion of old age group over working group will face fall in the manufacturing.

Keywords. Manufacturing, ageing, panel data models, GDP

1. Introduction

Continuous development in the medical science and less altruistic behaviour of couples have increased the life expectancy and decreased the fertility rate of most countries. This demographic transition has introduced to the world the new era of ageing. The constant success in the technological infrastructure has transformed the majority of the developed countries into ageing countries [1]. Lately researchers and policy makers are concerned with the issue of population ageing as its presence is expected to influence the economic development of the countries. Since most of the developed countries are facing the issue of ageing without precedent, there is numerous literature that examines its influence on countries’ growth [2–5]. In fact, this literature has clearly proved a negative relationship between population ageing and economic growth. The presence of ageing is likely to influence the economics of a country for a simple reason, when considering the physical capability, preferences and needs are expected to change along with age [6].

To some extent, literature has identified the mechanisms (public expenditure, human capital, consumption and saving patterns) through which ageing influences the economic progress [7]. However, research work on ageing has given emphasis only to

\(^1\) Corresponding Author. pramos@inescttc.pt
immediate mechanisms such as public expenditures and policies. To an extent, we find that the influence of ageing on human capital and labour market were also less focused [7]. Yet, examining the influence of ageing on human capital and labour market participation is considered important as the productivity of a country depends on these mechanisms. Furthermore, the existence of an ageing problem will have higher impact when the country’s economy relies highly on exports [2].

Since ageing is considered as an important problem to be handled in modern economics, in this paper we intend to uncover the influence of ageing on manufacturing sectors. The main aim of this research work is to identify the influence of ageing on the contribution of manufacturing towards the gross domestic product (GDP).

2. Methodology

We chose panel data estimation to study the impact of ageing and speed of ageing on the contribution of manufacturing to the GDP of six developed countries. Along with ageing and speed of ageing other relevant variables such as labour, human capital, physical capital, institutions, public expenditures and population growth were also considered.

The analysis was carried out considering the following panel data model

\[y_{it} = \alpha_i + X_{it}' \beta + \epsilon_{it}, \quad i = 1, \ldots, N; \quad t = 1, \ldots, T \]

where the subscripts \(i \) and \(t \) denote respectively the countries and the years; the subscript \(j \) represents 0, 5 and 10 to define the current \((j = 0)\) and lagged value (with \(j = 5 \) representing a 5-years' lag and \(j = 10 \) representing a 10 years' lag). \(Y_t \) stands for net manufacturing in percentage of GDP, \(X_t \) are the regressors including labour, human capital, physical capital, institutions, public expenditures, population growth, ageing and speed of ageing; \(\beta \) are the regression parameters to estimate; \(\alpha \) represents the individual-specific effects; and \(\epsilon_t \) is the idiosyncratic error. The \(\sigma \) may be correlated with one or more explanatory variables.

We assumed fixed estimated effects\(^\text{2}\) and therefore the composite error term \(u_{it} \), for these specifications will be decomposed into the time-invariant unobserved effect \(\sigma \) and the idiosyncratic error term \(\epsilon_{it} \) [8]

\[u_{it} = \sigma_i + \epsilon_{it} \]

\(^2\) To identify the efficiency and consistency of the fixed effects model, a Hausman test was carried out. For the Hausman test, the null hypothesis is that the unobserved effect \(\sigma_i \) is uncorrelated with each explanatory variable i.e. \(H_0: \text{cov}(X_{it} \sigma_i) = 0 \), \(t = 1, \ldots, T \). Where \(X_{it} = (X_{it(1)}, \ldots, X_{it(p)}) \) and the alternate hypothesis is \(H_1: \text{cov}(X_{it} \sigma_i) \neq 0 \). Under the null hypothesis the random effects estimator is consistent and efficient, whereas, under the alternate hypothesis, the fixed effects estimator is considered consistent and efficient.

2.1. The relevant proxies and description of data

For the empirical study we considered six developed countries that have high ageing populations namely Japan, Germany, Italy, Greece, Finland and Portugal. The analysis was carried out for the time span of 25 years (from 1990 till 2015). For this empirical study, we gathered data from World Bank and Freedom House database\(^\text{3}\). The net manufacturing in percentage of GDP was considered as a proxy for the dependent variable. Meanwhile, the variables ageing index\(^\text{4}\) and old age dependency ratio\(^\text{5}\) were also considered as proxies for ageing. Precisely, we incurred ageing index, old age dependency ratio, ageing index with five years lag and ageing index with ten years lag as proxies for ageing. The annual growth rate of the 65 year old age group and above was used as a proxy to determine the influence on the speed of ageing. In the estimation we also included a number of proxies for control variables. The variables student enrolment in primary school and student enrolment in secondary school were used as proxies for the human capital. Meanwhile, the variable gross capital formation as percentage of GDP and the five years lagged value of foreign direct investment were used as proxies for physical capital investment. The five years lagged value of government consumption as a percentage of GDP was incurred in the analysis to identify the effectiveness of public expenditure on manufacturing. For the institutional variables we considered civil liberties index and political right index from “Freedom House”. These indexes are measured using a scale from 1 to 7 (1 is the highest freedom level and 7 is the lowest freedom level). Therefore, the hypothesis will be the freer and fairer a country is the higher is the net manufacturing. Apart from that, the labor force and the population growth were also included in the study to determine the influence of population and labor on manufacturing.

3. Empirical study

3.1. Empirical models

For the empirical analyses we examined the impact of ageing and the speed of ageing on the manufacturing considering four distinct models:

- (A) The impact of ageing on manufacturing by considering old age dependency ratio as a proxy;
- (B) The impact of ageing on manufacturing by considering ageing index as a proxy;
- (C) The impact of ageing on manufacturing by considering the 5 years lagged value of ageing index as a proxy;

\(^3\) https://freedomhouse.org/report-types/freedom-world

\(^4\) Ageing index is: \(\frac{\text{Total population (60 years old or more)}}{\text{Total population}} \times 100 \)

\(^5\) Old age dependency ratio is: \(\frac{\text{Total population (60 years old or more)}}{\text{Working individuals (aged under 15, 64) or 100}} \)

\(^6\) Growth of 65 years old and above is: \(\frac{Y_{65 \text{ years old and above},t}}{Y_{25 \text{ years old and above},t-1}} - 1 \)
• (D) the impact of ageing on manufacturing by considering the 10 years lagged value of ageing index as a proxy.

3.2. Results

As mentioned in the previous section, the Hausman test was computed to identify the consistency of the model to choose between fixed effects and random effects. Overall, the test result shows a p-value of 0.000 for the four models, hence we reject the null hypothesis with significance level of 1% that the random effects provide a consistent estimator.

Table 1 presents the coefficients estimated for each variable considered in the models. In general, by looking into the F statistics and the respective p-values for all the estimated specifications, we may conclude that our results are globally statistically significant.

Table 1. Estimation of the impact of ageing and the speed of ageing on manufacturing (dependent variable: Net manufacturing in percentage of GDP).

<table>
<thead>
<tr>
<th>Variable</th>
<th>Proxy</th>
<th>Model A</th>
<th>Model B</th>
<th>Model C</th>
<th>Model D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ageing</td>
<td>0.393985***</td>
<td>-0.011317***</td>
<td>-0.003494**</td>
<td>-0.000906**</td>
<td></td>
</tr>
<tr>
<td>Speed of ageing</td>
<td>-0.392211***</td>
<td>-0.593466***</td>
<td>-1.255804***</td>
<td>-1.190040***</td>
<td></td>
</tr>
<tr>
<td>Human capital</td>
<td>1.3906</td>
<td>1.39467**</td>
<td>1.39467**</td>
<td>1.39467**</td>
<td></td>
</tr>
<tr>
<td>Physical capital</td>
<td>4.0348</td>
<td>3.7841*</td>
<td>3.7841*</td>
<td>3.7841*</td>
<td></td>
</tr>
<tr>
<td>Labor</td>
<td>-0.5207</td>
<td>-0.5842**</td>
<td>-0.5842**</td>
<td>-0.5842**</td>
<td></td>
</tr>
<tr>
<td>Public expenditure</td>
<td>0.344466</td>
<td>0.317781</td>
<td>0.085709</td>
<td>0.095065</td>
<td></td>
</tr>
<tr>
<td>Population growth</td>
<td>-0.4951</td>
<td>-0.594655</td>
<td>-0.332543</td>
<td>-0.262665</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>54.1151***</td>
<td>50.05952***</td>
<td>55.65799***</td>
<td>40.31758</td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td>0.6130</td>
<td>0.6094</td>
<td>0.6113</td>
<td>0.6118</td>
<td></td>
</tr>
<tr>
<td>F statistics</td>
<td>20.08</td>
<td>19.33</td>
<td>20.67</td>
<td>24.72</td>
<td></td>
</tr>
<tr>
<td>Hausman test</td>
<td>578.81 (0.0000)</td>
<td>223.10 (0.0000)</td>
<td>317.21 (0.0000)</td>
<td>497.42 (0.0000)</td>
<td></td>
</tr>
</tbody>
</table>

Notes: The regressions were carried out for the period 1990–2015 for Germany, Greece, Japan, Italy, Portugal and Finland. Estimated coefficients and p-values are calculated using robust standard errors and the significance levels are: *** p<0.001, ** p<0.01, * p<0.05.

3.3. Discussion of the results

The proxies of ageing and speed of ageing for the four models reveal a significant and negative relation (with the p-values being 0.000 for all the models). Hence, regardless of how we proxy the ageing and speed of ageing, our results confirm that ageing has a significant and negative influence in the net manufacturing of the six developed countries selected. The estimates for these selected developed countries show a significantly negative relationship when considering old age dependency ratio as a proxy to test the impact of ageing on manufacturing. The empirical results indicate that for an additional increase of one per cent in the old age dependency ratio, there will be a decline of 0.34% in the contribution of net manufacturing to the GDP. This is mainly due to the fall in the proportion of the active working age group over the old age group. Hence, aligned with the arguments of Lam [2] and Bierwisch et al. [9] our results demonstrate that the rise in the old age group and fall in the working age group will have a profound impact in the long term and even if manufacturing is considered to be the main source of revenue. Besides old age dependency ratio, the empirical analysis also shows a statistically negative relationship between the ageing index and manufacturing. In addition, our findings also show that the present ageing index will experience decline in the contribution of manufacturing to the GDP in the future (in five and ten years’ time). The current fall in the proportion of the young age group will affect the future manufacturing since the current young age group will be the successor of the future working age group. Therefore, the argument of Xu et al. [10] our results demonstrate that even though manufacturing industry has a high proportion of machine-based activities, the participation of physically fit workers is needed to increase the productivity level of this industry. Likewise ageing, speed of ageing also evidences statistically significant influence to the net manufacturing. Our results confirm that the growth of the population aged 65 and above will decrease manufacturing. The participation of the old age group in the labour market to overcome the shortage in the labour supply is expected to subsequently decrease net manufacturing value. Thus, contradicting the arguments of Bloom et al. [3], our results show that even though there is a rise in the life expectancy due to better health, the participation of the old age working group still decreases net manufacturing. Meanwhile authors like Thun et al. [11] and Gaugé and Thissè [12] stressed that, other than the physical fitness, the unwillingness to be immobile and adapting to new technologies will be the common reasons for the decline in the output of old age workers in the manufacturing sectors.

Regarding the control variables, we find that the variable labor force participation shows a significantly negative relationship with net manufacturing for the four models. In brief the result shows that a country with high level of labor participation in manufacturing will experience a decline in net manufacturing. Apart from labor force participation, the variable civil liberties also exhibits a significant negative relationship for the four models. The negative value of civil liberties indicates that the countries with greater expression of individual freedom, will experience an increasing trend in net manufacturing. Meanwhile, the remaining control variables (primary student enrolment, secondary student enrolment, capital formation, foreign direct investment, government consumption and population growth) used in the analysis failed to prove any significant relationship to net manufacturing.

4. Conclusions

Focusing on the influence of ageing and speed of ageing on manufacturing we carried out empirical studies for six high ageing countries namely Germany, Greece, Italy,
Portugal, Finland and Japan for the period between 1990 and 2015. The results confirm that the issue of ageing and its influence to the manufacturing sectors is no longer in denial. From our analysis we conclude that the selected developed countries will face continuous decline in net manufacturing unless appropriate measures are considered to overcome the existence of the ageing problem. The impact of ageing on manufacturing in countries like Japan and Germany will be profound since their main source of revenue depends deeply on this sector.

Researchers and policy makers argue that the rise in retirement age and the increase of immigrant workers will help to overcome the shortage of labour supply. However, some literature [11, 12] claims that the existence of old age labour may affect the manufacturing output considering their immobile capability, physical fitness and the unwillingness to learn new technologies. Hence for the future work, it will be appropriate to study the efficiency of old age workers’ participation in the manufacturing sectors.

Acknowledgements

Project "TEC4Growth - Pervasive Intelligence, Enhancers and Proofs of Concept with Industrial Impact/NORTE-01-0145-FEDER-000020" is financed by the North Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, and through the European Regional Development Fund (ERDF).

References