
Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

Efficient heuristics for minimizing weighted sum of squared tardiness on
identical parallel machines

Jeffrey Schallera,⁎, Jorge M.S. Valenteb

a Department of Business Administration, Eastern Connecticut State University, 83 Windham St., Willimantic, CT 06226-2295, United States
b LIAAD – INESCTEC LA, Faculdade de Economia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-464 Porto, Portugal

A R T I C L E I N F O

Keywords:
Scheduling
Sequencing
Heuristics
Integer programming

A B S T R A C T

Scheduling jobs on a set of identical parallel machines using efficient heuristics when the objective is to mini-
mize total weighted squared tardiness is considered. Two efficient heuristics and an improvement procedure are
presented for the problem. These heuristics and other heuristics are tested using problem sets that represent a
variety of conditions. The results show that one of the heuristics consistently performs better than the other
heuristics tested. It is also shown how these heuristics can be incorporated into other procedures such as the
existing Lagrangian relaxation procedure or meta-heuristics to obtain improved solutions for medium sized
problems.

1. Introduction and problem description

This research investigates the use of efficient heuristics when
scheduling on identical parallel machines with an objective of mini-
mizing total weighted squared tardiness. Let M be the number of ma-
chines and n the number of jobs to be scheduled. Let pj, wj, and dj
represent the processing time, weight and due date for each job j (j = 1,
…, n) respectively, and Cj is the time that job j is completed, j= 1, …,
n. The weights (wj) for each job would usually be determined by the
scheduler or other management individuals in the organization and
would reflect things such as product margins or importance of the
customer to the organization’s success. The tardiness of job j, Tj, is
defined as: Tj=max{0, Cj− dj}, j = 1, …, n. The objective function, Z,
can be expressed as: Z=∑ =j

n
1wj ∗ Tj

2. If the job to be sequenced in
position j of machine m (m=1, …, M) is denoted as [j]m, then
C[j]m=C[j− 1]m+ p[j], with C[0]m=0 for m=1, …, M.

The problem described in the previous paragraph was originally
motivated by studies of scheduling in an Aerospace and Defense man-
ufacturing facility (Hoitomt, Luh, Max, & Pattipati, 1990; Luh &
Hoitomt, 1993). A distinguishing feature of the problem is that the
objective is a function of the square of tardiness. Manufacturers, as well
as service organizations, operate as part of supply chains in which
timely delivery to customers is crucial, and the cost of tardy deliveries
can be very high. Taguchi (1986) proposed a quadratic penalty to
measure quality costs incurred by customers. Timely delivery to meet
requested customer due dates is a dimension of quality that is very
important. Quadratic tardiness can be used as part of a measure of on

time delivery to represent the increased cost as tardiness increases, as
suggested by Taguchi (1986). Traditionally, linear functions of tardi-
ness have been used to evaluate schedules. The sum of weighted tar-
diness would be the linear equivalent of the objective considered in this
paper. Frequently, the solution can be different depending on whether
weighted tardiness or weighted squared tardiness is used as the objec-
tive. For example suppose two jobs are to be sequenced first and second
on the same machine and have these processing times, weights and due
dates: p1= 6, p2= 3, d1= 4, d2= 0, w1= 3, w1=1. If weighted
tardiness is used as the objective then scheduling job 1 before job 2
would result in a total weighted tardiness of 15 for the two jobs. If job 2
is instead scheduled before job 1, the total weighted tardiness of the
two jobs would be 18, so scheduling job 1 before job 2 would be better.
If weighted squared tardiness is used as the objective then scheduling
job 1 before job 2 would result in a total weighted squared tardiness of
93 for the two jobs. If job 2 is instead scheduled before job 1, the total
weighted squared tardiness of the two jobs would be 84, so scheduling
job 2 before job 1 would be better and therefore the solutions under the
two objectives would be different. All customers are considered with
either of these objectives. Another objective, maximum tardiness, has
also been frequently used. This is a simple measure and implicitly re-
cognizes that customer dissatisfaction with tardiness does not increase
in a linear fashion, as a schedule with one job that is 10 units tardy is
worse than a schedule that has two tardy jobs, each five units tardy. In
fact, if squared tardiness was used, the first schedule in the preceding
example would be twice as costly as the second (100 versus 50). A
problem with using maximum tardiness is that it focuses on just the one

https://doi.org/10.1016/j.cie.2018.03.036
Received 29 August 2017; Received in revised form 20 March 2018; Accepted 21 March 2018

⁎ Corresponding author.
E-mail addresses: schallerj@ecsu.ctstateu.edu (J. Schaller), jvalente@fep.up.pt (J.M.S. Valente).

Computers & Industrial Engineering 119 (2018) 146–156

Available online 26 March 2018
0360-8352/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2018.03.036
https://doi.org/10.1016/j.cie.2018.03.036
mailto:schallerj@ecsu.ctstateu.edu
mailto:jvalente@fep.up.pt
https://doi.org/10.1016/j.cie.2018.03.036
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2018.03.036&domain=pdf

job or customer that has the maximum tardiness, whereas squared
tardiness considers all of the jobs or customers. Sun, Noble, and Klein
(1999) provide additional examples contrasting squared tardiness with
linear tardiness and maximum tardiness. In situations where demand is
higher than the capacity of the machines or processors, the costs of
tardy deliveries can become very high. Sometimes it is possible to in-
crease capacity by using subcontractors, so the total weighted squared
tardiness can be reduced. It is important to be able to generate timely
schedules that would indicate the problem and allowing for searching
for alternatives for meeting customer demand. If subcontractors are not
available, then these schedules would allow for the evaluation of
adding additional machines or processors.

To the best of the authors’ knowledge, the complexity of the
weighted squared tardiness on parallel machines is open. Other com-
plexity results suggest that this problem is likely hard. Lawler (1977)
and Lenstra, Rinnooy Kan, and Brucker (1977), show that the single
machine weighted tardiness problem is strongly NP-hard. Garey and
Johnson (1978), show that minimizing makespan on parallel machines
is strongly NP-hard. Schaller and Valente (2013), developed exact al-
gorithms for the problem, but were only able to solve small scale sized
problems with up to 15 jobs and four machines in a reasonable amount
of time. For these reasons we focus on efficient heuristics that can solve
larger sized problems. Our objective is to see if efficient heuristics that
have been used for the single-machine problem with the same objective
can be adapted to the parallel machines environment, in order to
generate good solutions for the problem quickly. The next section will
review literature for problems with the objective of minimizing
weighted squared tardiness. Efficient heuristics are presented for the
problem in section three, and section four describes an improvement
procedure that can be applied to solutions generated by the heuristics.
Computational tests are described and results presented in section five.
It is shown how the procedures can be incorporated into other proce-
dures, in order to improve performance, in section six. Finally, the last
section concludes the paper.

2. Literature review

Past research that is related to this paper includes research with a
tardiness objective and the parallel machines environment. Sen, Sulek,
and Dileepan (2003), provide a survey of research for minimizing
weighted and unweighted tardiness. Mokotoff (2001), surveyed re-
search for parallel machine scheduling problems. The focus of this lit-
erature review will be research with the objective of minimizing the
weighted sum of squared tardiness. Previous work on problems invol-
ving an objective of minimizing the sum of weighted squared tardiness
includes single-machine problems (Goncalves et al., 2016; Schaller &
Valente, 2012; Sun et al., 1999; Valente & Schaller, 2012) parallel
machine problems (Hoitomt et al., 1990; Luh & Hoitomt, 1993; Schaller
& Valente, 2013) and job shop problems (Sun & Noble, 1999; Thomalla,
2001). Several papers, Hoitomt et al., 1990; Luh & Hoitomt, 1993; Sun
et al., 1999; Sun & Noble, 1999; Thomalla, 2001, use a Lagrangian
relaxation approach based on the procedure that Fisher (1973a, 1973b)
used for other problems.

Hoitomt et al. (1990), studied a parallel machines shop environment
at a Pratt and Whitney plant where the jobs have precedence con-
straints. A Lagrangian relaxation procedure was developed and de-
monstrated using three examples from the plant. Luh and Hoitomt
(1993), also developed a Lagrangian relaxation procedure for a shop
environment at a Pratt and Whitney plant that consisted of identical
parallel machines. This procedure was also tested using data from the
plant.

Sun et al. (1999), studied a single machine problem that included
sequence-dependent setup times and release dates. They also developed
a lagrangian relaxation procedure and compared their procedure
against simple dispatching rules as well as more computationally in-
tensive algorithms, namely tabu search and simulated annealing.

A job shop environment was studied by Sun and Noble (1999) and
Thomalla (2001). In both papers lagrangian relaxation procedures were
developed. The problem Sun and Noble (1999), studied included se-
quence-dependent setup times and Thomalla (2001)’s, included alter-
native processing plans.

Schaller and Valente (2012) and Goncalves et al. (2016), all con-
sidered the single machine problem. Schaller and Valente (2012),
proposed several dominance rules, as well as branch-and-bound algo-
rithms, which incorporate these rules, and found that problems with up
to 50 jobs could be solved within a reasonable amount of time. Valente
and Schaller (2012), focused on developing dispatching heuristics for
the problem in order to solve large scale instances. They found that a
rule that sequences jobs from the end of the schedule and works toward
the beginning of the schedule worked the best. Goncalves et al. (2016),
developed meta-heuristics for the problem that included an iterated
local search, a variable greedy algorithm and a genetic algorithm. In
computational tests the iterated local search generated solutions with
lower objective values.

Schaller and Valente (2013) developed branch-and-bound algo-
rithms for the identical parallel machines problem. These branch-and-
bound algorithms utilized results from the single machine scheduling
problem, but it was found that only small scale problems of up to 15
jobs could be solved in a reasonable amount of time.

3. Heuristics

In this section two heuristics are described and proposed for the
problem. These two procedures are referred to as the QB and QBP
procedures. Both of these procedures are adaptations to parallel ma-
chines of the single machine heuristic QBackv6 developed by Valente
and Schaller (2012). The QBackv6 heuristic was found by Valente and
Schaller (2012) to be the best performing heuristic for the single ma-
chine problem. The QBackv6 heuristic works from the end of a se-
quence to the beginning. If n is the number of jobs to be sequenced
then, at each iteration k of the procedure, the jobs in positions n–k to n
are sequenced and the jobs not yet sequenced need to be assigned to the
first n–k–1 positions. This allows for the jobs that will be at the end of
the sequence, and completed the latest, to be examined first and
hopefully avoid placing jobs with a high cost in these positions. In the
single machine problem this approach is straightforward because we
know a job’s completion time when it is sequenced, even though we do
not know the exact order of the jobs to be sequenced before it on the
machine. In the parallel machines case this is not so; therefore, the two
approaches described in this section attempt to estimate a job’s com-
pletion time when determining the sequence. The two procedures differ
in the way that they estimate completion times. Once a sequence is
determined, each of the procedures can create a schedule and calculate
the objective value based on the actual completion times of the jobs.

Each of these two heuristics can be combined with the improvement
procedure described in the next section. Also, a preprocessing problem
reduction step is first performed before starting any of the procedures.
This step is described first.

3.1. Preprocessing problem reduction

This step attempts to find jobs that will not be tardy no matter
where they are scheduled, and hence will not contribute to the objec-
tive. These jobs are removed from the problem when the sequencing
heuristics are applied. After the other jobs have been sequenced and
scheduled, the jobs that were removed in this step will be placed at the
end of the sequence and scheduled.

Let P=∑ =j
n

1pj, let Aj= ((P− pj)/M)+pj. Azizoglu and Kirca
(1998), show that a job j’s maximum completion time will be Aj, and
hence that job will not be tardy if dj≥ Aj. This result is used in this step
to identify jobs that will not be tardy, and therefore can be scheduled at
the end. In the following procedure EDD[k] is the kth job if the jobs are

J. Schaller, J.M.S. Valente Computers & Industrial Engineering 119 (2018) 146–156

147

sorted in non-descending order of the due dates, and ct is the total of
the processing times of the jobs that have not been eliminated.

3.1.1. Procedure problem reduction pseudo code

Step 0. Input the number of machines (M) and number of jobs (n);
the processing times and due dates of the jobs. Set ct= P, set k= n.
Step 1. If dEDD[k]≥ ((ct− pEDD[k])/M)+ pEDD[k] then step 2, else
step 3.
Step 2. Eliminate job EDD[k] from the problem. Set
ct= ct− pEDD[k].
Step 3. Set k= k− 1. If k > 0 then step 1, else step 4.
Step 4. Stop. Output the list of jobs that will not be tardy if placed at
the end.

In the above procedure step 1 does the comparison that determines
if a job’s due date is later than an upper bound on its completion time. If
the comparison is successful step 2 eliminates the job from the problem
and updates the total processing time of the remaining jobs. In the
above procedure the jobs need to be sorted in EDD order, which takes O
(n ∗ LN (n)) time, and then pass through the jobs so the complexity of
the algorithm is O (n ∗ LN (n)).

3.2. QB procedure

This procedure attempts to obtain the advantages of the single
machine heuristic QBackv6 developed by Valente and Schaller (2012),
by adapting it to the parallel machines problem. This procedure works
backward from the end of the schedule to the beginning. The QBackv6
procedure is described next. Let tB denote the current time, that is, the
completion time of the next job to be scheduled. The slack of job j is
defined as sBj = tB− dj . Also, let pmax denote the maximum processing
time of the currently unscheduled jobs, and Tmin equal the minimum
tardiness that could be incurred by scheduling one of the unscheduled
jobs at the current position. Furthermore, let p equal the average of the
processing times of the unscheduled jobs, and sB equal the average of
the sBj values for the unscheduled jobs. Finally, pjmod is set equal to min
{pj, Tmin}, while v is a parameter.

This dispatching rule schedules an early job whenever such a job is
available. These jobs will not be tardy, and will decrease the tardiness
of jobs that would be tardy. This is accomplished by giving early jobs a
priority value that is positive (pj), and tardy jobs a negative priority
value.

If all of the jobs that still need to be scheduled will be tardy, then the
dispatching rule considers each job’s weight and the tardiness of the job
if scheduled now, and possibly the job’s modified processing time. By
considering the weight and current tardiness of job j, the heuristic takes
into account the contribution of the job to the objective value, if the job
is scheduled now, allowing the procedure to see the reduction if the job
is postponed until a later iteration. On the other hand, considering the
processing time of job j provides a gauge on the impact in the other
jobs’ tardiness if job j is chosen now. The following index is used in this
case: – (wj/pjmod)[(sBj)2− v(max{tB− pmax− dj, 0})2]. So, the priority
index QBj used in this rule to choose the next job to schedule becomes:

=
⎧
⎨
⎩

⩽

− − − −
QB

p if s 0

(w /p)[(s) v(max{t p d ,0})2] otherwise
,j

j j
B

j j
mod

j
B 2 B

max j

where v equals

=
⎧

⎨
⎩

⩾
< >

− < ⩽s
v

0 if p s
1 if p s & s /t 0.5
(s p)/s if p & s /t 0.5

B

B B B

B B B B B

In order to adapt the above procedure to the parallel machine case
we create an artificial single machine problem by calculating an

artificial processing time p′j for each job j. This artificial processing time
is calculated as p′j = pj/M, where pj is the processing time of job j and
M is the number of machines. The values of the p′j s are summed to
obtain the initial current time. The procedure then uses the QBackv6
procedure (priority index) to solve the artificial single machine problem
using the artificial processing times to create a sequence. So the p′j s are
substituted for pjs, p′max is substituted for pmax, p′jmod is substituted for
pjmod and p equals the average of the artificial processing times of the
unscheduled jobs (p′j). Once the sequence has been found, a schedule is
created by working forward from the first job in the sequence to the
last, assigning each job to the first available machine. In this step the
actual processing times for each job are used. When this is completed an
objective value is obtained. The pseudo-code for QB procedure is given
below. Let U be the set of unscheduled jobs and let [j] be the job for the
jth position of the sequence.

3.2.1. QB Pseudo-code

Step 0. Input the number of machines (M) and number of jobs (n);
the processing times and due dates of the jobs.
Step 1. Initialization:
1.1 For j:=1 to n
Set p′j = pj/M.

1.2 Set U to consist of the set of jobs to be scheduled.
1.3 Set tB=∑ =j

n
1 p′j.

1.4 Set k=n.
Step 2. Do While k > 0
2.1 For j ∊ U
Calculate index for job j.

2.2 Select [k] using indexes.
2.3 Set tB= tB− p′[k].
2.4 Remove job [k] from set U.
2.5 Set k= k− 1.

Step 3. Create schedule, calculate weighted squared tardiness and
set OQB equal to the weighted squared tardiness.
Step 4. Stop. Output the best sequence, schedule and objective
value.

Step 1 initializes the procedure by calculating the artificial proces-
sing times for each job and the initial time for tB. Step 2 is performed n
times. Each time step 2 is performed a job is selected for a position in
the sequence to be developed, and tB is updated. Step 3 develops the
schedule by assigning jobs in sequential order to the first available
machine, and calculates the total weighted squared tardiness. Step 4
stops the procedure. In the above procedure one job is added to the
sequence during step 2 which is performed n times and the indexes
have to be calculated for each unscheduled job so the complexity of the
algorithm is O (n2).

3.3. QBP procedure

The QBP procedure also works backward from the end of the
schedule to the beginning, and uses the index from the QBackv6
heuristic for single machine scheduling, like in the QB procedure.
However, it uses the actual processing times (pj) to create an estimated
start and end time for each job. Let P be the total processing time of all
the jobs that remain to be sequenced after the initial preprocessing step.
The initial completion times of the first (M− 1) machines are set equal
to the integer portion of P/M. The completion time of machine M is set
to P – the sum of the completion times of the other (M− 1) machines.
The current time (tB) is set equal to the maximum of the machine
completion times, and the machine that this time occurs on is the
current machine (in the case of ties the lowest number machine is se-
lected as the current machine).

Indexes are calculated for all the unscheduled jobs using the current
time and the QBackv6 index. The job with the largest index is selected

J. Schaller, J.M.S. Valente Computers & Industrial Engineering 119 (2018) 146–156

148

and placed in the sequence. The end time for the selected job is set
equal to tB and the estimated start time is set equal to tB− pj. This also
becomes the current machine’s updated completion time. When all the
jobs are sequenced, a second sequence is created by sorting the jobs in
earliest estimated start time order. Each of the sequences is evaluated
by scheduling the jobs (working from the beginning of the sequence to
the end) on the first machine that becomes available. The sequence that
results in the best objective value is selected and its objective value
becomes the objective value for the heuristic. The QBP priority index
QBPj follows; this index is the same as the QBj index, except that the
actual processing times (pjs) are used instead of the modified times
(p′js):

=
⎧
⎨
⎩

⩽

− − −
QBP

p if s 0

(w /p mod)[(s) v(max{t p d ,0})] otherwise
,j

j j
B

j j j
B 2 B

max j
2

where v equals

=
⎧

⎨
⎪

⎩⎪

⩾
< >

− < ⩽
v

0 if p s
1 if p s & s /t 0.5
(s p)/s if p s & s /t 0.5

B

B B B

B B B B B

The pseudo-code for QBP procedure is given below. Let U be the set
of unscheduled jobs. Let [j] be the job for the jth position of the se-
quence, tm be the estimated current time for machine m (m=1, …, M),
cm be the current machine and Sj be the estimated start time for job j.
Finally, OQMP is the objective value of the solution found by the pro-
cedure.

3.3.1. QBP Pseudo-code

Step 0. Input the number of machines (M) and number of jobs (n);
the processing times and due dates of the jobs.
Step 1. Initialization:
1.1 Set P=∑ =j

n
1 pj.

1.2 Set U to consist of the set of jobs to be scheduled.
1.3For m=1 to M− 1
Set tm=P/M.

1.4 Set tM= P−∑ =
−

m
M

1
1 tm.

1.5 Set k= n.
Step 2. Do While k > 0
2.1 Set cm=m with maximum tm.
2.2 Set tB= tcm.
2.3 For j ∊ U
Calculate index for job j.

2.4 Select [k] using indexes.
2.5 Set S[k]= tcm− p[k].
2.6 Set tcm= tcm− p[k].
2.7 Remove job [k] from set U.
2.8 Set k= k− 1.

Step 3. Create schedule, calculate weighted squared tardiness and
set OQBP equal to the weighted squared tardiness.
Step 4. Create a second sequence by sorting jobs in the non-des-
cending order of their Sj times.
Step 5. Create schedule, calculate weighted squared tardiness and
if < OQBP then set OQBP equal to the weighted squared tardiness.
Step 6. Stop. Output the best sequence, schedule and objective
value.

Step 1 initializes the procedure by calculating the estimated com-
pletion times for each machine. Step 2 is performed n times. Each time
step 2 is performed the current machine is determined by finding the
machine with the maximum completion time (ties are broken by se-
lecting the machine with the lowest index). Also, a job is selected for a
position in the sequence to be developed, tcm is updated and the se-
lected job’s estimated start time (S[k]) is calculated. Step 3 develops the

schedule by assigning jobs in sequential order to the first available
machine, and calculates the total weighted squared tardiness (OQMP).
Step 4 creates a second sequence by sorting the jobs’ start times in non-
descending order. Step 5 then creates a schedule for this sequence,
calculates its weighted squared tardiness and, if it is less than that of the
first sequence, the second sequence is selected as the solution and the
objective is updated. Step 6 stops the procedure. In the above procedure
one job is added to the sequence during step 2 which is performed n
times and the indexes have to be calculated for each unscheduled job so
the complexity of the algorithm is O (n2).

4. Improvement procedure

An improvement procedure was developed which can be applied to
a solution generated by either of the heuristics (QB and QBP). Two
additional procedures are created by using the improvement procedure:
QB_I and QBP_I.

The improvement procedure has three steps. In the first step, the
procedure attempts to exchange jobs that are sequenced last on dif-
ferent machines. In the second step, a single-machine heuristic is used
for the jobs assigned to each machine. The third step attempts to ex-
change pairs of jobs that are sequenced first on a machine. If an im-
proved solution is found, the steps will be repeated.

4.1. Step 1 last jobs exchange procedure

This step attempts to exchange jobs that are scheduled last on ma-
chines to see if an improved objective value will result; since these jobs
are sequenced last on a machine, switching a pair of these jobs will not
affect other jobs. Note that the jobs identified by the preprocessing
procedure described earlier are not considered here, because they will
not be tardy.

There are some conditions that help to identify whether or not to
perform an exchange. These conditions consider how the objective
value changes as a job’s completion time is increased one time unit, as
first shown by Schaller and Valente (2012).

Each of the following conditions consider two schedules S and S′.
Let S be a schedule with job j scheduled last on machine m, and job k
scheduled last on machine n. Let bj be the start time of job j on machine
m and bk be the start time of job k on machine n. Let bk < bj. Let Cj (S)
be the completion time of job j in S and Ck (S) the completion time of
job k in S. Let S′ be a schedule that is the same as S, except the positions
of jobs j and k are exchanged in S′, so job k is scheduled last on machine
m and job j is scheduled last on machine n. Then, we have b′j = bk and
b’k= bj. Let Cj (S′) be the completion time of job j in S′ and Ck (S′) the
completion time of job k in S′. If one of the following properties is met
the procedure will skip this candidate exchange, because it would not
improve the objective value.

Condition 1: If pk > pj & dk≤ dj & wk≥wj, and jobs j and k are to
be scheduled last on their respective machines, then schedule S will
have an objective that is at least as good as the one resulting from
schedule S′.
Condition 2: If dk≤ dj, wk≤wj, bj+ pk− dk≥ 0, &
2 ∗wk ∗ (bj+ pk− dk)≥ 2 ∗wj ∗ (bj+ pj− dj), and jobs j and k are
to be scheduled last on their respective machines, then schedule S
will have an objective that is at least as good as the one resulting
from schedule S′.
Condition 3: If dj≤ dk, wk≥wj, Ck (S)− dk≥ 0, & 2 ∗wk ∗ (Ck (S)
- dk) > 2 ∗wj ∗ (bk+ pj− dj), and jobs j and k are to be scheduled
last on their respective machines, then schedule S will have an ob-
jective that is at least as good as the one resulting from schedule S′.

The proofs for the three conditions are provided in Appendix A.

J. Schaller, J.M.S. Valente Computers & Industrial Engineering 119 (2018) 146–156

149

4.2. Step 2 Single Machine Procedure

In this step, for each machine, we sequence the jobs that are as-
signed to that machine using QBackv6, to see if an improved sequence
is obtained on that machine.

4.3. Step 3 First Jobs Exchange Procedure

This step attempts to exchange jobs that are scheduled first on
machines to see if there is an improvement. Since these jobs are se-
quenced first on a machine, switching a pair of these jobs will not affect
the weighted squared tardiness of the pair of jobs, but could affect the
weighted squared tardiness of the jobs that were sequenced after these
jobs on the pair of machines. If the two jobs to be exchanged have the
same processing time then exchanging the jobs will not affect the
weighted squared tardiness of the jobs sequenced after them, and
therefore this exchange does not need to be checked. If the two jobs to
be exchanged have different processing times then, by exchanging the
two jobs, the jobs that were previously sequenced on a machine after
the job with the longer processing time could have their tardiness re-
duced, and hence have a lower weighted squared tardiness. However,
the jobs that were originally sequenced on a machine after the job with
the shorter processing time now will have later completion times, so
their tardiness could increase and hence have a higher weighted
squared tardiness.

Suppose a job j is completed at time t in a schedule. If job j were to
be completed one time unit later (t+ 1) in a different schedule then its
contribution to the objective value would increase by 0 if dj > t, and
would increase by wj ∗ (2 ∗ Tj+ 1) if t≥ dj. Let Dj (t) = 0 if dj > t and
wj ∗ (2 ∗ Tj+ 1) if t≥ dj. Let k and l be two machines and nk and nl be
the number of jobs scheduled on machines k and l respectively. Let [j]k
be the job sequenced in position j on machine k and let [j]l be the job
sequenced in position j on machine l. Let TDm=∑ =j

nm
2 D[j]m (C[j]m).

When deciding whether to exchange the first jobs on machines k
and l, the following two conditions are checked, and the exchange is
attempted if either is met: (1) p[1]k > p[1]l and TDk > TDl or (2)
p[1]l > p[1]k and TDl > TDk. These conditions are checked because
they are the most likely to result in a decrease in the objective value,
but there is no guarantee that an exchange will result in a lower ob-
jective value. So a trial exchange is performed and if the total weighted
squared tardiness is decreased then the exchange is implemented,
otherwise the exchange is reversed.

4.4. Improvement Procedure Pseudo-code

The pseudo-code for the improvement procedure is given below. Let
ISF be an indicator that specifies whether or not an improved solution
was found.

4.4.1. Improvement Pseudo-code

Step 1. Initialization.
1.1 Input the number of machines (M) and number of jobs (n); the
processing times and due dates of the jobs.
1.2 Input current solution and objective value.
1.3 Set ISF=1.

Step 2. Do while ISF=1.
2.1 Set ISF=0.
2.2 Perform last jobs exchange procedure. If an improved solution
is found set ISF=1.
2.3 For m=1 to M do
Perform Qbackv6 procedure. If an improved solution is found set
ISF=1.
2.4 Perform first jobs exchange procedure. If an improved solution
is found set ISF=1.

Step 3. Stop. Output the best sequence, schedule and objective

value.

Step 1 initializes the procedure. In step 2 each of the sub-procedures
is performed. If an improved solution is found the step is repeated. Step
3 stops the procedure. In steps 2.2 and 2.4 of the above procedure O
(M2) exchanges are considered. Step 2.3 performs the Qbackv6 proce-
dure once for each machine (M times) and the Qbackv6 procedure has
O (n2) complexity so the complexity of step 2.3 is O (n2 ∗M) which will
be less than O (n3) since M is usually less than n (if not the problem is
trivial as each job can be assigned to a separate machine to minimize
the objective).

5. Computational tests and results

This section describes the test of the proposed procedures and pre-
sents the results. We first describe some procedures that were used for
comparison. Then, the test problems and the measure of performance
are described. Finally, we present the results.

5.1. Comparison procedures

We include two very efficient procedures in the test for comparison
purposes. These are described next.

5.1.1. COM procedure
This procedure is a combination of three simple and very efficient

dispatching rules. Since it combines the three rules, we refer to this
procedure as the combination procedure or by the abbreviation COM.
The procedure develops three separate sequences using three rules. The
resulting sequences are each evaluated to obtain an objective value.
This is done for each sequence by assigning jobs (in the order of the
sequence) to the first available machine. The sequence with the best
objective value is selected.

The three rules that are used are Earliest Due Date (EDD), Longest
Processing Time (LPT), and Shortest Processing Time (SPT). The rules
are applied by performing a simple sort to develop the sequence. We
also use the preprocessing problem reduction procedure, described in
Section 3.1, when applying each of the three rules. The EDD and SPT
rules were selected because they have been shown to be effective in
minimizing total tardiness. The LPT rule was selected because it was
shown to be effective in minimizing makespan for identical parallel
machines (Coffman & Sethi, 1976; Graham, 1969).

5.1.2. QAR procedure
We adapted the single machine QAR procedure to the parallel ma-

chines environment and refer to it in this paper by the same name
(QAR). The adaptation is very straightforward. The priority index for
the parallel procedure to be used in the test is the same as the single
machine procedure. The only difference is that each time a job is se-
lected the completion time of the machine the job was assigned to is
updated, and then the procedure finds the minimum completion time
among all the machines (because this will be the machine that the next
job to be selected is assigned to) and uses that time as the current time
to compute the priority indexes for the unscheduled jobs.

The single machine QAR procedure was proposed by Valente and
Schaller (2012), and is an adaptation to a quadratic setting of the AR
heuristic developed by Alidaee and Ramakrishnan (1996), for the
weighted linear tardiness problem.

Each time a job is added to the sequence, the single machine QAR
heuristic picks the job with the maximum value of the priority index
QARj. In this index, t is the current time (that is, the completion time of
the last scheduled job), p is the average processing time of the currently
unscheduled jobs, sj= dj− t− pj is the slack of job j and k is a user-
defined parameter. The QARj index is then given by:

J. Schaller, J.M.S. Valente Computers & Industrial Engineering 119 (2018) 146–156

150

= ⎧
⎨⎩

∗ + ∗ + − ⩽

∗ +
QAR

(w /p) [p 2 max(t p d ;0] if s 0

(w /p) [kp/(kp s) otherwisej
j j j j j

j j j

The parameter k provides the QAR heuristic with a look toward
future selections capability, as first described by Vepsalainen and
Morton (1987), in the context of the ATC rule for the single machine
weighted linear tardiness problem. The parameter k is used to de-
termine the number of jobs that are about to become tardy. Multiplying
the average processing time of the currently unscheduled jobs by the
parameter k allows the priority index to take into account the number
of jobs which will become tardy during the next selections.

The parallel machines version of the QAR heuristic also selects the
job with the largest value of the same priority index. The main adap-
tation required consists in the fact that the t is now the time on the
current machine. Each time a job is to be added to the schedule, the
current machine is the one with the minimum completion time/earliest
possible start time among all the machines (with ties broken by se-
lecting the machine with the lowest number). The chosen job is then
assigned to the current machine, and the completion time on this ma-
chine is updated, by adding the processing time of the scheduled job.

5.1.3. Procedures with improvement procedure
Two additional comparison procedures can be formed by adding the

improvement procedure to the COM and QAR procedures to form
COM_I and QAR_I.

5.2. Test problems

The tests used problems that included eight levels of number of jobs
(n) and three levels of number of machines (M). The levels of numbers
of jobs (n) were 15, 20, 25, 30, 40, 50, 75 and 100. The levels of number
of machines (M) were 2, 6 and 10. All of the problems were generated
using random values. For each job j, the processing time pj was created
using a uniform distribution [1, 50], and an integer weight wj was
generated from a uniform distribution [1, 10].

In order to develop due dates for each job, we calculate the average
processing time per machine for each problem and define this value as
P. P is calculated by summing the processing times of all jobs and di-
viding by the number of machines (M) in a problem rounded to the
nearest integer. We also use two parameters to develop due dates: T the
due date tardiness tightness factor and R the range of due dates.

For each job j, the due date dj was generated randomly by using a
uniform distribution [P(1− T− R/2), P(1− T+R/2)]. The due date
tardiness tightness factor (T) indicates how tight on average the due
dates are relative to the amount of processing that is required. If this
factor is high it is likely that jobs will be tardy and the weighted
squared tardiness will be high. The due date range factor (R) indicates
whether or not there is a great deal of dispersion in the due dates. Four
levels of tardiness factor T were tested: 0.00, 0.25, 0.50 and 0.75. Four
levels of the range of due dates, R, were also tested: 0.25, 0.50, 0.75,
and 1.00. This gives a total of 16 combinations of T and R and allows for
a wide variety of conditions to be tested. This method of generating due
dates is a common approach that has been used since early papers for
scheduling with an objective that is a function of a job’s tardiness (Ow &
Morten, 1988; Potts & van Wassenhove, 1991; Ow & Morten, 1989),
and is consistent with recent papers addressing the weighted squared
tardiness objective.

For each problem size, that is a combination of n and M, and for
each combination of T and R, there are 10 random instances. Therefore,
a total of 160 instances were generated for each problem size of n and
M. For each heuristic procedure and for each instance we recorded the
objective value of the solution found. We also used the lagrangean re-
laxation procedure developed by Luh and Hoitomt (1993), to calculate
a lower bound on the optimal objective function value, as will be de-
scribed in the next subsection. Turbo Pascal was used to code the

procedures, and the procedures were executed on a Dell Inspiron 1525
1.60 GHz Laptop computer.

5.3. Lower bound calculation using Luh and Hoitomt (1993)’s lagrangian
relaxation procedure

An existing procedure developed by Luh and Hoitomt (1993), was
used to calculate a lower bound. This procedure uses Lagrangian re-
laxation. The machine capacity constraint of the machines is relaxed so,
at a given point of time, the number of jobs processed could be greater
than the number of machines, thereby providing a lower bound for the
objective. The problem can be written as the integer program that
follows. In the integer program K is an upper bound on the completion
time of the last job completed on any machine and δjk indicates if job j is
active during time unit k.

∑=
=

∗Minimize Z w T
j

n

1
j j

2

∑ ⩾ = …
=

δSubject to: M for k 1, ,K
j

n

1
jk

(1)

Luh and Hoitomt relax constraint set (1) to form the relaxed pro-
blem using Πk as the multipliers for the machine capacity constraint:

∑ ∑ ∑∗ +
⎛

⎝
⎜

⎛

⎝
⎜ −

⎞

⎠
⎟

⎞

⎠
⎟

= =

∗

=

δMinimize w T Π M
j

n

k

K

j

n

1
j j

2

1
k

1
jk

This relaxation decouples the problem into n subproblems, one for
each job, which can be solved by finding the starting time that mini-
mizes wj ∗ Tj

2+∑ =k
K

1 (Πk ∗ δjk) for each job j.
Subgradient optimization is the method used to update the

Lagrangian multipliers. The procedure performs for a fixed number of
iterations. To calculate the lower bounds the procedure was run for a
maximum of n ∗ n iterations of the subgradient optimization. For
additional information about this procedure see (Luh & Hoitomt, 1993).
Each time an iteration of the procedure is performed, a feasible solution
is also created by sorting the jobs, based on the starting times that the
relaxation generated. A job schedule is created based on this sequence
and the resulting objective value is calculated, which provides an upper
bound.

5.4. Performance measure

We use the Relative Deviation Index (RDI) versus the lower bound
as our measure of performance for the procedures to be compared. The
Relative Deviation Index was first proposed by Zemel (1981) and is a
commonly used performance measure for problems that include an
objective that is a function of tardiness (see for example: Kim, 1993;
Kim, Lim, & Park, 1996; Vallada, Ruiz, & Minella, 2008). In order to
define RDI let OH be the objective value generated by heuristic H for the
problem, OW be the worst objective value generated for the problem by
the heuristics to be compared and LB be the lower bound described in
the previous section. The RDI for a problem is defined as: (OH− LB)/
(OW− LB).

There will be problems in which the weighted squared tardiness of
the worst solution generated for a problem, as well as the lower bound
for that problem, are equal to 0, and the previous equation would be
undefined because the denominator is equal to 0. In these cases, the RDI
for all the heuristics to be compared is set to zero for that problem (to
avoid dividing by zero), because they all generated an optimal solution
and hence there was no error. The RDI for a heuristic will return a value
between 0 and 1. Values closer to 0 indicate better performance and
values closer to 1 indicate worse performance.

J. Schaller, J.M.S. Valente Computers & Industrial Engineering 119 (2018) 146–156

151

5.5. Results

In this section the results of the tests are presented. First, the results
for the dispatching heuristics without the improvement procedure are
presented. Then, the heuristics that incorporate the improvement pro-
cedure are compared.

5.5.1. Dispatching procedures’ results
Table 1 shows the results for the dispatching procedures. For each

procedure, the results are shown by the number of machines and
number of jobs, and report the average relative deviation index.

The results show that the QBP procedure had the lowest RDI for all
of the combinations of number of machines (M) and number of jobs (n)
and the COM procedure had the highest RDI for all but four of the
combinations of M and n. The QB procedure had the second lowest RDI
and the QAR procedure the third lowest RDI when the number of ma-
chines is 2. The QAR and QB procedures are second and third when the
number of machines is 6 or 10 but the order of the procedures varies,
with QAR performing better when the ratio of jobs to machines
(number of jobs/number of machines) is low, and the QB procedure
performing better when the ratio is higher.

These results show the advantages of trying to work backward from
the end of the schedule to the beginning (QB and QBP procedures), as
well as using more sophisticated indices (QAR, QB and QBP procedures,
as opposed to the COM procedure), for selecting a job when working on
a position in a sequence. The QBP procedure uses a more sophisticated
method of working backward and estimating job completion times, and
consistently outperformed the other procedures.

Tests were conducted to determine if the differences between these
four procedures are statistically significant. The procedures were used
on the same instances, so a paired-samples test should be employed.
Since the assumptions of either the paired-samples t-test, or ANOVA
with repeated measures, were not met, the non-parametric Wilcoxon
signed-rank test was chosen.

This test was applied to each pair of procedures (6 pairs in total),
and for each combination of number of machines and number of jobs
(24 such combinations), giving a total of 144 comparisons. The sig-
nificance level was set at 0.05. Given that multiple tests were

performed, Holm’s sequential Bonferroni procedure was applied to
adjust the significance level, thus taking into account the multiple
comparisons.

These tests showed that the differences between procedures are
significant. Indeed, the hypothesis of identical performance was not
rejected in only 5 of the 144 tests performed, both concerning the
comparison between the QAR and QB procedures. More detailed in-
formation about the tests’ results is given in the electronic supple-
mentary material.

Table 2 shows the results for the dispatching heuristics by the due
date tightness and range parameters when the number of jobs was 50
and the number of machines was 6. For each procedure the results are
shown by the due date tightness and range parameters, and report the
average relative deviation index for each procedure.

The results show that when T=0.00 all of the procedures have an
RDI equal to 0. When T=0.00 the due dates are relatively loose and all
of the procedures were able to find a solution with no tardy jobs and
hence have a total weighted squared tardiness objective of 0. For the
other sets of parameters the QBP procedure is consistently very good
and is best among the procedures, with the exception of T=0.25 and
R=1.00 in which it is second best. The other procedures are less
consistent across the parameters. For other combinations of n and M the
results are generally consistent with those shown in Table 2. When
T=0.00 all of the procedures were able to generate solutions with no
tardy jobs when the ratio of jobs to machines was greater than 7.

These results show that the QBP heuristic is an effective procedure
for the problem and is consistent across a wide variety of conditions. It
is recommended for large scale problems that need to be solved quickly.

5.5.2. Dispatching procedures with the improvement procedure results
In this section we compare the results of the dispatching procedures

with the inclusion of the improvement procedure described in Section
3. First we compare each procedure with the improvement included to
its counterpart without the improvement procedure. To do this, we
looked at the percentage reduction in the gap between the objective
obtained by a procedure for a problem and the problem’s lower bound.
We refer to this measure as GAPRED% and to calculate it we use the
following. OH is the objective value generated by heuristic H without
the improvement procedure, OH_I is objective value generated by
heuristic H with the improvement procedure included, and LB is the
lower bound for the problem. Then, GAPRED% is defined as GAPRED
%=100− (OH_I− LB)/(OH− LB) ∗ 100 if OH− LB > 0, otherwise
the GAPRED% is set to 0. Table 3 shows the results. For each combi-
nation of n and M, the table shows the average percentage reduction in

Table 1
Average Relative Deviation Index (RDI) for the dispatching procedures.

of Machines # of Jobs Procedure

COM QAR QB QBP

2 15 0.62 0.30 0.24 0.11
20 0.57 0.24 0.16 0.09
25 0.57 0.21 0.12 0.07
30 0.58 0.19 0.12 0.06
40 0.58 0.21 0.12 0.07
50 0.56 0.17 0.08 0.05
75 0.57 0.16 0.07 0.05
100 0.57 0.15 0.09 0.04

6 15 0.69 0.31 0.67 0.22
20 0.63 0.26 0.61 0.13
25 0.62 0.30 0.50 0.13
30 0.61 0.27 0.43 0.10
40 0.59 0.25 0.33 0.07
50 0.57 0.23 0.26 0.06
75 0.55 0.20 0.15 0.04
100 0.55 0.18 0.12 0.03

10 15 0.55 0.32 0.85 0.22
20 0.67 0.31 0.78 0.28
25 0.67 0.29 0.72 0.18
30 0.65 0.30 0.67 0.17
40 0.60 0.24 0.52 0.11
50 0.61 0.27 0.47 0.09
75 0.56 0.24 0.30 0.06
100 0.55 0.23 0.23 0.04

Table 2
Average Relative Deviation Index (RDI) for the dispatching procedures by due
date tightness and range parameter for n=50 and M=6.

Due Date Parameters Procedure

T R COM QAR QB QBP

0.00 0.25 0.000 0.000 0.000 0.000
0.00 0.50 0.000 0.000 0.000 0.000
0.00 0.75 0.000 0.000 0.000 0.000
0.00 1.00 0.000 0.000 0.000 0.000
0.25 0.25 0.997 0.434 0.592 0.113
0.25 0.50 0.292 0.689 0.962 0.093
0.25 0.75 0.044 0.298 0.890 0.008
0.25 1.00 0.00 0.05 0.20 0.002
0.50 0.25 1.00 0.109 0.096 0.035
0.50 0.50 1.00 0.341 0.181 0.082
0.50 0.75 0.959 0.756 0.450 0.185
0.50 1.00 0.820 0.828 0.650 0.236
0.75 0.25 1.00 0.049 0.038 0.023
0.75 0.50 1.00 0.055 0.041 0.035
0.75 0.75 1.00 0.056 0.057 0.054
0.75 1.00 1.00 0.084 0.063 0.058

J. Schaller, J.M.S. Valente Computers & Industrial Engineering 119 (2018) 146–156

152

the gap obtained by including the improvement procedure in each of
the procedures.

The results show that including the improvement procedure helps
all of the procedures. The results also show that the improvement
procedure has a bigger impact on poorer performing procedures. For
example, including the improvement procedure with the COM proce-
dure, the procedure that performed the poorest, resulted in the largest
percentage reduction in the gap and including the improvement pro-
cedure in the QBP procedure, which performed best, resulted in the
lowest percentage reduction in the gap. Part of the reason for this is the
better a procedure is, the more likely it is to generate optimal solutions,
and therefore including the improvement procedure will not help. For
example, when T=0.00, n > 20, and M=2 all of the procedures
generated solutions with an objective value equal to 0, which is op-
timal, and therefore the improvement procedure could not help.

We conducted a statistical test to determine if the improvement
given by the improvement procedure is statistically significant. Again,
we used the Wilcoxon signed-rank test, with a significance level of 0.05.
This test was applied to all pairs of procedures with and without the
improvement procedure (that is., COM_I vs COM, QAR_I vs QAR, …),
and for each combination of number of machines and number of jobs.
Holm’s procedure was again used to correct for the multiple compar-
isons. All these comparisons were statistically significant. Therefore, the
procedures that include the improvement procedure are significantly
better.

We also compared the procedures with the improvement procedure
included with each other, using the relative deviation index (RDI).
These results are shown in Table 4.

The results shown in Table 4 show that although the performance of
the procedures is closer together, the QBP_I procedure is the best per-
forming procedure for all the combinations of n and M, and the COM_I
procedure was the worst performing procedure for all but three of the
combinations of n and M (it was second worst for these three). These
results show the advantage of using the QBP procedure for the problem.

Statistical tests were also performed to compare the procedures that
include the improvement procedure among themselves. As before, the
Wilcoxon signed-rank test was applied, with a significance level of 0.05.

The test was applied to each pair of procedures (6 in total), and for each
of the 24 combinations of number of machines and number of jobs. As
usual, Holm’s sequential Bonferroni was used to correct the significance
level in order to take into account the multiple comparisons.

The tests showed a statistically significant difference in 118 of the
144 comparisons. Of the 26 comparisons where a significant difference
was not found, 11 correspond to comparisons between QAR_I and QB_I,
while 9 occurred in the comparison between QAR_I and QBP_I. So, there
was a not a statistically significant difference between QAR_I and QB_I
(QAR_I and QBP_I) in about half (40%) of the cases. More detailed in-
formation about the tests’ results is given in the electronic supple-
mentary material.

All of the procedures considered are able to generate solutions very
quickly. Each procedure averaged less than 0.10 s per problem for all of
the problem sizes (combinations of n and M).

In order to provide a sense of the errors when using the two best
performing procedures, QBP and QBP_I, we report the GAP% from the
lower bound in table 5. The GAP% for a problem is defined as:
(OH− LB)/OH ∗ 100, where OH is the objective value generated by
heuristic H (QBP or QBP_I) and LB is the lower bound for the problem.
If OH=0 then the GAP% for that heuristic is set equal to 0 for that

Table 3
Average percentage GAP reduction (GAPRED%) when the improvement pro-
cedure improvement procedure is included.

of Machines # of Jobs Procedure

COM_I QAR_I QB_I QBP_I

2 15 43.98 28.94 17.74 6.90
20 44.81 29.24 13.15 3.94
25 45.87 32.32 10.56 2.46
30 46.67 32.01 9.68 3.03
40 49.03 33.29 8.54 3.47
50 48.67 34.64 7.43 2.79
75 50.24 36.29 6.86 2.49
100 51.56 37.01 7.31 1.99

6 15 62.27 53.69 62.48 42.25
20 62.17 52.16 58.60 34.93
25 54.63 46.98 47.16 28.87
30 69.54 59.43 67.21 50.48
40 62.83 53.60 54.58 38.53
50 59.95 49.90 46.57 35.52
75 53.95 45.46 35.97 21.83
100 50.34 42.99 29.70 18.70

10 15 67.58 61.42 77.98 44.81
20 76.51 61.32 73.60 55.86
25 78.11 66.79 72.76 56.22
30 52.36 45.73 42.50 24.94
40 49.85 42.54 32.90 18.57
50 50.34 42.42 27.95 14.20
75 48.04 40.85 23.09 9.54
100 48.57 39.16 20.54 6.86

Table 4
Average Relative Deviation Index (RDI) for the dispatching procedures with the
improvement procedure.

of Machines # of Jobs Procedure

COM_I QAR_I QB_I QBP_I

2 15 0.63 0.41 0.40 0.19
20 0.58 0.36 0.36 0.29
25 0.59 0.38 0.35 0.28
30 0.59 0.34 0.33 0.26
40 0.60 0.34 0.32 0.26
50 0.59 0.33 0.28 0.25
75 0.60 0.31 0.28 0.25
100 0.60 0.30 0.25 0.23

6 15 0.64 0.42 0.63 0.40
20 0.62 0.39 0.60 0.29
25 0.61 0.40 0.54 0.26
30 0.60 0.39 0.45 0.21
40 0.60 0.36 0.44 0.20
50 0.58 0.33 0.35 0.18
75 0.58 0.29 0.26 0.15
100 0.59 0.28 0.22 0.16

10 15 0.55 0.54 0.74 0.50
20 0.62 0.51 0.77 0.47
25 0.64 0.46 0.74 0.35
30 0.65 0.45 0.62 0.28
40 0.63 0.42 0.55 0.26
50 0.59 0.41 0.53 0.22
75 0.58 0.36 0.39 0.18
100 0.58 0.36 0.31 0.15

Table 5
Average Gap % from the lower bound for the QBP and QBP_I procedures.

of Jobs Procedure

QBP QBP_I

M=2 M=6 M=10 M=2 M=6 M=10

15 35.40 41.60 29.70 14.97 15.04 4.04
20 31.72 40.44 35.32 12.45 15.11 12.04
25 31.97 36.99 42.86 12.51 12.88 14.33
30 12.94 17.25 24.44 12.81 13.10 12.38
40 11.87 12.53 18.92 11.72 9.31 10.77
50 12.04 11.25 17.95 11.96 9.53 10.32
75 10.79 8.45 12.89 10.72 7.79 8.67
100 11.07 8.13 11.20 11.04 8.13 6.19

J. Schaller, J.M.S. Valente Computers & Industrial Engineering 119 (2018) 146–156

153

problem (to avoid dividing by zero). These results show the GAP%s
generally become smaller as the ratio of jobs to machines increases.
Also, using the improvement does help reduce the larger error per-
centages and the procedure becomes much more consistent.

6. Incorporating the procedures in other procedures

The QBP and improvement procedures described in earlier sections
can be incorporated into more computationally expensive procedures,
and may result in better solutions. The procedures could be used to
create initial solutions for procedures that require one, such as iterated
local search, tabu search or simulated annealing procedures. The im-
provement procedure can be applied to solutions that are developed in
procedures.

In this section, we demonstrate how using the QBP_I and improve-
ment procedure with the existing lagrangean relaxation (LR) procedure
developed by Luh and Hoitomt (1993) for the problem can result in
improved solutions. We also show how an iterated local search proce-
dure developed by Goncalves et al. (2016) for the single-machine
weighted squared tardiness problem can be modified by using these
proposed procedures.

6.1. Enhanced lagrangean relaxation based procedure

In Section 5.3 we described the lagrangean relaxation based proce-
dure for developing lower bounds developed by Luh and Hoitomt (1993).
Each time an iteration of the procedure is performed to develop a lower
bound a feasible solution is also created to obtain an upper bound. This is
accomplished by sorting the jobs, based on the starting times for each job
that the relaxation generated. A job schedule is created based on this
sequence and the resulting objective value is calculated which is an
upper bound. The best upper bound found and its associated solution is
retained. We refer to this existing procedure as LR.

We modified the procedure with two changes to create an enhanced
LR procedure that we refer to as LRQ_I. First, the QBP_I procedure is run
at the beginning of the LR procedure to obtain an initial solution. Also,
each time a feasible solution is developed during an iteration of the LR
procedure, the improvement procedure described earlier is applied.

6.2. Iterated local search procedure

Goncalves et al. (2016), developed an iterated local search for
minimizing weighted squared tardiness in a single-machine. This iter-
ated local search procedure and other meta-heuristics were tested, and
the iterated local search generated solutions with better objective va-
lues. Here we adapt the iterated local search procedure to the parallel
machine problem by incorporating the proposed procedures.

In the iterated local search developed by Goncalves et al. (2016), an
initial solution is first generated, and then a local search is performed
that may result in a better solution that becomes the current solution.
Then a new solution is developed by modifying the current solution, by
applying a series of random moves to this current solution. This is
known as perturbing, or kicking, the current solution. This continues
until a predetermined number of iterations are performed that do not
result in an improved solution, in which case the procedure backtracks
to the best solution found so far and the kicking and local search process
is repeated. When a specified stopping procedure is met, or if the pro-
cedure finds a solution with a weighted squared tardiness of 0, the
procedure terminates.

The pseudo-code for Goncalves et al. (2016), iterated local search
procedure is given below. In this pseudo-code, (S of v,best best) denote the
best solution found so far and its corresponding objective function
value, respectively. Similarly, (S of v, S) and (S of v,k k) provide the
same information for the current solution and the kicked solution (that
is, the solution obtained by performing a kick on the current solution),
respectively.

6.2.1. Iterated local search pseudo-code

0. Input the number of machines (M) and number of jobs (n); the
processing times and due dates of the jobs.
1. Set (S of v,best best)= (∅ ∞,).
2. (S of v, S)=Generate_Initial_Solution().
3. Perform_Local_Search(S).
4. If <of v of vS best , set (S of v,best best)= (S of v, S).
5.While stop criterion is not met:
5.1. (S of v,k k)= Perform_Kick(S).
5.2. Perform_Local_Search(Sk).
5.3. If <of v of vk best , set (S of v,best best)= (S of v,k k).
5.4. If Perform_Backtrack() == TRUE, set
(S of v, S)= (S of v,best best).
5.5. Else, set (S of v, S)= (S of v,k k).

6. Output the best sequence, schedule and objective value.

Step 1 initializes the best solution found and the respective objective
function value to an empty sequence and infinity, respectively. Step 2
generates the initial solution. Step 3 applies the local search to the in-
itial solution. Step 4 updates the best solution if one is found. In step 5,
the algorithm iterates until a stopping criterion is met.

During an iteration of step 5, a new solution Sk is obtained by ex-
ecuting a kick on the current solution S (step 5.1). A kick consists in
performing α random swaps (the swapped jobs need not be adjacent),
where α is a parameter selected by the user. Steps 5.2 and 5.3 are the
performing the local search and then updating of the best solution
found so far if necessary.

Finally, a new current solution is set in steps 5.4 and 5.5. If a so-
called backtrack is to be performed, the current solution is set equal to
the best solution found so far. Otherwise, the kicked solution becomes
the new current solution. In the proposed implementation, back-
tracking is performed when β consecutive iterations have been per-
formed without improving the best solution found so far, where β is
also a user selected parameter.

In order to implement the above procedure for the parallel machines
problem, we use the QBP procedure to generate the initial solution in
step 2, and the improvement procedure described in section four as the
local search in steps 3 and 5.2. We used the parameters selected by
Goncalves et al. (2016), for α and β. These two parameters were set
equal to 5. Goncalves et al. (2016), set a maximum run time as the
stopping criteria and we use the same criteria. The maximum run time
was set equal to 0.5+0.0001 ∗ n2. This procedure is referred to as ILS
in the remainder of the paper.

6.3. Computational test

We tested the three procedures (LR, LRQ_I and ILS) using the same
test instances as described in Section 5. In order to have a fair com-
parison we allowed each procedure to run for the same amount of time
on a problem and, if this time limit was reached, the procedure was
terminated. As previously mentioned, the maximum run time (max_rt)
for each procedure was set as: maxrt= 0.5+ 0.0001 ∗ n2. We used the
relative deviation index and gap percentage, described in sections 5.3
and 5.5, as the measures of performance. Table 6 shows the results for
these procedures. For each procedure the results are shown by the
number of machines and number of jobs, and report the average re-
lative deviation index and gap percentage for each procedure.

The results show that the ILS procedure was best when M=2 for
the GAP% for all levels of n and was the best for RDI when M=2 and
n > 25. The LRQ_I procedure was best when M=6 or 10 for n > 15,
with the exception of M=6 and n= 100 in which ILS and LRQ_I are
about equal. The results also show that including the enhancements in
the lagrangean relaxation based procedure (LRQ_I) resulted in im-
proved solutions compared to the original LR procedure. It appears that
as the ratio of the number of jobs per machine (n/M) increases, the ILS

J. Schaller, J.M.S. Valente Computers & Industrial Engineering 119 (2018) 146–156

154

procedure improves relative to the lagrangian relaxation based proce-
dures, as evidenced by its better performance when the number of
machines was two. The ILS procedure is recommended for medium
sized problems when the ratio of jobs to machines is less than 15, and
LRQ_I is recommended, when it is less than 15.

Once more, the Wilcoxon signed-rank test, with a significance level
of 0.05, was used to compare these 3 procedures among themselves.
This test was applied to each pair of procedures (3 such pairs), and for
each of the 24 combinations of number of machines and number of
jobs. The multiple comparisons were taken into account by applying
Holm’s sequential Bonferroni procedure.

The tests showed a statistically significant difference in all but two
of the comparisons involving LR and ILS. In what considers both the LR
vs LRQ_I and the LRQ_I vs ILS comparisons, respectively 20 and 17 of
the 24 comparisons showed a statistically significant difference. More
detailed information is given in the electronic supplementary material.

We used the branch-and-bound procedure developed by Schaller
and Valente (2013) to obtain optimal solutions for the 15 job problems
with 2, 6, and 10 machines. Table 7 shows the average GAP% for the
best performing procedures when compared to the optimal objective
values for the 15 job problems. The GAP% for a problem in this table is
defined as: (OH−OO)/OH ∗ 100, where OH is the objective value gen-
erated by heuristic H (QBP or QBP_I) and Oo is the optimal objective

value for the problem. If OH=0 then the GAP% for that heuristic is set
equal to 0 for that problem (to avoid dividing by zero).

The results show that the enhanced lagrangian relaxation procedure
and the iterated search with the QBP and improvement procedures
embedded provide results very close to optimal. The QBP procedure
provided good results for 2 and 10 machines and with the improvement
procedure provided better results.

7. Conclusions and future research

This paper considers the identical parallel machines problem for the
weighted squared tardiness objective. Two efficient procedures that can
generate solutions for the problem very quickly were proposed. An
improvement procedure that is very fast was also proposed, and this
improvement procedure can be used with either of the heuristic pro-
cedures to create two additional procedures.

The proposed procedures, as well as two procedures that were used
for the single-machine problem, used problems generated randomly to
test their performance. Several levels of parameters were included in
the test.

The test results showed that the QBP and QBP_I generated the best
solutions and the QBP_I procedure is recommended for large scale
problems.

For more moderate sized problems, it is practical to use the la-
grangian relaxation procedure developed by Luh and Hoitmot, 1993, as
well as metaheuristics such as iterated local search. The test results
showed that QBP_I and the improvement procedure can be incorporated
in lagrangian relaxation and iterated local search to generate better
solutions.

Possible avenues for future research would include incorporating
the use of subcontractors as an alternative for reducing the penalties for
tardy deliveries. Also, other characteristics can be incorporated into the
problem such as the existence of release dates for each job.

Appendix A. Proofs of the conditions in Section 4.1

The objective can be rewritten as Z=∑ = Zj
n

j1 , where Zj=wj ∗ Tj
2. Zj

represents the contribution of job j to the objective value. Suppose a job
j is completed at time t in a schedule. Suppose Cj= t and let dZ

dt
j be the

first derivative of Zj and
d Z

dt
j2

2 be the second derivative of Zj. Then
dZ
dt

j =0

if t < dj,
dZ
dt

j =2 ∗wj ∗ Tj if t > dj, and dZ
dt

j is undefined for t= dj.
d Z

dt
j2

2 =0 if t < dj,
d Z

dt
j2

2 =2 ∗wj if t > dj, and
d Z

dt
j2

2 is undefined for t= dj.

Condition 1: If pk > pj & dk≤ dj & wk≥wj, and jobs j and k are to
be scheduled last on their respective machines, then schedule S will
have an objective that is at least as good as the one resulting from
schedule S′.

Proof. Since the jobs just exchange machines, and are scheduled last on
the machines in both schedules, none of the other jobs are affected by
the change from schedule S to S′ (their completion times remain the
same). Therefore, to prove this condition it must be shown that Zj
(S)+ Zk (S)≤ Zj (S′)+ Zk (S′). Let A=bj− bk. Note that Cj (S)= Cj

(S′)+A, and Ck (S′)=Ck (S)+A. Also, since pk > pj then Ck (S) > Cj

(S′) and Ck (S′) > Cj (S). There are six cases: (1) bj+ pk≤ dk. (2)
bk+ pk > dk and bk+ pj > dj. (3) bk+ pk > dk and
bk+ pj≤ dj < bj+ pj. (4) bk+ pk > dk and bj+ pj < dj. (5)
bk+ pk≤ dk < bj+ pk and bj+ pj≤ dj. (6) bk+ pk≤ dk < bj+ pk
and bj+ pj > dj. □

Case (1) bj+ pk≤ dk. In this case, Zj (S)= Zk (S)= Zj (S′)= Zk
(S′)= 0 and Zj (S)+ Zk (S)≤ Zj (S′)+ Zk (S′).
Case (2) bk+ pk > dk and bk+ pj > dj. Since pk > pj, dk≤ dj,
wk≥wj, then dZ

dt
k (t=Ck (S))≥

′
dZ
dt

j (t′=Cj (S′)). Also, the above

conditions imply d Z
dt

2 k
2 ≥

d Z

dt

2 j
2 , so

+
dZ

dt a
k ≥

′ +
dZ

dt a
j for t=Ck (S), t′=Cj

Table 6
Average Relative Deviation Index (RDI) and Average Gap Percentage (GAP%)
for the lagrangean relaxation based procedures and the iterated local search
procedure.

of Machines # of Jobs Procedure

LR LRQ_I ILS

RDI GAP% RDI GAP% RDI GAP%

2 15 0.61 12.98 0.60 12.73 0.64 12.65
20 0.52 12.20 0.46 11.41 0.55 11.12
25 0.57 13.53 0.47 11.86 0.50 11.46
30 0.62 16.38 0.36 12.99 0.33 12.37
40 0.63 20.72 0.15 11.62 0.14 11.37
50 062 23.28 0.12 11.99 0.11 11.80
75 0.63 26.92 0.09 10.78 0.08 10.54
100 0.63 29.86 0.08 11.04 0.07 10.85

6 15 0.76 6.73 0.73 6.61 0.72 6.20
20 0.73 5.86 0.68 5.52 0.79 8.16
25 0.46 6.31 0.43 5.08 0.77 9.49
30 0.29 7.24 0.26 6.63 0.68 11.60
40 0.30 8.61 0.25 7.35 0.61 9.01
50 0.37 10.25 0.28 6.96 0.54 8.59
75 0.56 13.79 0.33 8.04 0.36 7.70
100 0.62 17.88 0.14 8.12 0.14 8.06

10 15 0.72 2.28 0.70 2.23 0.76 2.21
20 0.41 5.63 0.39 4.93 0.71 5.96
25 0.30 5.44 0.26 4.23 0.69 6.11
30 0.32 2.99 0.30 2.76 0.73 6.50
40 0.28 5.36 0.23 5.07 0.68 8.04
50 0.29 6.38 0.23 5.08 0.63 9.98
75 0.30 8.66 0.22 5.65 0.56 8.47
100 0.38 9.80 0.29 5.62 0.47 6.14

Table 7
Average gap % from the optimal objective value for the 15 job problems.

Procedure Number of Machines

2 6 10

QBP 5.78 23.29 6.58
QBP_I 4.48 10.14 2.26
LRQ_I 0.53 0.82 0.02
ILS 0.22 0.41 0.00

J. Schaller, J.M.S. Valente Computers & Industrial Engineering 119 (2018) 146–156

155

(S′), and 1≤ a≤A. Therefore, Zj (S)+ Zk (S)≤ Zj (S′)+ Zk (S′).
Case (3) bk+ pk > dk and bk+ pj≤ dj < bj+ pj. In this case, Zj
(S′) =0. dZ

dt
k ≥

dZ
dt

j for t > dj, therefore Zk (S′)− Zk (S) > Zj (S) so Zj
(S)+ Zk (S)≤ Zj (S′)+ Zk (S′).
Case (4) bk+ pk > dk and bj+ pj < dj. In this case Zj (S)= Zj
(S′)= 0. Since Zk (S′) > Zk (S), Zj (S)+ Zk (S)≤ Zj (S′)+ Zk (S′).
Case (5) bk+ pk≤ dk < bj+ pk and bk+ pj≤ dj. In this case Zj
(S)= Zj (S′)= Zk (S)= 0. Since Zk (S′) > 0, Zj (S)+ Zk (S)≤ Zj
(S′)+ Zk (S′).
Case (6) bk+ pk≤ dk < bj+ pk and bj+ pj > dj≥ bk+ pj. In this
case Zj (S′)= Zk (S)= 0. Ck (S′) > Cj (S) and dk≤ dj, wk≥wj im-
plies Zk (S′) > Zj (S) therefore Zj (S)+ Zk (S)≤ Zj (S′)+ Zk (S′).//
Condition 2: If dk≤ dj, wk≤wj, bj+ pk− dk≥ 0, &
2 ∗wk ∗ (bj+ pk− dk)≥ 2 ∗wj ∗ (bj + pj− dj) and jobs j and k
are to be scheduled last on their respective machines, then sche-
dule S will have an objective that is at least as good as the one
resulting from schedule S′.

Proof. As above, none of the other jobs are affected by the change from
schedule S to S′, and it is enough to show that Zj (S)+ Zk (S)≤ Zj
(S′)+ Zk (S′). Let A=bj− bk. Note that Cj (S)=Cj (S′)+A and Ck

(S′)= Ck (S)+A. Also note that wk≤wj and
2 ∗wk ∗ (bj + pk− dk)≥ 2 ∗wj ∗ (bj + pj− dj) imply Tk (S′)≥Wj ∗ Tj

(S)/Wk. There are six cases: (1) bj+ pk=dk. (2) bj+ pk > dk and
bj+ pj < dj. (3) bk+ pk > dk and bk+ pj≤ dj < bj+ pj. (4)
bk+ pk > dk and bj+ pj < dj. (5) bk+ pk≤ dk < bj+ pk and
bj+ pj≤ dj. (6) bk+ pk > dk and bj+ pj > dj. □

Case (1) bj+ pk=dk. In this case, Zj (S)= Zk (S)= Zj (S′)= Zk
(S′)= 0 and Zj (S)+ Zk (S)≤ Zj (S′)+ Zk (S′).
Case (2) bj+ pk > dk and bj+ pj < dj. In this case Zj (S)= Zj
(S′)= 0. Zk (S′) > Zk (S) so Zj (S)+ Zk (S)≤ Zj (S′)+ Zk (S′).
Case (3) bk+ pk > dk and bk+ pj≤ dj < bj+ pj. In this case Zj
(S′)= 0. Tk (S)= Tk (S′)−A≥ (Wj ∗ Tj (S)/Wk)− A. Zk (S′)− Zk
(S)= 2 ∗Wk ∗ (2 ∗A ∗ Tk (S′)+A2)≥ 2 ∗ (2 ∗A ∗Wj ∗ Tj (S)+A2)
≥ Zj (S) therefore Zk (S′) > Zk (S) so Zj (S)+ Zk (S)≤ Zj (S′)+ Zk
(S′).
Case 4) bk+ pk > dk and bj+ pj < dj. In this case Zj (S)= Zj
(S′)= 0. Since Zk (S′) > Zk (S), Zj (S)+ Zk (S)≤ Zj (S′)+ Zk (S′).
Case 5) bk+ pk≤ dk < bj+ pk and bj+ pj≤ dj. In this case Zj
(S)= Zj (S′)= Zk (S)= 0. Since Zk (S′) > 0, Zj (S)+ Zk (S)≤ Zj
(S′)+ Zk (S′).
Case 6) bk+ pk > dk and bj+ pj > dj. In this case since wk≤wj

and 2 ∗wk ∗ (bj+ pk− dk)≥ 2 ∗wj ∗ (bj + pj− dj) then +
dZ

dt a
k ≥

′ +
dZ

dt a
j

for t= bk+ pk, t′=bk+pj, and 0 < a≤A. Therefore Zk (S′)− Zk
(S)≥ Zj (S′)− Zj (S) so Zj (S)+ Zk (S)≤ Zj (S′)+ Zk (S′).//
Condition 3: If dj≤ dk, wk≥wj, Ck (S)− dk≥ 0, & 2 ∗wk ∗ (Ck

(S) - dk) > 2 ∗wj ∗ (bk+ pj− dj), and jobs j and k are to be
scheduled last on their respective machines, then schedule S will
have an objective that is at least as good as the one resulting from
schedule S′.

Proof. Again, it suffices to show that Zj (S)+ Zk (S)≤ Zj (S′)+ Zk (S′).
Let A=bj− bk. Note that Cj (S)=Cj (S′)+A, and Ck (S′)=Ck (S)+A.
There are two cases: (1) bk+ pj≤ dj and (2) bk+ pj > dj. □

Case (1) bk+ pj≤ dj. In this case Zj (S′)= 0. Tk (S)= Tk (S′)− A. Zk
(S′)− Zk (S)= 2 ∗wk ∗ (Tk (S′)− Tk (S))= 2 ∗Wk ∗ (2 ∗A ∗ Tk

(S′)+A2). Since wk≥wj, Tj (S)≤ A then Zk (S′)− Zk (S)≥ Zj (S)
and Zj (S)+ Zk (S)≤ Zj (S′)+ Zk (S′).
Case (2) 2) bk+ pj > dj. In this case since wk≥wj and 2 ∗wk ∗ (Ck

(S)− dk)≥ 2 ∗wj ∗ (bk+ pj− dj) then
+

dZ
dt a

k ≥
′ +

dZ
dt a

j for t=Ck (S),
t′=bk+pj, and 0 < a≤A. Therefore Zk (S′)− Zk (S)≥ Zj
(S′)− Zj (S) so Zj (S)+ Zk (S)≤ Zj (S′)+ Zk (S′).//

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.cie.2018.03.036.

References

Alidaee, B., & Ramakrishnan, K. R. (1996). A computational experiment of COVERT-AU
class of rules for single machine tardiness scheduling problem. Computers & Industrial
Engineering, 30, 201–209.

Azizoglu, M., & Kirca, O. (1998). Tardiness minimization on parallel machines.
International Journal of Production Economics, 55, 163–168.

Coffman, E. G. & Sethi, R. (1976). A generalized bound on LPT sequencing. In Proceedings
of the 1976 ACM SIGMETRICS conference on computer performance modeling measure-
ment and evaluation (pp. 306–310).

Fisher, M. L. (1973a). Optimal solution of scheduling problems using lagrangian multi-
pliers: Part I. Operations Research, 21(5), 1114–1127.

Fisher, M. L. (1973b). Optimal solution of scheduling problems using lagrangian multi-
pliers: Part II. Operations Research, 21(6), 294–317.

Garey, M. R., & Johnson, D. S. (1978). Strong NP-completeness results: Motivation, ex-
amples and implications. Journal of the Association for Computing Machinery, 25,
499–508.

Gonçalves, T. C., Valente, J. M., & Schaller, J. E. (2016). Meta heuristics for the single
machine weighted quadratic tardiness problem. Computers and Operations Research,
70, 115–126.

Graham, R. L. (1969). Bounds on multiprocessing timing anomalies. SIAM Journal of
Applied Mathematics, 17(2), 416–429.

Hoitomt, D. J., Luh, P. B., Max, E., & Pattipati, K. R. (1990). Scheduling jobs with simple
precedence constraints on parallel machines. IEEE Control Systems Magazine, 34–40.

Kim, Y. D. (1993). Heuristics for flowshop scheduling problems minimizing mean tardi-
ness. Journal of Operational Research Society, 44, 19–28.

Kim, Y. D., Lim, H. G., & Park, M. W. (1996). Search heuristics for a flowshop scheduling
problem in a printed circuit board assembly process. European Journal of Operational
Research, 91, 124–143.

Lawler, E. L. (1977). A “Pseudopolynomial” algorithm for sequencing jobs to minimize
total tardiness. In P. L. Hammer Eljbhk, & G. L. Nemhauser (Eds.). Annals of discrete
mathematics (pp. 331–342). Elsevier.

Lenstra, J. K., Rinnooy Kan, A. H. G., & Brucker, P. (1977). Complexity of machine
scheduling problems. In P. L. Hammer Eljbhk, & G. L. Nemhauser (Eds.). Annals of
discrete mathematics (pp. 343–362). Elsevier.

Luh, P. B., & Hoitomt, D. J. (1993). Scheduling of manufacturing systems using the la-
grangian relaxation technique. IEEE Transactions on Automatic Control, 38,
1066–1079.

Mokotoff, E. (2001). Parallel machine scheduling problems: A survey. Asia-Pacific Journal
of Operational Research, 18, 193–242.

Ow, P. S., & Morten, T. E. (1988). Filtered beam search in scheduling. International Journal
of Production Research, 26(1), 35–62.

Ow, P. S., & Morten, T. E. (1989). The single-machine early tardy problem. Management
Science, 35(2), 177–191.

Potts, C. N., & van Wassenhove, L. N. (1991). Single-machine tardiness sequencing
heuristics. IIE Transactions, 23(4), 346–354.

Schaller, J. E., & Valente, J. M. S. (2012). Minimizing the weighted sum of squared tar-
diness on a single machine. Computers and Operations Research, 39(5), 919.

Schaller, J. E. & Valente, J. M. S. (2013). Minimizing the weighted sum of squared tar-
diness on identical parallel machines. Presented at the 2013 decision sciences Institute's
National Meeting, Baltimore, Maryland.

Sen, T., Sulek, J. M., & Dileepan, P. (2003). Static scheduling research to minimize
weighted and unweighted tardiness: A state-of-the-art survey. International Journal of
Production Economics, 83(1), 1–12.

Sun, X., & Noble, J. S. (1999). An approach to job shop scheduling with sequence-de-
pendent setups. Journal of Manufacturing Systems, 18, 416–430.

Sun, X., Noble, J. S., & Klein, C. M. (1999). Single-machine scheduling with sequence
dependent setup to minimize total weighted squared tardiness. IIE Transactions, 31,
113–124.

Taguchi, G. (1986). Introduction to quality engineering. Tokyo, Japan: Asian Productivity
Organization.

Thomalla, C. S. (2001). Job shop scheduling with alternative process plans. International
Journal of Production Economics, 74, 125–134.

Vallada, V., Ruiz, R., & Minella, G. (2008). Minimising total tardiness in the m-machine
flowshop problem: A review and evaluation of heuristics and metaheuristics.
Computers & Operations Research, 35, 1350–1373.

Valente, J. M., & Schaller, J. E. (2012). Dispatching heuristics for the single machine
weighted quadratic tardiness scheduling problem. Computers and Operations Research,
39(9), 2223.

Vepsalainen, A. P. J., & Morton, T. E. (1987). Priority rules for job shops with weighted
tardiness costs. Management Science, 33, 1035–1047.

Zemel, E. (1981). Measuring the quality of approximate solutions to zero–one program-
ming problems. Mathematics of Operations Research, 6, 319–332.

J. Schaller, J.M.S. Valente Computers & Industrial Engineering 119 (2018) 146–156

156

http://dx.doi.org/10.1016/j.cie.2018.03.036
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0005
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0005
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0005
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0010
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0010
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0020
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0020
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0025
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0025
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0030
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0030
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0030
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0035
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0035
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0035
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0040
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0040
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0045
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0045
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0050
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0050
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0055
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0055
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0055
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0060
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0060
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0060
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0065
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0065
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0065
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0070
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0070
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0070
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0075
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0075
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0080
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0080
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0085
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0085
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0090
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0090
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0095
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0095
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0105
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0105
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0105
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0110
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0110
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0115
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0115
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0115
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0120
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0120
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0125
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0125
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0130
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0130
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0130
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0135
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0135
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0135
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0140
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0140
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0145
http://refhub.elsevier.com/S0360-8352(18)30125-6/h0145

	Efficient heuristics for minimizing weighted sum of squared tardiness on identical parallel machines
	Introduction and problem description
	Literature review
	Heuristics
	Preprocessing problem reduction
	Procedure problem reduction pseudo code

	QB procedure
	QB Pseudo-code

	QBP procedure
	QBP Pseudo-code

	Improvement procedure
	Step 1 last jobs exchange procedure
	Step 2 Single Machine Procedure
	Step 3 First Jobs Exchange Procedure
	Improvement Procedure Pseudo-code
	Improvement Pseudo-code

	Computational tests and results
	Comparison procedures
	COM procedure
	QAR procedure
	Procedures with improvement procedure

	Test problems
	Lower bound calculation using Luh and Hoitomt (1993)’s lagrangian relaxation procedure
	Performance measure
	Results
	Dispatching procedures’ results
	Dispatching procedures with the improvement procedure results

	Incorporating the procedures in other procedures
	Enhanced lagrangean relaxation based procedure
	Iterated local search procedure
	Iterated local search pseudo-code

	Computational test

	Conclusions and future research
	Proofs of the conditions in Section 4.1
	Supplementary material
	References

