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Abstract. The amount of available spatio-temporal data has been in-
creasing as large-scale data collection (e.g., from geosensor networks) be-
comes more prevalent. This has led to an increase in spatio-temporal fore-
casting applications using geo-referenced time series data motivated by
important domains such as environmental monitoring (e.g., air pollution
index, forest fire risk prediction). Being able to properly assess the perfor-
mance of new forecasting approaches is fundamental to achieve progress.
However, the dependence between observations that the spatio-temporal
context implies, besides being challenging in the modelling step, also
raises issues for performance estimation as indicated by previous work.
In this paper, we empirically compare several variants of cross-validation
(CV) and out-of-sample (OOS) performance estimation procedures that
respect data ordering, using both artificially generated and real-world
spatio-temporal data sets. Our results show both CV and OOS report-
ing useful estimates. Further, they suggest that blocking may be useful
in addressing CV’s bias to underestimate error. OOS can be very sensi-
tive to test size, as expected, but estimates can be improved by careful
management of the temporal dimension in training.

Keywords: evaluation methods, performance estimation, cross-validation,
spatio-temporal data, geo-referenced time series, reproducible research

1 Introduction

The problem of identifying whether a machine learning solution will perform
well on unseen data is at the core of predictive analytics. Two questions must
be addressed: i) are the evaluation metrics an appropriate fit to the application
domain; and ii) does the evaluation procedure make the best use of valuable data
to obtain accurate estimates of these metrics. This paper focuses on the second
question, in the context of forecasting with geo-referenced time series data. The
answer is not always obvious as spatio-temporal dependencies are present in the
data.

Performance estimation procedures can be classified into two classes of meth-
ods, both widely used: out-of-sample (OOS) estimation and cross-validation
(CV) strategies.
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Hold-out validation is the simplest of OOS estimators. It operates by splitting
the data into a training set – used to learn a model–, and a test set – used to
estimate the loss of the learned model in “unseen” data [12]. In the context of
this study, only OOS procedures that respect an underlying order of the data
are considered (e.g., in time series, the test set is always comprised of the more
recent observations). These can also be called “last-block” procedures [3].

In CV, the total data is split several times into different training sets and
test sets. Estimates of performance are obtained by averaging the losses over
the several splits [30]. The use of different splits allows the whole data set to
be used in the test set at least once. The data may be split in an exhaustive or
partial manner, with partial splitting often being more computationally viable.
The classical example of exhaustive splitting is leave-one-out cross-validation
(LOOCV) where each observation plays the role of test set once. A common way
to partially split the data is to divide it into K subsets of approximately the same
size, and then having each subset successively used as test set – this strategy is
referred to as K-fold CV [15]. However, standard CV procedures such as this
assume that each test set is independent from the training set, which does not
hold for many types of data sets, such as time series [2]. Several variations of CV
procedures that do not require independence between sets have been proposed,
with most of them being geared toward a time series setting [11, 5, 27]. Some of
these methods have been proposed for spatio-temporal settings [18].

Our study aims at: i) providing a review of validation strategies in the pres-
ence of spatio-temporal dependencies; and ii) investigating the predictive ability
of different cross-validation and out-of-sample strategies in a geo-referenced time
series forecasting setting. To accomplish this goal we compare the loss estimated
by different procedures against the loss incurred in previously withheld data. We
consider artificial as well as real-world experimental settings.

2 Performance Estimation with Spatio-Temporal
Dependence Structures

Observations that have been made at different times and/or at neighbouring
locations may be related through internal dependence structures within data
sets, as there is a tendency for values of close observations to be more similar
(or otherwise related) than distant ones.

Dependence between training and test sets may lead to overly optimistic es-
timates of the loss a model will incur when presented with previously unseen,
independent data, and may also lead to structural overfitting and poor general-
ization ability [28]. In fact, more than one study has proven that CV overfits for
choosing the bandwidth of a kernel estimator in regression [13, 22].

2.1 Temporal Dependence

Several performance estimation methods specifically designed to deal with tem-
poral dependency have been proposed in the past.
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In terms of OOS procedures in time series settings, decisions must be made
regarding the split point between training/test sets, and how long a time-interval
to include in the training set, that is, the window settings (sliding/growing). Two
approaches are worth mentioning: a) For repeated time-wise holdout, it is advised
in [31] that holdout procedures should be repeated over different periods of time
so that loss estimates are more robust. The selection of split points for each
repetition of holdout may be randomized, with a window of preceding observa-
tions used for training and a fraction of the following instances used for testing.
Training and test sets may potentially overlap across repetitions, similarly to
random sub-sampling. These are also referred to as Monte Carlo experiments
[32]; b) Prequential evaluation or interleaved-test-then-train evaluation is of-
ten used in data stream mining. Each observation (or block of non-overlapping
observations) is first used to test and then to train the model [19] in a sequen-
tial manner. The term prequential usually refers to the case where the training
window is growing, i.e., a block of observations that is used for testing in one
iteration will be merged with all previous blocks and used for training in the
next iteration.

Four alternatives to standard CV proposed for time series should be high-
lighted: a) Modified CV is Similar to K-fold CV, except that l observations
preceding and following the observation(s) in the test set are discarded from
the training set after shuffling and fold assignment [11]. Also referred to as non-
dependent cross-validation in [3]; b) Block CV is a procedure similar to K-fold
CV where, instead of the observations being randomly assigned to folds, each
fold is a sequential, non-interrupted time series [29]; c) h-block CV is based on
LOOCV, except h observations preceding and following the observation in the
test set are removed from the training set [5], and d) hv-block CV is a modifi-
cation of h-block CV where, instead of having single observations as test sets,
a block of v observations preceding and following each observation is used for
testing (causing test sets to overlap), with h observations before and after each
block being removed from the training set [27].

Note that while in all types of block-CV, each test set is composed of a
sequential non-interrupted time series (or a single observation), a fold in modified
CV will almost certainly have non-sequential observations. If K is set to the
number of observations in modified CV, then it works the same as h-block CV.
Moreover, note that only hv-block CV allows test sets to overlap.

A number of empirical studies compare estimation methods for time series.
Bergmeir et al. [3, 4] suggest that cross-validation (in particular, hv-block CV)
may have advantage over OOS approaches, especially when samples are small
and the series stationary. Cerqueira et al. [9] indicate that, although this might be
valid for synthetic time series, the same might not apply in real-world scenarios
where methods preserving the order of the series (such as OOS Monte Carlo)
seem to better estimate loss in withheld data. Mozetic et al. [20] reinforce the
notion that blocking is important for time-ordered data.
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2.2 Spatial Dependence

A major change when switching from temporal dependence to spatial dependence
is that there is not a clear unidirectional ordering of data in 2D- or 3D- space
as there is in time. This precludes using prequential evaluation strategies in the
spatial domain. However, other strategies can be adapted quite straightforwardly
to deal with spatial dependence.

Cross-validation approaches seem to be most commonly used in spatial set-
tings. To avoid the problems arising from spatial dependence, block CV is often
adopted. As in the temporal case, blocks can be designed to include neighbour-
ing geographic points, forcing testing on more spatially distant records, and thus
decreasing spatial dependence and reducing optimism in error estimates [33].
Methods that would correspond to h-block or hv-block CV are usually referred
to as “buffered” CV in the spatial domain as a geographic vicinity of the testing
block is removed from the training set.

The validity of these procedures was empirically tested by Roberts et al.
in [28]. The authors find that block CV (with a block size substantially larger
than residual autocorrelation) and “buffered” LOOCV (a spatial version of h-
block CV, with h equivalent to the distance at which residual autocorrelation is
zero) better approximate the error obtained when predicting onto independent
simulations of species abundances data depending on spatially autocorrelated
“environmental” variables.

2.3 Spatio-Temporal Dependence

When both spatial and temporal structures are present in the data, authors
often resort to one of the procedures described in previous sections, effectively
treating the data as if it was spatial-only (e.g., [16]) or temporal-only (e.g.,
[1, 8]) for evaluation purposes. Others, while treating the problem mostly from
a temporal perspective, then make an effort towards breaking down the results
across space (e.g., [21]), or vice-versa (e.g., [7]), without the evaluation procedure
itself being specifically designed to accommodate this.

In [28], no experimental results are presented specifically for spatio-temporal
data, but there is a mention of data often being structured in both space and
time in the context of avoiding extrapolation in cross-validation. When models
are only meant to interpolate, the provided intuitions are that blocks should be
no larger than necessary, models should be trained with as much data as possi-
ble, and predictors should be equally represented across blocks or folds. While
conservatively large blocks can help avoid overly optimistic error estimates, the
potential for introducing extrapolation is also increased. It is suggested that this
effect may be mitigated by using “optimised random” or systematic (patterned)
assignment of blocks to folds. Roberts et al. [28] also provide a general guide on
blocking for CV, proposing the following five steps: assess dependence structures
in the data, determine prediction objectives, block according to objectives and
structure, perform cross-validation, and make “final” predictions.
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Recent work by Meyer et al. [18] highlights how, for spatio-temporal inter-
polation problems, the results of conventional CV differ from the results of what
they call “target-oriented” CV (versions of CV that address each and/or both
dimensions, namely, “leave-location-out”, “leave-time-out” and “leave-location-
and-time-out”). The authors attribute the lower error estimated by conventional
CV to spatio-temporal over-fitting of the models and propose a forward feature
selection procedure to improve interpolation results.

The applicability of solutions that consider the temporal and/or spatial auto-
correlation is worth exploring, but the optimal strategy will depend on the mod-
eling goal. It is important to make the distinction, as previous works have, be-
tween interpolation and forecasting problems. Unlike previous work on spatio-
temporal data, the focus of this study is on forecasting, meaning that the aim
is to make predictions about the future/new locations. Even after that is estab-
lished, it may still be the case that the best evaluation procedure when the goal
is to make predictions about unseen locations might differ from the best strategy
when the aim is to make predictions in known sites.

3 Experiments

The different estimation procedures being compared are presented in Sec. 3.1. We
first investigate their performance on data sets of randomly-generated artificial
spatio-temporal data, as they provide a foundation for understanding the real-
world case studies presented in Sec. 3.2. Section 3.3 describes the experimental
design. Code for replication of these experiments is freely available1.

3.1 Estimation Procedures

The estimators tested here included time-wise holdout methods (one-time, H,
Monte Carlo, MC ), cross-validation (CV ), and prequential evaluation (P).

Train/Test Allocation Strategies Table 1 summarises the different train/test
assignment procedures used for CV and prequential evaluation methods.

Methods to assign observations into cross-validation folds that were tested
include: standard CV, where instances are randomly assigned to folds, (tRsR), ig-
noring both dependency dimensions; time-sliced CV, where the spatial dimension
is ignored and time-slices are assigned to folds randomly (tRsA); spatial block
CV (also referred to as “leave-location-out” CV), where the temporal dimension
is ignored and spatial blocks are assigned to folds either randomly (tAsR), in
contiguous blocks (tAsC ), or in a systematic, checkered pattern (tAsS ).

When time is divided into blocks, prequential evaluation can also be applied.
In this scenario, (tBsA), also referred to as “leave-time-out” CV, fold assignment
ignores the spatial dimension. If space is also divided into blocks, then different

1 https://github.com/mrfoliveira/Evaluation-procedures-for-forecasting-

with-spatio-temporal-data
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types of spatio-temporal CV can be achieved by having the spatial assignment of
folds be either random (tBsR), in contiguous blocks (tBsC ), or in a (systematic)
checkered pattern (tBsS ).

Note that in what we call prequential evaluation, temporal order is always
respected even when dividing data into spatio-temporal blocks, i.e., if a block in
space-time is used for testing, then only blocks with previous time-stamps are
used for training. Whether the spatial region in the test set is included in the
training set is optional (rmS indicates that spatio-temporal data from the past
but in the spatial region of the test set are not used in training). Moreover, the
number of previous blocks in time used for training can be either fixed – sliding
window (slW ), or increase at each blocked time step – growing window (grW ).

Buffered CV Methods that remove a block of observations in the neighbour-
hood of the test set (in the temporal and/or spatial dimensions) from the training
set have also been considered.

In the case of standard CV, for each instance in the test set, a number of past
and future observations at that location are removed and/or past observations
within a certain distance from the location are removed (CV-T, CV-S or CV-
ST ). This is akin to modified CV mentioned earlier in a time series context.
The same process can be applied to spatio-temporal CV. In that scenario, if the
buffer is set to the maximum distances between any two points in space/time
(CV-STM ), the result is what is called “leave-location-and-time-out” CV.

When time block CV is used, then a number of previous and future obser-
vations are removed around the test set (CV-T ). This is similar to hv-block
CV. However, while hv-block CV is repeated for each instance of the whole set
(therefore including overlapping test sets), the procedure is only repeated here
for each non-overlapping block of sequential time.

In spatial random or contiguous block CV, a spatial buffer can be applied, so
that locations within a pre-defined spatial distance of the test set are removed
from the training set (CV-S ). This is, again, similar to hv-block CV in space.

Table 1. Cross-validation and prequential evaluation fold assignment procedures

Time Space

Cross-validation

Standard
random

random tRsR • † ‡
Time-sliced all tRsA
Spatial block

all
random block tAsR •

Checkered spatial block systematic tAsS
Contiguous spatial block contiguous tAsC •

Prequential evaluation

Time block

block

all tBsA †
Spatio-temporal block random block tBsR ‡
Spatio-temporal checkered block systematic tBsS
Spatio-temporal contiguous block contiguous tBsC

† Time-buffered CV variation included
• Space-buffered CV variation included
‡ Space-time buffered CV variation included
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3.2 Data Sets

As previously mentioned, both artificially generated and real-world data sets
were used for this study.

Artificial Data Sets Artificial data was generated by stationary spatio-temporal
autoregressive moving average (STARMA) models as proposed in [24] and im-
plemented in R package starma [10].

The models are denoted by STARMA(pλ1λ2...λp
, qm1m2···p) where p is the

autoregressive order, q is the moving average order, λl is the spatial order of the
kth autoregressive term, mk is the spatial order of the kth moving average term.
If q = 0, then STAR(pλ1...λp) will suffice; if p = 0, then it may be denoted by
STMA(qm1···p). Non-linear versions of STAR models, NLSTAR(pλ1...λp), are
generated by applying a non-linear function at each autoregressive step (similar
to what is done in [3] to obtain non-linear AR models).

In data sets generated by a STAR(210) model, a value measured at location
i and time t will be directly influenced by the values of location i and of its first-
degree neighbours at time t−1, and by the values of location i at time t−2. Note
that neighbours of lower order must be considered “closer” than neighbours of
higher order (according to some metric of distance).

In this study, for each model of type STARMA (with p = q), STMA, STAR,
and NLSTAR, two sets of coefficients of each order 210, 201 and 211 are generated
randomly (within intervals likely to respect stationarity conditions) until the
resulting STARMA models are stationary. In the case of NLSTAR, a non-linear
function is also randomly selected from a pre-defined set. Then, using grids of
10× 10 and 22× 22 equally spaced locations, data is generated with time series
lengths of 250 and 400. However, after this step, the first 100 observations at
each location are discarded in an effort to avoid dependence on initial conditions;
outer locations are ignored so each used location has information for its four first
order neighbours – top, bottom, left and right. Thus, 150 and 300 observations on
8× 8 and 20× 20 grids are kept for forecasting performance analysis. For details
on STARMA models and the data generation process, consult the Appendix.

Spatio-Temporal Embedding In order to apply standard regression techniques
to the spatio-temporal forecasting problem, the generated data sets have to be
transformed in some way so each instance has a set of predictors. A simple
way to do this is by spatio-temporal embedding, i.e., by using previous values
measured at the given location and its neighbours as predictors. The order of
spatio-temporal embedding can be denoted in the same way as the STARMA
order. All artificially generated data sets were embedded with order 3110. In
total, 96 artificial data sets were generated and embedded.

Real-World Data Sets Seventeen variables from seven different real-world
data sources were used as independent univariate data sets for experimental
validation of the performance evaluation procedures. The measured variables
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describe environmental monitoring, from air pollution to climate and soil char-
acteristics. A summary of the characteristics of each data set can be found
in Tab. 2. The size of the data sets varies from small networks of 20 sensors
to larger networks of 900 geolocations. Though most sensor networks are irreg-
ularly distributed in space, one of them forms a regular grid of 0.5×0.5 degrees
of longitude/latitude. The data sets also vary in terms of time series size (from
280 time points to over 11k) and sampling frequency (from hourly to monthly).
About half of the variables were measured at every point in time and space,
with no missing values. However, for others, only a percentage of location and
time-stamp pairs (from 39% to 74%) have available values, due to, for instance,
some sensors only being installed later in the measurement period.

Table 2. Real-world data sets

Time Locations Total

Data set # Variables #IDs frequency #IDs distribution # % available Source

MESA
Air Pollution

1 NOX concentration 280 bi-weekly 20 irregular 5.6k 100 [25] 2

NCDC
Air Climate

2 precipitation,
solar energy

105 monthly 72 irregular 7.6k 100 [25]2

TCE
Air Climate

3 ozone concentration,
air temperature,
wind speed

330 hourly 26 irregular 8.6-9.4k 100 [25]2

COOK
Agronomy
Farm

3 water content,
temperature,
conductivity

729 daily 42 irregular 22-23k 73-74 [17, 14]3

SAC
Air Climate

1 air temperature 144 monthly 900 regular 130k 100 [25]2

RURAL
airBase

1 PM10 concentration 4382 daily 70 irregular 149k 49 [23]3

BEIJ
Beijing
UrbanAir

6 PM25, PM10 & NOX

concentration,
air temperature,
humidity

11357 hourly 36 irregular 404-409k 39-41 [35]4

Spatio-Temporal Indicators In order to compare performance, a learning ap-
proach had to be selected that would work with the different data set charac-
teristics. Unlike the artificial data sets, most real-world sensor networks are not
distributed in a regular grid, so the simple spatio-temporal embedding used for
the artificial data sets seemed over-simplistic. The approach adopted instead
was the one proposed in [21], using as predictors a temporal embed of values
measured at the location, spatio-temporal indicators built by calculating sum-
mary statistics from the neighbouring observations within 3 data set specific
boundaries of spatio-temporal distance, and ratios between the indicators of

2 Downloaded at: http://www.di.uniba.it/\~appice/software/COSTK/index.htm
3 Loaded from R packages GSIF (0.5-4) and spacetime (1.2-1).
4 Downloaded at: https://www.microsoft.com/en-us/research/publication/u-

air-when-urban-air-quality-inference-meets-big-data/
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spatio-temporal neighbourhoods of increasing radius. The temporal embed size
was set to 7, resulting in a total of 20 predictors.

Missing Data Some of the data sets have missing data, either due to failures in
data acquisition or due to sensors being set up at later times. After calculating
the predictors but before any experiments are carried out, all columns that have
20% or more of their data missing from the first 80% of time-points, are discarded
as they should not be very useful predictors. The remaining missing data is dealt
with as follows: first, any rows that have too many predictors missing (set at
20% of columns) are discarded from the training set; then, missing values for
both the training and test sets are imputed as the median of that column in the
respective set.

3.3 Experimental Design

For each data set: 1) The data is divided into an in-set and out-set. This is
performed time-wise, so that the out-set consists of a percentage of the most
recent observations; 2) A regression model is trained in the in-set and tested on
the out-set. The error on the out-set is considered to be the “gold standard” error
that estimation methods should be able to estimate accurately; 3) Several error
estimation methods (cross-validation, prequential and out-of-sample methods),
applied exclusively on data from the in-set, are used to approximate the “gold
standard”. The differences between the “gold standard” error and the error
estimated by each estimation methodology can be compared over all data sets
and learning model pairs.

Train/Test Sizing The in-set was set to be 80% of the time-points. When using
cross-validation or prequential evaluation on the in-set, 16 folds were used for
artificial data and 9 folds for real data. When using OOS procedures on the in-set,
the splits are always made time-wise. For holdout, estimations were made with
test sizes of 20% (same proportion as the out-set) and 6%/9% for artificial/real
in-set data (the proportions used in the last block of time-block CV).

Note that the data set is divided into the same number (16 or 9) of equally-
sized folds across all variations of CV. In the interest of fairness, the test size of
time-wise holdout was defined to correspond to the size of one fold in CV. All
of these methodologies use the whole given in-set to make estimates. However,
time-wise Monte Carlo estimations, by definition, use only a fraction of the data
set for each iteration – meaning the sizing of these competing procedures can
never be made entirely “fair”. The option taken was to keep the proportion
between train and test sizes the same as that used in CV, i.e., the percentages
used for training and testing in Monte Carlo correspond to the estimation on
the last block of a 16-fold or 9-fold time block CV performed on 50% or 60%
of the in-set. Thus, Monte Carlo estimations were averaged over 16 repetitions
with training (testing) performed on 47% (3%) and 56% (4%) of the in-set for
artificial data, and averaged over 9 repetitions of training (testing) on 44% (6%)
and 53% (7%) of real data. Buffer sizes are set to the highest embed size or
spatio-temporal neighbourhood radius.
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Learning Models The process is repeated over each data set using two different
learning algorithms: a linear regression model, LM (R package stats [26]) and a
random forest, RF (R package ranger [34]).

Error Metrics The error of learning algorithms is measured by Normalized Mean
Absolute Error (NMAE), defined by Eq. 1 where z is the observed value, ẑ is the
prediction, and z̄ is the mean of Z. By opting for a normalized metric instead
of the more widely used MAE, comparisons between error estimation methods
across data sets can be made more easily.

NMAE =

∑n
i=0 |ẑ − z|∑n
i=0 |z − z̄|

(1)

4 Results

The estimation error is defined as the difference between the error estimated
by a procedure using the in-set, Est, and the “gold standard” error incurred
on the out-set, Gold, Err = Est − Gold. Note that experiments with methods
that rely on non-random spatial blocking were not carried out using real-world
data sets due to issues arising from irregular spatial distributions. Time-buffering
without time-blocking in real-world scenarios caused issues related with buffer
size/neighbourhood radius. Results for variations of prequential evaluation using
sliding window and/or removing locations in the test set from the training set are
not reported as they were consistently out-performed by their growing window
counterparts (though the difference was not statistically significant).

4.1 Median Errors

Figures 1 and 2 show the distribution of estimation errors for artificial and real-
world data sets. The sign of the median error indicates whether the procedure
tends to underestimate the error meaning it is overly optimistic (negative median
error), or overestimate it (positive median error).

Fig. 1. Box plots of estimation errors incurred by cross-validation and out-of-sample
procedures on 96 artificial data sets using 2 learning algorithms
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In Fig. 1, all procedures appear centered around zero. However, most cross-
validation procedures under-estimate the error in more than half the cases, even
when using some form of block CV. This effect is mitigated when a type of
buffering is applied (either temporal, spatial or spatio-temporal). Most OOS
procedures overestimate the error in more than half the cases, with the exception
of holdout at 80%.

Fig. 2. Box plots of estimation errors incurred by cross-validation and out-of-sample
procedures on 17 real world data sets using 2 learning algorithms

Figure 2 shows significant differences between procedures. Is is important
to note that standard CV (CVtRsR) under-estimates the error in over 75% of
cases. We observe this problem even after applying a spatial buffer. Note that
spatial-buffered CV estimates were not obtained for a fraction of real data sets
due to problems associated with the irregularity of sensor network locations.

Spatial block CV (CVtAsR) and time-sliced CV (CVtRsA) are also overly
optimistic in their error estimates. However, OOS procedures and variations
of CV using time-blocks and/or time-buffers seem to be less prone to under-
estimate the error.

4.2 Relative Errors

Another useful metric to analyse is the relative error as defined by RelErr =
|Est − Gold|/Gold. Figure 3 shows the distribution of low, moderate and high
errors. The binning is somewhat arbitrary but chosen so that comparisons might
be useful. In the real-world case, relative errors are generally higher so bins were
chosen accordingly. Possible explanations for the lower relative errors found for
artificial data sets when compared to the real-world case include the absence of
missing data, the regularity of the grids and stationarity of the underlying data
generation process.

In Fig. 3a, holdout (H94.6) stands out as the estimation method with the
lowest percentage of low relative errors. In real-world scenarios (Fig. 3b), stan-
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(a) Artificial (b) Real-world

Fig. 3. Bar plots of relative estimation errors incurred by cross-validation and out-of-
sample procedures on 96 artificial and 17 real-world data sets using 2 learning algo-
rithms. Note the different legends

dard CV (CVtRsR) has one of the highest proportions of severe relative error,
alongside spatial CV (CVtAsR) and MC procedures. MC procedures may be at
a disadvantage due to using smaller fractions of the in-set for error estimation.

4.3 Absolute Errors

Finally, we present results concerning the absolute errors incurred by estimation
procedures, that is, AbsErr = |Est −Gold|. The mean ranks for artificial data
sets can be found in Tab. 3. Time-block CV either time-buffered (CV tBsA T )
or plain (CV tBsA) are two procedures that can be found within the top 5
average ranks for both the linear and random forests learning models. Within
OOS procedures, holdout (H80.20) and Monte Carlo (MC56.4) can be found in
the top 3 average ranks for both learning models.

Table 4 shows average ranks for real-world data sets. Spatio-temporal block CV
(CV tBsR) is within the top 5 average rank of both learning models, alongside
space-buffered standard CV (CV tRsR S). The top 3 OOS procedures are consis-
tently spatio-temporal block prequential evaluation (PtBsR), holdout (H80.20)
and time-block prequential evaluation (PtBsA).

Only the aforementioned procedures, along with any other method that ap-
pears as the best for a certain learning model, and standard CV, are considered
for statistical significance testing. The Friedman-Nemenyi test is applied, with
estimation procedures used as the “classifiers” or “treatments” (using R package
scmamp [6]). Since there is an assumption that the data sets should be indepen-
dent, separate Friedman tests were carried out for the results obtained by linear
and random forest learning models. Moreover, a test is performed for each subset
of 24 artificial data sets with the same grid and time series size, since the same
STARMA coefficients were re-used across different data sizes. Figures 4 and 5
show critical difference diagrams for a subset of artificial data sets and all the
real-world data sets. In most cases, no significant difference between estimation
procedures was found at a 5% confidence level. However, a significant difference
was found for the smaller artificial data sets as seen in Fig. 4b.
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Table 3. Average ranks of absolute errors incurred by cross-validation and out-of-
sample procedures when estimating performance on 96 artificial data sets. Best results
in bold

CVtAsC CVtAsC S CVtAsR CVtAsR S CVtAsS CVtBsA CVtBsA T CVtBsC

LM 8.35 8.56 8.07 7.57 8.64 8.16 8.02 8.41
RF 8.47 8.57 9.01 8.44 8.54 7.95 7.55 8.67

CVtBsR CVtBsR STM CVtBsS CVtRsA CVtRsR CVtRsR S CVtRsR ST CVtRsR T

LM 8.67 8.11 8.73 8.29 9.21 9.07 8.86 9.27
RF 8.50 8.96 8.30 7.93 9.07 8.75 8.88 8.42

H80.20 H94.6 MC47.3 MC56.4 PtBsA PtBsC PtBsR PtBsS

LM 4.23 6.21 4.24 3.99 4.09 4.33 4.54 4.36
RF 4.02 5.95 4.34 4.20 4.51 4.43 4.14 4.42

Table 4. Average ranks of absolute errors incurred by cross-validation and out-of-
sample procedures when estimating performance on 17 real-world data sets. Best results
in bold

CVtAsR CVtAsR S CVtBsA CVtBsA T CVtBsR CVtBsR STM CVtRsA CVtRsR CVtRsR S

LM 4.53 7.06 5.29 5.35 3.94 5.12 4.82 4.35 4.53
RF 5.00 5.88 4.00 4.41 4.41 4.41 5.47 6.59 4.82

H80.20 H89.11 MC44.6 MC53.7 PtBsA PtBsR

LM 2.47 3.71 4.47 4.35 3.47 2.53
RF 3.12 3.35 4.12 4.41 3.18 2.82

(a) LM (b) RF

Fig. 4. Critical difference diagram according to Friedman-Nemenyi test (at 5% confi-
dence level) for a subset of estimation procedures using 24 artificial data sets (64× 64
grid; 150 time-points each)

5 Conclusion

The problem of how to properly evaluate spatio-temporal forecasting meth-
ods is still an open one. Previous studies have empirically shown that depen-
dence between observations negatively impacts performance estimation using
standard error estimation methods like cross-validation for time series [3, 4, 9],



14 M. Oliveira, L. Torgo, and V. Santos Costa

(a) LM (b) RF

Fig. 5. Critical difference diagram according to Friedman-Nemenyi test (at 5% confi-
dence level) for a subset of estimation procedures using real data sets

time-ordered Twitter data [20], spatial and phylogenetic data [28], and spatio-
temporal interpolation [18].

In this paper, an extensive empirical study of performance estimation for fore-
casting problems using both artificially generated and real-world spatio-temporal
data sets is provided. First, we observe that most often error estimates are rea-
sonably accurate. Standard CV does have problems: it underfits and it exhibits
a number of outliers of severe error underestimation. Moreover, though the best
estimator in terms of absolute difference to the “gold standard” is not always the
same, most top-performers block the data set in time. This is in line with pre-
vious research on time-ordered data [3, 20]. Indeed, for artificial data sets, time-
buffered time-block CV is one of the best in terms of approximating the “gold
standard” error while also avoiding being overly optimistic in the estimates. For
real-world data sets, spatio-temporal block CV and, when using random forests,
time-block CV (this time without the buffer) not only approximate the error
better than other methods, they also mostly avoid being overly optimistic about
errors. Note that the fact that time-buffered time block CV did not perform as
well in real-world data sets might have to do with buffer size parametrization.
Out-of-sample procedures, in general, did not do as well in terms of absolute
difference to the gold-standard, but they did tend to avoid underestimation of
the error in almost all cases which might still be seen as an advantage over cross-
validation. These results seem to point to the temporal dimension being more
important to respect when evaluating spatio-temporal forecasting methods.

There is some bias in the experimental design, but results are still fairly con-
sistent and some issues can be addressed in future work. Varying the in-set/out-
set ratio, and setting the “gold standard” as forecasting future observations in
new locations (instead of forecasting for known locations only) are two future
settings of interest. Moreover, the effect of train/test and buffer sizes on the
estimation methods should be analysed. It would also be interesting to control
for the effect of including outer locations and/or introducing missing data in
artificial data. Moreover, in the case of real-world (or artificial) data sets with
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irregular grids, solutions to contiguous assignment of spatial blocks should be
explored, possibly using quadtrees.
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Appendix

1 Artificial data

1.1 STARMA models

Considering N fixed locations in space, observations of a random variable are
generated for T time periods. The model is specified by Eq. 1 [1],

z(t) =

p∑
k=1

λk∑
i=0

φklW
(l)z(t− k)

−
q∑

k=1

mk∑
i=0

θklW
(l)ε(t− k) + ε(t)

(1)

where z(t) is a N×1 vector of observations at time t, I is the identity matrix,
W (l) is a N ×N square matrix of weights where element (i, j) is only non-zero if
locations i and j are neighbours of lth order with rows summing to one, p is the
autoregressive order, q is the moving average order, λl is the spatial order of the
kth autoregressive term, mk is the spatial order of the kth moving average term,
φkl and θkl are parameters, and the εl(t) are random normal errors respecting
Eqs. 2 and 3.

E[εl(t)] = 0 (2)

E[εl(t)εj(t+ s)] =

{
σ2 l = k, s = 0

0 otherwise
(3)

Non-linear versions of STAR models (based on non-linear AR models in [2])
are generated by applying a non-linear function f (cf. Eq. 4) to each zl(t −
k), f being randomly selected between sin(x), cos(x), arctan(x), tanh(x) and
exp(− x

C ), with C = 1× 104.

z(t) =

p∑
k=1

λk∑
l=0

φklW
(l)f(z(t− k)) (4)

1.2 Stationarity conditions

Stationarity, meaning that the covariance structure of z(t) does not change with
time, requires that every xu that solves Eq. 5 lies inside the unit circle (|xu| < 1).

det

[
xquI−

q∑
k=1

mk∑
i=0

θkiW
(i)xq−ku

]
= 0 (5)



Low-order STARMA stationarity

A STARMA(211) is defined by the following equation:

z(t) = (φ10I + φ11W
(l))z(t− 1) (6)

+ (φ10I + φ21W
l)z(t− 2) + ε(t) (7)

+ (θ10I + θ11W
(l))ε(t− 1) (8)

+ (θ10I + θ21W
(l))ε(t− 2) + ε(t) (9)

Stationarity restrictions for STARMA(211) models can be written as below
for the AR component (φkl coefficients) [3].

−φ20 + |φ21| < 1

|φ10 + φ11| < 1− φ20 − φ21
|φ10 − φ11| < 1− φ20 + φ21

The same set of restrictions apply to the MA terms (θkl).

1.3 Random coefficient generation

Coefficients are generally randomly generated within intervals that present rea-
sonable chance of respecting stationarity conditions. In the case of order 211,
one of the coefficients is fixed at a random value first and the remaining three
coefficients are generated within intervals informed by this first selection (cf.
Tab. 1).

Table 1: Model coefficients, cXY corresponding to φXY and/or θXY . Coefficients
are fixed or generated within the presented intervals.

Model order c10 c11 c20 c21

210 [−2, 2] [−2, 2] [−1, 1] 0
201 [−2, 2] 0 [−1, 1] [−2, 1]
211 [−1.227, 0.733] [0.733, 1.277] [−0.227, 1.773] −0.7333
211 [−1.755, 0.245] [−1.755, 1.755] [−0.7555, 0.7555] 0.245
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