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Abstract-Several works in the literature use propositional 
("black box") approaches to generate prediction models. In this 
work we employ the Inductive Logic Programming technique, 
whose prediction model is based on first order rules, to the 
domain of breast cancer. These rules have the advantage of being 
interpretable and convenient to be used as a common language 
between the computer scientists and the medical experts. We 
also explore the relevance of some of variables usually collected 
to predict breast cancer. We compare our results with a propo­
sitional classifier that was considered best for the same dataset 
studied in this paper. 
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I. INTRODUCTION 

Breast cancer is a disease in which malignant cells form 

in the tissues of the breast. Once it is detected, depending on 

its gravity, and suitable treatment, most women can continue 

a normal life. However, despite screening programs for early 

detection of tumors, breast cancer is still the second leading 

cause of cancer death among women, according to the Amer­

ican National Breast Cancer Organization [1]. Several works 

in the literature search for a solution to this problem trying to 

better characterize patterns of breast cancer both in the medical 

area and in computer-based systems. Their aim is to anticipate 

patterns of the disease in an early stage in order not to miss 

false negatives. In that area, computer-based systems can aid, 

specially when helping to build prediction models for cases 

hard to discriminate or for early screening. Much work has 

been done on applying machine learning techniques to the area 

of breast cancer. In the UCI (University of California, Irvine) 

machine learning repositoryl, there are four datasets whose 

main target of study is breast cancer. One of the first works 

on applying machine learning techniques to breast cancer data 

dates from 1990. At this time, the first dataset donated to the 

UCI repository was created by Wolberg and Mangasarian after 

their work on a multi-surface method of pattern separation 

for medical diagnosis applied to breast cytology [2]. Most 

works in the literature applies artificial neural networks to the 

problem of diagnosing breast cancer (e.g., [3] and [4]). Others 

focus on prognosis of the disease using inductive learning 

methods (e.g., [5]). Ayer et al. [6]) have evaluated whether 

an artificial neural network trained on a large prospectively 

collected dataset of consecutive mammography findings could 
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discriminate between benign and malignant disease and accu­

rately predict the probability of breast cancer for individual 

patients. Recently, a new method has been developed for 

automatically explaining prediction/classification results for 

any machine learning model without degrading accuracy [7], 

[8]. Other works concentrate on the correlation of attributes 

in the manunograms, for example, the influence of mass 

density and other features on predicting malignancy [9], [10], 

[11], [12], [13], [14], [15]. Other works focus on extracting 

information from free text that appears in medical records of 

manunography screenings [16], [17], and on the influence of 

age in ductal carcinoma in situ (DCIS) findings [18]. Yet other 

works focus on the mammography images themselves [19], 

[20]. The latter are orthogonal to the above mentioned and to 

our own work, whose focus is on the medical reports. 

In a previous work, we generated models to predict ma­

lignancy from a small set of variables annotated from mam­

mography images [21]. A tool, MammoClass2 was built and 

is publicly available to be used and tested. ManunoClass was 

trained using a set of variables collected from manunography 

reports and other information related to the patient history, 

biopsies, among others. A subset of these variables (Side, 

Depth, Clockface and Quadrant) are considered to be non 

indicative of malignancy by expert radiologists, but studies 

show that for some populations there can be a prevalence of 

breast cancer according to the value of some of these variables. 

For example, the GEC-ESTRO Handbook of Brachytherapy 

(Section Breast Cancer [22]) says that the upper outer quadrant 

is the most COlmnon site of origin of breast cancer. It also 

says that breast cancer is more COlmnon in the left than in 

the right breast. Other studies on laterality also confirm this 

tendency [23]. In this work, we study the relevance of these 

variables on our dataset and also investigate alternatives for 

the SVM model used by MammoClass by training our data 

using Inductive Logic Progranuning (ILP) [24] and generating 

more interpretable models based on first-order logic, which, 

by its turn, is more expressive and compact than decision 

trees, another interpretable model. Both models (SVM and 

ILP) agree that Side, Depth, Clockface and Quadrant are not 

relevant to predict breast cancer on our dataset. However, the 

quantitative performance of ILP is below the SVM's. We then 

performed several experiments with ILP and concluded that it 

is possible to reach performances as good as the SVM's with 

2http://cracs.fc.up.pt/mammoclass 



the benefit of having an interpretable model based on first 

order logic. Another fact is that ILP presents better results 

than decision trees. 

In the next section, we present our experimental methodol­

ogy. In Section III, we present and discuss performance results 

for all experiments. Finally, we present our conclusions and 

perspectives of future work. 

II. METHODOLOGY 

We used the same dataset and settings used in [21]: 348 

consecutive breast masses that underwent image guided core 

biopsies performed between October 2005 and December 2007 

on 328 female subjects. Each one of the 348 cases refers to 

a breast nodule retrospectively classified according to the BI­

RADS system. The whole dataset (348 findings) was split into 

two subsets: (1) training set: 180 cases (71+1109-), and (2) test 

set: 168 cases (47+1121-). This split is the same used in our 

previous settings [21]. Test set is independent from the training 

set. 

Experiments were performed with ILP system Aleph [25] 

and with the WEKA toolkit [26]. The Aleph system was 

developed to be a prototype to explore ideas in ILP and 

was written in Prolog. Aleph has a powerful representation 

language that allows to represent complex expressions and 

incorporate new background knowledge easily. Aleph also 

let choose the order of generation of the rules, change the 

evaluation function and the search order. Allied to all these 

characteristics the Aleph system is open source making it 

a powerful resource to all ILP researchers [27]. WEKA is 

a collection of machine learning algorithms for data mining 

tasks. It was written in Java and developed at the University 

of Waikato, New Zealand. It is a free software. For WEKA we 

used the best classifier obtained in our previous work [21] for 

predicting malignancy. This classifier was obtained with the 

SMa (a support vector machine [28] implementation [29]) 

and is used by MammoClass. MammoClass uses a small 

set of variables to predict a probability of a finding being 

malignant or benign. These are the patient's age, mass size, 

breast composition, mass shape, mass clockface location, mass 

margins, mass density, side, quadrant and depth. From these, 

clockface location, side, quadrant and depth are considered to 

be not important by expert radiologists and their suggestion 

was to remove them from the tool. Our first hypothesis is: can 

we remove these variables and still obtain the same results 

with the test set? Our second hypothesis is: can we produce 

more interpretable classifiers that can have as good or better 

performance than the SVM? 

In order to answer the first question, we trained our SVM 

on the 180 examples removing the four variables: side, depth, 

clockface and quadrant, and compared the performance on the 

168 test cases with the performance we had obtained in [21], 

when training with all variables. 

In order to obtain more interpretable classifiers, we trained 

the 180 examples using Aleph, with (1) all variables and (2) 

removing the subset of four variables aforementioned. We also 

further explored Aleph by varying its parameters with the goal 
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of searching different portions of the search space looking for 

better and more meaningful hypotheses. 

These experiments are described as follows: 

• Experiment A trains the SVM classifier on the 180 

training cases, without the four variables, and evaluates its 

performance on the 168 test set. Results from this exper­

iment are compared with results published in [21], when 

the same classifier was trained on the same 180 cases and 

tested on the same 168 cases, using all variables. This is 

called "Prev" in the results section. 

• Experiment B1 trains Aleph on the 180 training cases, 

with all variables, and evaluates the performance of the 

classifier on the 168 test cases. 

• Experiment B2 trains Aleph on the 180 training cases, 

without the four variables, and evaluates the performance 

of the classifier on the 168 test cases. 

• Experiment C searches for Aleph classifiers that can be 

better than the SVM. For this experiment, we varied 

Aleph's internal parameters: noise and evalfn. Noise con­

trols the maximum number of false positives allowed by 

the model during training. Evalfn controls the evaluation 

function used to assess the quality of each hypothesis 

generated. Noise variation goes from zero to one hundred 

(0-100). This range was defined according to the number 

of cases in the training set. The evaluation function is set 

as: coverage, mestimate, cost, entropy, gini and wraee. 

Coverage's clause utility is P-N, where P and N are 

the numbers of positive and negative examples covered 

by a clause, respectively. Mestimate's clause utility is 

described in detail in Dzeroski and Bratko's paper [30]. 

The value of m is set by set(m,M). Cost depends on a user 

defined function. In our setting the cost of each rule is 

given by the number of correct positive examples covered 

(trying to maximize Recall). Entropy's clause utility is 

plogp + (1 - p)log(l - p) where p = P�N and P, 

N are the numbers of positive and negative examples 

covered by the clause. Gini's clause utility is 2p(1 - p), 
where p = P�N and P, N are the numbers of positive 

and negative examples covered by the clause. Wraee's 

clause utility is calculated using the weighted relative 

accuracy function described in Lavrac et al. article [31]. 

The objective of this experiment is to compare Aleph's 

performance (number of true positives and accuracy) 

to WEKA's performance by varying Aleph's internal 

parameters. 

Statistical significance tests were applied to compare the 

models, using GraphPad's McNemar's test, since we use 

binary outcomes (malignant or benign) for evaluation (Aleph 

only produces binary results). To binarize the outcomes of the 

probabilistic SVM values we used threshold of 0.5. 

For experiments B1 and B2, we used Aleph's default 

parameters: noise = 0 and evalfn = coverage. 



III. RESULTS 

A. Performance of Classifiers 

Table I shows the perfonnance of our classifiers on the 168 

test set. We used the metrics Correctly Classified Instances 

(CCI, a.k.a. accuracy), Kappa statistics (K), F-measure (F, 

harmonic mean between Precision and Recall), Area Under 

the ROC Curve (AUROC), True Postive Rate (TPR), Precision 

(P) and True Negative Rate (TNR) to assess the classifiers. 

TABLE I 
PERFORMANCE OF CLASSIFIERS ON TEST SET 

Platform Exp. CCl K F AUROC TPR P TNR 
Aleph B\ 77.4 0.37 0.52 - 0.43 0.65 0.9\ 
Aleph B2 79.8 0.41 0.52 - 0.40 0.76 0.95 

WEKA Prey 79.2 0.47 0.62 0.82 0.60 0.64 0.87 
WEKA A 81.0 0.51 0.64 0.85 0.60 0.68 0.89 

The first lines (Bl and B2) are experiments with Aleph, 

with all variables and without the four variables, respectively. 

McNemar test for the binary predictions of these two outcomes 

gave a p-value of 0.18, which indicates that most probably 

those four variables are not relevant. The same happens 

to experiments Prev and A (respectively, SVM trained on 

all variables and SVM trained without the four variables), 

with p=0.55. Aleph and WEKA agree that the classifier's 

performance are similar using the four variables (Side, Depth, 

Clockface and Quadrant) or not using the four variables. The 

issue is controversial: these results, on our dataset, reinforce 

the non-relevance of these features, although some studies 

show the opposite [22], [23]. Comparing Bl with Prev, we 

get p=0.02, which means that the Aleph classifier has worse 

performance than that of the SVM. We investigate this issue 

in the next section by training Aleph using parameters other 

than the default in order to reach better performance. 

B. Interpretable Classifiers 

Figure 1 shows ROC points comparing our SVM classifier 

on the test set with various Aleph performances obtained by 

varying noise and evalfn described in Experiment C (notice 

that one of the points of the SVM curve, with threshold 0.5, 

represents the performance shown in Table I, line Prev). 
Points for Aleph were obtained by fixing one evalfn and 

varying noise from 0 to 100. Because Aleph produces discrete 

results, one for each parameter variation, we plotted the 

discrete Aleph results as points and not as lines. 

For low false positive rate the best results are shown by 

evalfn coverage, cost and mestimate. However, these metrics 

guides the search space in a way that there is not much 

variance in performance. For several values of noise, results 

are always the same. Mestimate, though, is the only clause 

evaluation function that can reach performance very close to 

the SVM curve for some values of noise. 

For best Recalls, gini and wracc are ideal and have the 

advantage of having more variance, which can be explored to 

further improve performance. 
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Fig. 1. ROC points for SVM and Aleph (Experiment C) 

Surprisingly, entropy does not contribute to perfonnance 

gain. It seems that its effect is to classify every example in 

the same class as we increase the noise value. 

We performed McNemar tests to compare the binary pre­

dictions of the points closer to the SVM curve and concluded 

that the mestimate points that fall on the SVM curve (that 

use noise = 19 and noise = 93) had p-values of 0.84 and 

0.23, respectively. These are very encouraging results since 

we can reach closer performance to our best classifier with 

the advantage of having interpretable rules that explain the 

reasons for a case being malignant or not. 

Next, we present examples of clauses generated by Aleph 

in the training set to illustrate the interpretability of results 

(in the Prolog syntax). "Pos cover" and "Neg cover" in 

these examples refer to the number of positive and negative 

examples, respectively, covered by the rules. In total, 17 rules 

were generated. 

[Rule 6] [Pos cover = 6 Neg cover 0] 
is_malignant (A) 

shape(A,'Round' ), 
depth(A,'Middle'), 
density(A,high) . 

[Rule 12] [Pos cover = 17 Neg cover 0] 
is_malignant (A) 

shape(A,'Irregular'), 
margins(A,'Spiculated') . 

In the training set, rule 6 covers 6 (out of 71 +) posItIve 

examples and none of the negative examples (109-), whereas 

in the test set covers 1 (out of 47+) positive example and none 

of the negative examples (121-). It says that if a finding A has 

mass shape round and is middle depth and has high density, 



there is a risk of the finding being malignant. Round masses 

are usually benign, but this added by high mass density may 

be indicative of malignancy. Depth shows here, but it is not 

relevant. This rule is somewhat weak, since it covers only 6 

cases on the training set. Nevertheless, it is a three-variable 

combination pattern that appears on this data on 6 malignant 

cases and in none of the 109 negative (benign) cases. 

In the training set, rule 12 covers 17 (out of 71+) positive 

examples and none of the negative examples (109-), whereas 

in the test set covers 7 (out of 47+) positive examples and 

none of the negative examples (121-). It says that if a finding 

A has mass shape irregular and mass margins spiculated then it 

is suspicious of malignancy. In fact, the medical literature says 

that spiculated masses are 90% indicative of malignancy while 

irregular margins have also high risk malignancy. Although 

this is a trivial rule, it shows that the classifier is finding rules 

consistent with the medical literature. 

C. Malignant Rules 

We generated eight malignant rules for the training set. For 

each one of the 180 cases from the training set we verified if 

it was covered by any of the rules generated. We counted 

the number of True Positives (TP), False Positives (FP), 

True Negatives (TN) and False Negatives (FN). Having the 

confusion matrices for each rule we computed the percentage 

of corrected classified instances (CCI). The rules generated 

for the training set were then applied to the test set of 168 

cases in order to investigate how many cases from the test 

set were covered by the rules generated in the training set. 

For each case that was covered by one of the malignant rules, 

the CCI percentage computed in the training set for that rule, 

was assigned to the case covered in the test set. If one case 

in the test set was covered by more than one rule, the CCI 

value chosen was the maximum registered for that case. For 

each case of the 168 we obtained a CCI maximum value of 

percentage for being covered by a malignant rule. Those CCI 

values were then used to plot the malignant rules lines in the 

ROC curves in Figures 2 and 3. 

Figure 2 shows ROC points comparing our SVM classifier 

(weka_svm) with malignant rules generated by Aleph. For 

sensitivity values until 0.8 and false positive rate until 0.5, 

malignant rules closely approach our best SVM classifier's 

performance (weka_svm). In Figure 3 malignant rules clearly 

surpass the performance of our best decision tree classifier 

(wekaj48) for almost all sensitivity and false positive rate 

values. These are extremely interesting results from Aleph 

since we can reach closer performance to our best SVM 

classifier and even overcome our best decision tree classifier 

with the advantage of having interpretable rules that help to 

explain the reasons for a case being malignant. 

IV. CONCLUSIONS AND FUTURE WORK 

We explored alternatives to our best SVM classifier and have 

shown that it is possible to obtain more interpretable classifiers 

with the same performance on the test set. We have shown 

also that we can generate interpretable classifiers with higher 
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Fig. 2. ROC points for SYM and malignant rules from Aleph 
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Fig. 3. ROC points for malignant rules from Aleph and decision tree classifier 

performance than our best decision tree classifier, which help 

to explain the reasons for a case being malignant. We also 

studied the relevance of Side, Clockface, Depth and Quadrant 

on predicting breast cancer. It is not clear from the literature 

if these variables are important. We performed experiments 

by training classifiers using all variables and removing these 

four variables and concluded that for our dataset they are not 

important. 

Our next step is to search for a smoothing function that can 

produce less discrete results for Aleph, and use the techniques 



and methodology applied to this work in larger and more 

varied datasets. 
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