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ABSTRACT
There is a need for a typed notation for linear algebra applicable to

the fields of econometrics and data mining. In this paper we show

that such a notation exists and can be useful in formalizing and

reasoning about data aggregation operations.

One such operation — the construction of a data cube — is shown

to be easily expressible as a linear algebra operator. The construc-

tion is shown to be type-generic and some of its properties are

derived from its typed definition and proved using matrix alge-

bra. Other forms of data aggregation such as eg. rollup and cross
tabulation are shown to be algebraically derivable from data cubes.
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1 INTRODUCTION
In [2] Abadir and Magnus stress on the need for a standardized

notation for linear algebra in the field of econometrics and statistics.

More recently, the authors have shown how data consolidation can

be expressed in typed linear algebra [11], a categorial approach

[10] to linear algebra which has shown useful elsewhere in the

quantitative side of the software sciences, both at behaviour [14, 18]

and data [17] level.

The acronym LAoP (for Linear Algebra of Programming) [15]
captures this research trend, exposing linear algebra as an evolution

of the (relational) algebra of programming [4] applicable to handling

quantitative aspects of software modeling and design.

The current paper resumes the work reported in [11] by showing

how to express all data aggregation operators in LAoP, focussing on

the data cube as central construction. Our main aim is to formalize

previous work in the field — see e.g. [6] and [19] — in an unified

way, so as to develop a linear algebra basis for data aggregation

useful in query optimization and data mining in general.
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Figure 1: Sample raw data table T .

Contribution. In [11] the data cube construction is derived from

that of cross tabulation. This paper exploits the alternative view of

regarding the data cube as the primitive construction of data analy-

sis, wherefrom the other 2D, 1D and 0D aggregators are derived.

This makes it easier to prove a number of results, for instance the

commutation between data-cube construction and generic vector-
ization [10]. This calls for a generalization, given in the current

paper, of the so-called Roth’s relationship [22] which Abadir and

Magnus [2] regard as the fundamental result of the whole theory

of vectorization.

2 BUILDING DATA CUBES
Given some raw data as in Fig. 1, let Model, Year , Color and Sale
be the names of the three attributes involved, each corresponding

to a “column” in the table displayed (Fig.1). There are n = 6 rows

in the data set, each corresponding to a data record. Non-numeric

attributes Model, Year and Color are regarded as dimensions (the
first, second and third columns in Fig.1, from left to right, pictured

in grey) while numeric attributes are regarded as measures (the
fourth column in the same figure, pictured white).

Dimensions. Data analysis involves many analytical procedures,

which in particular include consolidation of measure quantities

across the several ways dimensions can be organized. Reference

[11] shows how to express such operations using linear algebra

constructs. In short, dimension columns (attributes) are represented

by projection functions of type n → A, where n is the number of

records and A is the attribute labelling the column being repre-

sented. Note the simplified notation: n abbreviating set {1, ..., n }
and A abbreviating the set of corresponding attribute values. In the

example,

Year = {1990, 1991 }

Model = {Chevy, Ford }

Color = {Blue,Green, Red }
are dimension attributes. Following the notation conventions of

[11], given data setT (note the uppercaseT ) we denote by tA :n→ A

https://doi.org/10.1145/3122831.3122834
https://doi.org/10.1145/3122831.3122834
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(note the lowercase t ) the projection function corresponding to the

A column of T . For instance, tColor 3 = Green.
Let f : A→ B and g : A→ C be functions with the same source

type. We denote by f ▽ g :A→ B × C the pairing of f and g, that is,
the function defined by

(f ▽ g) a = (f a, g a) (1)

For instance,

(tColor ▽ tModel ) 2 = (Blue,Chevy),
(tYear ▽ (tColor ▽ tModel )) 3 = (1990, (Green, Ford))

and so on.

The LAoP approach of [10, 11] consists in representing such pro-

jection functions by (Boolean) matrices, as follows: let f :A→ B be

a function, where A and B are finite. Function f can be represented

by a matrix Jf K with A-many columns and B-many rows such that,

for any b ∈ B and a ∈ A, matrix cell
1 b Jf K a = 1 if b = f a,

otherwise b Jf K a = 0. For instance, matrix JtModelK is as follows:
1 2 3 4 5 6

Chevy 1 1 0 0 0 0

Ford 0 0 1 1 1 1

Likewise, it can be easily shown that

(b, c) Jf ▽ gK a = (b Jf K a) × (c JgK a) (2)

holds, since multiplication within {0, 1 } implements logic conjunc-

tion.

As in [10, 11] we shall abuse of notation and (very conveniently,

as we shall see) drop the parentheses from Jf K. This is consistent
with writing f ▽ g to denote the operation above, which in fact

corresponds to a well-known matrix operator, the so-called Khatri-
Rao product [21] M ▽N of two arbitrary matrices M and N , defined

index-wise by

(b, c) (M ▽ N ) a = (b M a) × (c N a) (3)

Thus the Khatri-Rao product is a “column-wise" version of the

well-known Kronecker product M ⊗ N defined by:

(y, x) (M ⊗ N ) (b, a) = (y M b) × (x N a) (4)

Both products are intimately related by the absorption law

(M ⊗ N ) · (P ▽ Q) = (M · P ) ▽ (N · Q) (5)

valid for any (suitably typed) matricesM , N , P , Q [8].

Given two functions g : A→ B and f : B→ C, their composition
f · g is defined by

(f · g) a = f (g a)
Matrix-wise, one can define JgK · Jf K too, where the dot means

matrix multiplication too. In general, given two matrices N :A→ B
and M : B→ C, their composition (or multiplication) is the matrix

M · N defined by:

c (M · N ) a = ⟨Σ b :: c M b × b N a⟩ (6)

Note how we also extend the arrow notation used to type func-

tions to also type arbitrary matrices, M : A→ B meaning the type

of a matrix with A-many columns and B-many rows. Wherever a

matrix has one sole row it is said to be a row vector and we write e.g.
v : A→ 1 to say this. Type 1 = {all } is the singleton type whose

1
Following the infix notation usually adopted for relations (which are Boolean matri-

ces), for instance y ⩽ x, we write y M x to denote the contents of the cell in matrix

M addressed by row y and column x. This and other notational conventions of the

linear algebra of programming LAoP are explained in detail in [16].

Figure 2: Typedmatrix representation of raw dataT of Fig.1.

unique element allwill play a significant role in data consolidation,

as we shall soon see.

Given a type A, there is a unique row vector wholly filled with

1s. This is termed “bang” [11] and denoted by ! :A → 1. There is

also a unique square matrix of type A → A whose diagonal is

wholly filled with 1s and otherwise is filled with 0s — it is termed

the identity and is denoted by id : A→ A. This is the unit of matrix

composition: M · id = M = id ·M .

Given a matrixM :A→ B we can always define its transposition,
or converse M◦ : B→ A defined by a M◦ b = b M a. The following
laws hold: (M◦)◦ = M (idempotence) and (M · N )◦ = N ◦ · M◦

(contravariance). Clearly, the converse of a row vector v : A→ 1 is

a column vector v◦ : 1→ A.

Measures. Measure columns in source data sets (e.g. the right-

most column of T in Fig.1) will be represented by row vectors of

type n → 1 whose cells contain the corresponding numeric data.

We use superscripted notation tM : n → 1 to distinguish projec-
tion matrices (e.g. tA) from measure vectors (e.g. tM ). Thus tSale =[
5 87 64 99 8 7

]
in our running example.

The (typed) matrix representation of T (Fig.1) is given by the

column vector

v = (tYear ▽ (tColor ▽ tModel )) · (t
Sale )◦ (7)

of type v : 1 → (Year × (Color × Model)), which is depicted in

Fig. 2. Compared to Fig.1 it has 12 rows whose 0s correspond to

combinations of dimensions not present in Fig.1.

Totalisers. Given any matrix M : A → B, the expression ! ·M
(where ! :B→ 1) is the row vector (of type A→ 1) that contains the

sums (totals) of all columns of M ,

all (! ·M ) a = ⟨Σ b :: b M a⟩

since cell all (!) b is 1 for all b in (6). Functions are the only Boolean
matrices satisfying property

! ·f = ! (8)

Given a type A, we define its totalizer matrix τA : A→ A + 1 by

τA : A→ (A + 1)

τA =

[
id

!

]
(9)
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This calls for some extra explanations: given types A and B, we
denote by A + B their disjoint union (thus A + 1 “adds” all to type

A); given two matrices M : C → A and N : C → B with the same

input type C, combinator

[
M
N

]
describes the matrix with type

C → A+Bwhich gluesM andN vertically [10]. The same operation,

gluing horizontally rather than vertically is given by:

[
M N

]◦
=

[
M◦

N ◦

]
(10)

As is well known,

[
M N

]
·

[
P

Q

]
= M · P + N ·Q (11)

captures the divide & conquer property of matrix composition.

Knowing the following fusion property of this combinator,

[
M

N

]
· P =

[
M · P

N · P

]
(12)

it is clear that, given M : A → B, τB · M =

[
id
!

]
· M =

[
M
! ·M

]

since id ·M = M . That is, (τB ·M ) : A→ B + 1 yields a copy of M
on top of the row vector of its column sums, for instance:

τ ·

[
50 40 85 115

50 10 85 75

]
=



50 40 85 115

50 10 85 75

100 50 170 190


For the special of M being a function f : A→ B we have

τB · f =
[
f
!

]
(13)

cf. (8).

Recall the standard biproduct projections [10] π1 :A+ B→ A and

π1 :A+B→ B such that
[
π1
π2

]
= id. From property π1 ·

[
M
N

]
= M

one immediately obtains a way of cancelling a totalizer:

π1 · τA = id (14)

The other cancellation yields:

π2 · τA = ! (15)

Cubes. Data cubes are obtained rather simply from products

of totalizers. Recall the Kronecker (tensor) product M ⊗ N of two

matricesM :A→ B andN :C → D, which is of type (M ⊗N ):A×C →
B × D (5). Clearly, the product

τA ⊗ τB : A × B→ (A + 1) × (B + 1)

provides for totalization on two dimensions. Indeed, type (A + 1) ×
(B + 1) is isomorphic to A × B + A + B + 1, whose four parcels

represent the four elements of the “dimension powerset of {A, B }”.
Take vector v : 1 → Year × (Color × Model) above (7) which

encodes raw data T as a column vector and build vector c : 1 →
(Year + 1) × ((Color + 1) × (Model + 1)) as follows:

c = (τYear ⊗ (τColor ⊗ τModel )) · v (16)

This yields a vector representing the corresponding data cube, de-
picted in Fig. 3. Putting (16) together with (7) via property (5) we

obtain the final formula which extracts c from the corresponding

measure column,

c = (t ′Year ▽ (t ′Color ▽ t ′Model )) · (t
Sale )◦ (17)

Figure 3: Cube formeasure Sale calculated from the raw data
of Fig.1 using typed linear algebra.

where t ′A abbreviates the expression τA · tA, for each dimension A.

By (12) and (8), t ′A =
[
tA
!

]
, since tA is a function. Summing up, a

data cube is a multi-dimensional column vector — a special case of

a tensor in the standard terminology [23].

Pointwise versus pointfree notation. Before generalizing the above
definition of a data cube, it is worthwhile reflecting briefly on the

expressive power of definition (16) and showing howmuch notation

one saves in adopting it.



DBPL 2017, September 1, 2017, Munich, Germany J.N. Oliveira and H.D. Macedo

By taking the expansion (17) of (16) and moving to pointwise

notation as given by (6) and (3) we get that the entry in the cube

corresponding to year y (or all mark), color z (or all mark) and

model x (or all mark) — that is, cell (y, (z, x)) c all in Fig. 3 — is

given by

⟨
∑

n :: (y, (z, x)) (t ′Year ▽ (t ′Color ▽ t ′Model )) n × (n tSale all)⟩

Now, from t ′Year =
[
tYear
!

]
we get

y t ′Year n = if (y = all ∨ y = tYear n) then 1 else 0

and similarly for the other attributes. Putting everything together,

we get

(y, (z, x)) c all = ⟨
∑

n :




y = all ∨ y = tYear n
z = all ∨ z = tColor n
x = all ∨ x = tModel n

: n tSale all⟩

where the brace means logic conjunction. Using the convention of

[17] of abbreviating cell x v all of a vector v : A← 1 by v [x ], we
obtain

c [y, z, x ] = ⟨
∑

n :




y = all ∨ y = Year [n]
z = all ∨ z = Color [n]
x = all ∨ x = Model [n]

: Sale [n]⟩

as pointwise expansion of (16). This gives and indication of how

painful it would be to adopt such a pointwise notation throughout

the reasoning and calculations to be found in the rest of this paper.

3 GENERALIZING DATA CUBES
Although Fig. 3, corresponding to construction (16), is the usual

way to present data cubes (measure vectors addressed by all possi-

ble combinations of dimension attribute values), in our approach a

cube is not necessarily a (column) vector. As will be shown shortly,

the cube construction works also over multi-dimensional data ag-

gregations.

The key to such a generic construction of data cubes is (general-

ized) vectorization [10], a kind of “matrix currying”: given a matrix

M : A × B → C, with A × B-many columns and C-many rows, it

makes sense to think of reshaping M into its vectorized version

vecAM : B→ A × C with B-many columns and A × C-many rows.

Such matrices,M and vecAM , are isomorphic in the sense that they

contain the same information in different formats
2
, that is,

c M (a, b) = (a, c) (vecAM ) b (18)

holds for every a, b, c.
In fact, M can be retrieved back from vecAM by devectorizing

it. Thus we have the equivalence

V = vecAM ≡ unvecA V = M (19)

This equivalence is studied in detail in [10].

As examples, let us devectorize vector v : 1 → Year × (Color ×
Model) (7) across Year , obtaining a matrix (say M) of type Year →

2
Matrices of higher-rank such asM above are normally known as tensors [23].

Color ×Model:
M : Year → Color ×Model

M = unvecYear v =

1990 1991

Blue
Chevy 87 0

Ford 99 7

Green
Chevy 0 0

Ford 64 0

Red
Chevy 5 0

Ford 0 8

(20)

We can further devectorize M , this time across Color :
N : Color × Year → Model

N = unvecColor M =
Blue Green Red

1990 1991 1990 1991 1990 1991

Chevy 87 0 0 0 5 0

Ford 99 7 64 0 0 8

(21)

It turns out that calculating the cube of such two-dimensional

versionsM and N of the same data amounts to using totalizers both

on inputs (conversed) and outputs. For instance, the cube of matrix

N : Color × Year → Model above is given by

cube N : (Color + 1) × (Year + 1) → (Model + 1)

cube N = τModel · N · (τColor ⊗ τYear )
◦

which can be depicted as follows:

Blue Green Red all

1990 1991 all 1990 1991 all 1990 1991 all 1990 1991 all

Chevy 87 0 87 0 0 0 5 0 5 92 0 92

Ford 99 7 106 64 0 64 0 8 8 163 15 178

all 186 7 193 64 0 64 5 8 13 255 15 270

(22)

See how the 36 entries of the cube of Fig. 3 have been rearranged

in a 3*12 rectangular layout, as dictated by the cardinality of the

(dimension) attributes. Thus we are lead to the following linear

algebra definition of the generic data cube operator.

Definition 3.1 (Cube). Let M be a matrix of type

Πn
j=1Bj Πmi=1Ai

Moo
(23)

We define matrix cube M , the cube of M , as follows:

cube M = (
n⊗
j=1

τBj ) ·M · (
m⊗
i=1

τAi )
◦

(24)

So cube M has type Πn
j=1 (Bj + 1) Πmi=1 (Ai + 1)

oo
.

□

The case of figures 1 and 3 corresponds to m = 0 in (23,24).

Note that, for M : A → B, cube M : (A + 1) → (B + 1) has the
type of a cross-tabulation [11]. Indeed, cross-tabulations are special

cases of generalized cubes, as we shall see later.

Definition 3.1 is far simpler and amenable to calculations than

the one given in [11]. Indeed, the perspective given in the sequel

is in a sense dual of that in [11]: instead of using cross-tabulation
as building-block, we define the cube as the basis for obtaining

cross-tabulations and all other forms of data aggregation.

4 PROPERTIES OF DATA CUBING
We start from a very simple but relevant result. Suppose cube M
is yesterday’s data cube and that matrix N records today’s data.
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By the end of the day we can calculate the whole cube (M + N ) by
simply adding yesterday’s cube with today’s cube, thanks to the

following theorem.

Theorem 4.1 (Linearity). The data cube operator is linear:

cube (M + N ) = cube M + cube N (25)

Proof: Immediate by bilinearity of matrix composition:

M · (N + P ) = M · N +M · P (26)

(N + P ) ·M = N ·M + P ·M (27)

□

Thus data cubing is additive and this can be taken advantage of

not only in incremental data cube construction but also in paral-

lelizing data cube generation.

The next result expresses an interesting property relating cubes

with vectorization. If we compare the cube of Fig. 3 with that dis-

played in (22), we can observe that the former has the same type as

that of a double vectorization of the latter, first over type Color and
then over type Year .

This observation instantiates a general result: any vectorization

of a cube is still a cube. This fact is captured by the theorem which

follows.

Theorem 4.2 (Cube commutes with vectorization). Let ma-

trix X Y ×C
Moo be given and Y × X CvecMoo be its

Y -vectorization. Then

vec (cube M ) = cube (vecM ) (28)

holds.
□

To prove this theorem we need to recall a number of properties

of matrix vectorization [10]: the so-called fusion-law

(vecM ) · N = vec (M · (id ⊗ N )) (29)

and the absorption-law:

vec (M · N ) = (id ⊗ M ) · vecN (30)

We also need a property which generalizes a result by Magnus and

Neudecker [12] concerning what they call the commutation matrix.
Let xng :A × (B × C) → B × (A × C) be the matrix that encodes the

(homonym) isomorphism

xng (a, (b, c)) = (b, (a, c)) (31)

Then

vec (M◦ ⊗ id) = xng · vec (M ⊗ id) (32)

holds. For M = id we obtain the corollary

η = xng · η (33)

where η abbreviates vec id. From the absorption-law (30) we also

get corollary:

vecB = (id ⊗ B) · η (34)

The proof of (32) is given in the appendix as illustration of typed

linear algebra pointwise calculation. To prove Theorem 4.2 we need

yet another property of matrix vectorization:
3

vec (M · (N ⊗ id )) = (N ◦ ⊗ id ) · vecM (35)

3
This property is a generalization of vec (M · N ) = (N ◦ ⊗ id ) · vecM from which

the Roth’s relationship [22] is derived in [10].

The proof of (35) is given in the appendix as illustration of standard

typed linear algebra pointfree calculation.
As preparation for the proof of Theorem 4.2, let us start by

drawing a diagram exhibiting the types involved in equality (28):

Y × X

τY ⊗τM

��

C
vecY Moo � X

τX

��

Y ×CMoo

(Y + 1) × (X + 1) C + 1
cube (vecY M )oo
vecY+1 (cube M )
oo

τ ◦C

OO

� X + 1 (Y + 1) × (C + 1)

(τY ⊗τC )◦

OO

cubeMoo

Then we calculate the equality itself, with subscripts helping to

track the types at each stage:

vecY+1 (cube M )

= { definition of cube (24) }

vecY+1 (τX ·M · (τY ⊗ τC )◦)

= { absorption (30) ; converses }

(idY+1 ⊗ τX ) · vecY+1 (M · (τ ◦Y ⊗ τ
◦
C ))

= { Kronecker is a bifunctor [10] ; identity }

(idY+1 ⊗ τX ) · vecY+1 (M · (τ ◦Y ⊗ idC ) · (idY+1 ⊗ τ
◦
C ))

= { fusion (29) from right to left }

(idY+1 ⊗ τX ) · vecY+1 (M · (τ ◦Y ⊗ idC )) · τ
◦
C

= { (35), for N = τY }

(idY+1 ⊗ τX ) · (τY ⊗ idX ) · vecY M · τ ◦C

= { Kronecker bifunctor again }

(τY ⊗ τX ) · vecY M · τ ◦C

= { definition of cube (24) }

cube (vecY M )

□

The following theorem has to do with changing the dimensions

of a data cube.

Theorem 4.3 (Free theorem). Let matrix B A
Moo be cubed

into B + 1 A + 1
cube Moo , and let r : C → A and s : D → B be

arbitrary functions. Then pre and post composing cube M by r ⊕ id
and s◦ ⊕ id, respectively, yields a cube. Moreover,

cube (s◦ ·M · r ) = (s◦ ⊕ id) · (cube M ) · (r ⊕ id) (36)

holds.
Proof: Matrices are in 1-to-1 correspondence with binary functions
on some suitable, fixed semiring. First we convert M into one such
function and cube to the corresponding higher-order polymorphic
function. Then we calculate its free theorem [24], instantiate it to
functions and map the result back to matrices. (The technical details
can be found in the appendix.)
□

In general, free theorems of this kind essentially express how

linear operations commute with changes to the base vectors.
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5 MANIPULATING CUBES
This section shows how to select data from a data cube so as to

obtain from it the other forms of data inspection/aggregation. The

simplest of all these is the slicing operation.

Slicing. Slicing is a specialized filter for a particular value in a

dimension. Starting with a simple example, suppose that from the

cube of Fig. 3 one is only interested in data concerning year 1991.

We recall the general (categorial) notion of a point: let p ∈ A be

given, for A non-empty. The constant function p : 1→ A is said to

be a point of A. So p◦ : A→ 1 acts as a selector, reducing dimension
A to the single value determined by p. For instance,

1991 : 1→ Year + 1

1991 =



0

1

0


that is, 1991

◦
=

[
0 1 0

]
. Now suppose we wish to obtain the

1991-slice of cube c : 1→ (Year + 1) × ((Color + 1) × (Model + 1))
given by (17) and depicted in Fig. 3. Since the year dimension will

be cancelled, the type of the desired slice s will be 1 → ((Color +
1) × (Model + 1)). Then post-composing c with matrix

(Year + 1) × ((Color + 1) × (Model + 1))

1991
◦⊗id
��

1 × ((Color + 1) × (Model + 1))

will perform the intended slicing, cf:

s = (1991◦ ⊗ id) · c =



0

7

7

0

0

0

0

8

8

0

15

15


since the types X and 1 × X contain the same information (in cate-

gories of finite matrices, they are the same). Clearly, this retrieves

the 1991-block of the original cube depicted in Fig. 3.

Consolidation. Recall fact (8) about the “bang” function (!). Clearly,
! ·M · !◦ is a scalar (i.e. a matrix of type 1→ 1) that yields the sum

of all entries in matrix M . Let us define

tot M = ! ·M · !◦

We say a matrix Φ M is a consolidation ofM , or that transformation

Φ is a data consolidation operator wherever tot is an invariant for Φ,
that is,

tot (Φ M ) = tot M
It is easy to see that

Φf ,g M = f ·M · g◦ (37)

is, for any functions f and g, a data consolidation — this follows

immediately from (8). In the (degenerate) case Φid, id = M no con-

solidation actually takes place. At the other extreme, Φ!, ! = tot M ,

which loses all information apart from that given by the invariant

(total).

In presence of multidimensional data, the standard projections

fst (a, b) = a , snd (a, b) = b (38)

(or combinations thereof, in case of nested pairs) are immediate can-

didates for data consolidation. Think of some matrixM :A×B← X
capturing the values of some measure of a 3-dimensional data

set.
4
Now suppose we want to summarize the same information

across dimensions A and X only, therefore hiding all details con-

cerning dimension B. Looking at types only, consolidated matrix

Φfst, id M = fst ·M of type A← X is a candidate for this operation

and indeed its meaning is precisely what we want,

a (fst ·M ) x = ⟨
∑

b :: (a, b) M x⟩

cf.:

a (fst ·M ) x

= { matrix composition (6) }

⟨
∑

a′, b :: (a fst (a′, b)) × ((a′, b) M x)⟩

= { a fst (a′, b) ⇔ a = fst (a′, b) ⇔ a = a′ (38) }

⟨
∑

a′, b : a′ = a : (a′, b) M x⟩)

= { “one-point" rule [11] }

⟨
∑

b :: (a, b) M x⟩)

□

Similarly:

b (snd ·M ) x = ⟨
∑

a :: (a, b) M x⟩)

This extends to higher dimensions. For instance, cancelling out

dimension B fromA× (B×C) will be achieved by projection function
id ⊗ snd :A× (B × C) → A× C, and so on. So, looking at the types
suffices.

Cross tabulations. A cross tabulation is a consolidation enriched

will totals,

ctabf ,g M = τ · (Φf ,g M ) · τ ◦ (39)

recall (9). Typewise:

Y + 1 Y
τYoo B

foo A
Moo g // X

τX // X + 1

ctabf ,g M

ll

From (37) and (13) we obtain

ctabf ,g M =
[
f
!

]
·M ·

[
g
!

]◦

as in [10].

Cross-tabulations are usually two-dimensional, cf.X and Y above.

Generalizing the definition above to the case where Y and X are

Cartesian products, a cross-tabulation becomes

ctabf ,g M = cube (Φf ,g M ) (40)

In words: a (generic) cross-tabulation is the cube of a data consolida-
tion.

Now the question is: can any cross-tabulation on two particular

dimensions of a data cube — like that pictured in Fig. 3 – be retrieved

from the whole cube itself?

4
With no loss of generality, we gain in economy of presentation by supposing that

there are only 3 dimensions involved in matrixM .
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As earlier on, we look at the types first to check how to proceed.

Let matrix M : A × B ← C be given in the first place, from which

its cube was derived, cube M = (τA ⊗ τB) ·M · τ ◦C , which has type

(A + 1) × (B + 1) ← (C + 1).
Suppose we want to extract cross tabulation

ctabfst, id M : A + 1← C + 1

from cube M , that is, we aim at definingψ such that

ctabfst, id M = ψ (cube M ).

The types in

A + 1 (A + 1) × (B + 1)fstoo C + 1cube Moo

hint that fst · (cube M ) might yield the cross-tabulation between

types A and C, of type A + 1→ C + 1. We reason:

fst · (cube M )

= { (24) }

fst · (τA ⊗ τB) ·M · τ ◦C

= { temporarily assume: fst · (τA ⊗ τB ) = τA · fst }

τA · fst ·M · τ ◦C

= { (24) }

cube (fst ·M )

= { (40) }

ctabfst, id M

□

However, things are not so immediate since the rules that cancel

totalizers via the projections,

fst · (τA ⊗ τB) = 2 (τA · fst) (41)

snd · (τA ⊗ τB) = 2 (τB · snd) (42)

(proofs in the appendix) are not quite what we assumed above. So

the overall outcome has to be halved. To see why this doubling side-

effect takes place, suppose we want to discard dimension Color
in the cube of Fig. 3. Selecting columns Year + 1 and Model + 1

alone does not work because we are left will spurious lines — those

corresponding to the all entries of type Color + 1.
A better, alternative procedure is the following, illustrated over

the cube of Fig. 3. The main idea is to cancel the totals of the

dimensions we wish to abstract from before projections actually
take place, by using cancellation property (14). Example, cancelling

dimension Color :

(Year + 1) × ((Color + 1) × (Model + 1))

id ⊗ (π1 ⊗ id)
��

1

cube voo

(Year + 1) × (Color × (Model + 1))

id ⊗ snd
��

(Year + 1) × (Model + 1)

Checking:

(id ⊗ snd) · (id ⊗ (π1 ⊗ id)) · cube v

= { (24) ; ⊗ is a bifunctor [10] }

(id ⊗ snd · (π1 ⊗ id)) · (τYear ⊗ (τColor ⊗ τModel )) · v

= { bifunctor ⊗ ; identity ; cancellation (14) }

(τYear ⊗ snd · (id ⊗ τModel )) · v

= { snd · (id ⊗ M ) = M · snd }

(τYear ⊗ τModel · snd) · v

= { functor · ⊗ · ; (24) }

cube ((id ⊗ snd) · v)

= { (39) }

ctabid ⊗ snd, id v

□

Roll-up. Another data summarization operator is roll-up, an op-

erator that has multiple, different semantic interpretations in the

literature. The interpretation we formalize below is that of [7].

Suppose we have 3-dimensional data with attributes A, B and C.
A roll-up operation over these dimensions is the following form of

summarization

A × (B × C)

A × B

A

1

where we see that each step loses one attribute until there is none.

For only two dimensions this reduces to

A × B
A
1

(43)

and so on. Below we illustrate roll-up for this two dimensional

case, thus saving some space concerning some matrices we wish to

depict.

Abovewe said that the “output” type of a cube, say (A+1)×(B+1),
is isomorphic to A×B+A+B+ 1, therefore representing (typewise)
the four elements of the dimension powerset of {A,B }. This can
be made formal by defining the injections of each such element in

A × B + A + B + 1 into (A + 1) × (B + 1),

(A + 1) × (B + 1)

A × B

θ
77

A

α

OO

B
β

ff

1

ω

ii

where

θ = i1 ⊗ i1
α = i1 ▽ i2 · !
β = i1 · ! ▽ i2
ω = i2 ▽ i2



DBPL 2017, September 1, 2017, Munich, Germany J.N. Oliveira and H.D. Macedo

Moreover, the following properties hold (proofs in the appendix):

θ◦ · (τA ⊗ τB) = id (44)

α◦ · (τA ⊗ τB) = fst (45)

β◦ · (τA ⊗ τB) = snd (46)

ω◦ · (τA ⊗ τB) = ! (47)

From these we may build compound injections, for instance

δ : (A + 1) × (B + 1) ← A × B + 1

δ =
[
θ ω

]
(48)

Interestingly, δ acts as mediator between τA×B — the totalizer of

“compound” attribute A × B — and τA ⊗ τB — the compound of the

two totalizations of A and B:

δ◦ · (τA ⊗ τB) = τA×B

(A + 1) × (B + 1)

δ ◦

��

A × B
τA×B

ww

τA ⊗ τBoo

A × B + 1
This follows immediately from the properties of the injections

involved:

δ◦ · (τA ⊗ τB) = τA×B

≡ { definition of δ (48) ; (10) ; (9) }

[
θ◦

ω◦

]
· (τA ⊗ τB) =

[
id
!

]

≡ { fusion (12) }

[
θ◦ · (τA ⊗ τB)

ω◦ · (τA ⊗ τB)

]
=

[
id
!

]

≡ { (44) and (47) ; structural equality }

true

□

The combination of injections which implements the roll-up of

(43) is given by

ρ : (A + 1) × (B + 1) ← A × B + (A + 1)[
θ

[
α ω

] ]
(49)

Then, for M : C → A × B:

ρ◦ · (cube M )

= { definition of ρ above; (10) twice }



θ◦[
α◦

ω◦

] 
· (τA ⊗ τB) ·M · τ ◦C

= { fusion (12) twice }



θ◦ · (τA ⊗ τB)[
α◦ · (τA ⊗ τB)

ω◦ · (τA ⊗ τB)

] 
·M · τ ◦C

= { (44); (45); (47); fusion again }



M[
fst ·M
! ·M

] 
· τ ◦C

extracts from cube M the corresponding roll-up. Taking as starting

point the following (generalized) cube of matrix (20),

1990 1991 all

Blue
Chevy 87 0 87

Ford 99 7 106

all 186 7 193

Green
Chevy 0 0 0

Ford 64 0 64

all 64 0 64

Red
Chevy 5 0 5

Ford 0 8 8

all 5 8 13

all

Chevy 92 0 92

Ford 163 15 178

all 255 15 270

matrix ρ◦ of type (Color+1)×(Model+1) → Color×Model+Color+1
will be

Blue Green Red all

Chevy Ford all Chevy Ford all Chevy Ford all Chevy Ford all

Blue Chevy 1 0 0 0 0 0 0 0 0 0 0 0

Ford 0 1 0 0 0 0 0 0 0 0 0 0

Green Chevy 0 0 0 1 0 0 0 0 0 0 0 0

Ford 0 0 0 0 1 0 0 0 0 0 0 0

Red Chevy 0 0 0 0 0 0 1 0 0 0 0 0

Ford 0 0 0 0 0 0 0 1 0 0 0 0

Blue 0 0 1 0 0 0 0 0 0 0 0 0

Green 0 0 0 0 0 1 0 0 0 0 0 0

Red 0 0 0 0 0 0 0 0 1 0 0 0

all 0 0 0 0 0 0 0 0 0 0 0 1

that, post-composed with the cube, will yield:

1990 1991 all

Blue
Chevy 87 0 87

Ford 99 7 106

Green
Chevy 0 0 0

Ford 64 0 64

Red
Chevy 5 0 5

Ford 0 8 8

Blue 186 7 193

Green 64 0 64

Red 5 8 13

all 255 15 270

As the matrices illustrate, a roll-up is a particular “subset” of a cube.

Boolean matrix ρ◦ performs the (quantitative) selection of such a

subset.

6 CONCLUSIONS AND FUTUREWORK
Typed linear algebra offers a polymorphic, strongly typed approach

to OLAP semantics and data analysis. Previous work by the same

authors [11] derived the data cube construction from that of cross
tabulation. This paper exploits the alternative view of regarding

data cubing as a primitive construction in data analysis, wherefrom

the other 2D, 1D and 0D aggregators are derived.

The central difference between [11] and the current approach is

that the cube operator proposed here is type-generic when com-

pared to the same operator in [11]. Such a generalization makes

it easier to derive some results, for instance the commutation be-

tween data-cubing and vectorization (Theorem 4.2). Interestingly,

the proof also calls for a generalization of the so-called Roth’s rela-
tionship [22], a standard result that is regarded as the basis of the

whole theory of vectorization [2].
5

5
Practically speaking, we claim that such a generalized cube operator is universal for
classical data aggregation operations in data warehouse systems. Proving this formally
is a topic for future research.
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On the practical side, rooting OLAP querying on linear alge-

bra will lead to linear-algebra based optimization of data analysis

processes in a natural way. Theorem 4.1 already is one such opti-

mization, saving the re-building of a whole data cube when new

data arrives, by just cubing up what is new and adding this to the

old cube. This extends to other “crude" operations, e.g. record

updating, deletion and so on.

This work can be pushed further in several other directions.

One is that of exploiting the parallelism inherent in linear algebra

(LA) processing to implement data cubing in a more efficient way.

Preliminary results [17, 20] are showing LA scripts encoding data

analysis operations performing better on HPC architectures than

the standard competitors.
6

Another direction has to do with the formal semantics of data-

analytical operations started in [11], which we want to develop

further envisaging another example of advantageous usage of linear

algebra as a computing model for software components [9]. The

typed LA approach offers a very simple semantics to OLAP when

compared to e.g. [5, 6] but its strongly typed basis does not let

properties such as e.g. “Gray’s axioms” [7],

CUBE (ROLLUP ) = CUBE
ROLLUP (GROUP BY ) = ROLLUP

to be expressed as such. (Although not formally proved in [7],

these intuitively make sense in an untyped, set-theoretical model.)

References [17, 20] show how to encode SQL into LA scripts in a

way similar to the approach of columnar database systems [1]. We

would like to extend this to data analysis languages such as e.g.

Microsoft’s MDX.
7

Finally, through linear algebra one might possibly gain typed

linear logic as formal language for data analysis. Linear logic is

a resource-aware kind of logic that captures quantification in a

subtle way. The formal connection between logic and linear algebra

presented in e.g. [13] could be taken as starting point for such a

prospective work.
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A APPENDIX
The following rules interfacing index-free and index-wise matrix notation,

where f and д functional matrices, are used in this paper:

y (д◦ ·M · f )x = (g y)M (f x) (50)

y (f ·M )x = ⟨
∑

z : y = f z : z M x ⟩ (51)

y (M · f ◦)x = ⟨
∑

z : x = f z : yMz⟩ (52)

These rules are expressed in the style of the Eindhoven quantifier calculus

(see e.g. [3]) and are convenient shorthands for the corresponding instances

of matrix composition (6).

The rest of this appendix includes the proofs of themain results presented

in this paper.

Proof of (32). Let us first draw a diagram depicting the types involved in

(32):

B × (A × C) A × (B × C)
xngoo B

C
vecB (M◦⊗idC )

dd
vecA (M⊗idC )

OO

A

M

OO

The types of variables a, b, c and c′ introduced below to both sides of the

equality should be obvious from the diagram. We calculate the left hand

http://www.tpc.org/tpch/default.asp
https://msdn.microsoft.com/en-us/library/ms144884.aspx
citeseer.nj.nec.com/article/gray95data.html
citeseer.nj.nec.com/article/gray95data.html
http://arxiv.org/abs/1407.2650
http://foswiki.cs.uu.nl/foswiki/IFIP21/GlasgowScotland
http://dx.doi.org/10.1109/2.970558


DBPL 2017, September 1, 2017, Munich, Germany J.N. Oliveira and H.D. Macedo

side first:

(b, (a, c′)) (vec (M◦ ⊗ id)) c

= { vectorization (18) }

(a, c′) (M◦ ⊗ id) (b, c)

= { Kronecker product (4) }

(a M◦ b) × (c′ id c)

= { converse ; Kronecker product }

(b, c′) (M ⊗ id) (a, c)

Next we calculate the right hand side:

(b, (a, c′)) (xng · vec (M ⊗ id)) c

= { rule (51) }

⟨
∑

x : (b, (a, c′)) = xng x : x vec (M ⊗ id) c⟩

= { isomorphism xng (31) }

⟨
∑

x : x = (a, (b, c′)) : x vec (M ⊗ id) c⟩

= { one point rule of quantification }

(a, (b, c′))) (vec (M ⊗ id)) c

= { vectorization (18) }

(b, c′) (M ⊗ id) (a, c)

Thus the equality holds.

□

Proof of (35). As above, we start by drawing a diagram showing the

generic types involved in the equality we wish to calculate:

D B × CMoo A × C
N ⊗idCoo

A × D B × D
N◦ ⊗ idDoo C

vecB Moo

vecA (M ·(N ⊗ idC ))

ii

Then we calculate the equality in the pointfree typed linear algebra style:

vecA (M · (N ⊗ idD )) = (N ◦ ⊗ idD ) · vecB M

≡ { lhs: absorption (30) ; rhs: (34) }

(idA ⊗ M ) · vecA (N ⊗ idD ) = (N ◦ ⊗ idD ) · (idB ⊗ M ) · ηB

≡ { Kronecker is a bifunctor [10] }

(idA ⊗ M ) · vecA (N ⊗ idD ) = (idA ⊗ M ) · (N ◦ ⊗ idB×D ) · ηB

⇐ { Leibniz }

vecA (N ⊗ idD ) = (N ◦ ⊗ idB×D ) · ηB

≡ { (32) }

xng · vecB (N ◦ ⊗ idD ) = (N ◦ ⊗ idB×D ) · ηB

≡ { lhs: (34) }

xng · (idB ⊗ (N ◦ ⊗ idD )) · ηB = (N ◦ ⊗ idB×D ) · ηB

≡ { naturality of xng ; idB ⊗ idD = idB×D }

(N ◦ ⊗ idB×D ) · xng · ηB = (N ◦ ⊗ idB×D ) · ηB

≡ { (33) }

true

□

Proof of (36). Every matrix B AMoo
is in 1-1 correspondence with

a function S B × Akoo
, for S a fixed semiring:

JkK = M ≡ k (b, a) = bMa (53)

Cancellation yields:

k (b, a) = bJkKa (54)

A consequence of (53) is the equality

Jh · (д × f )K = д◦ · JhK · f (55)

proved below:

Jh · (д × f )K = M

≡ { (53) }

h ((д × f ) (b, a)) = bMa

≡ { product of two functions }

h (д b, f a) = bMa

≡ { (54) }

(д b )JhK(f a) = bMa

≡ { rule (50) }

д◦ · JhK · f = M

Thus the cube matrix operator

cube : ((B + 1) ← (A + 1)) ← (B← A)

corresponds to the polymorphic, higher order function

cube′ : (S← ((B + 1) × (A + 1))) ← (S← (B × A))

in the sense that

Jcube′ f K = cube Jf K (56)

The free theorem [24] of cube′ is, for functions:

(cube′ f ) · ((s + id) × (r + id)) = cube′ (f · (s × r ))

Thus

J(cube′ f ) · ((s + id) × (r + id))K = Jcube′ (f · (s × r ))K

≡ { (55 ; (56) }

(s ⊕ id)◦ · Jcube′ f K · (r ⊕ id) = cube Jf · (s × r )K

≡ { (55 ; (56) }

(s ⊕ id)◦ · cube Jf K · (r ⊕ id) = cube (s◦ · Jf K · r )

≡ { change of variable: M = Jf K }

(s ⊕ id)◦ · cube M · (r ⊕ id) = cube (s◦ ·M · r )

□
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Proofs of (41) and (42). Calculating (41), the calculation of (42) being

similar:

fst · (τA ⊗ τB )

= { definition of fst }

(id ⊗ !) · (τA ⊗ τB )

= { bifunctor ⊗ ; ! =
[
! !

]
; ! :1→ 1 = id }

τA ⊗
[
! id

]
·

[
id
!

]

= { divide & conquer rule (11) }

τA ⊗ (!+ !)

= { M +M = 2 M }
[

id
!

]
⊗ (2 !)

= {

[
A
B

]
⊗ C =

[
A ⊗ C
B ⊗ C

]
; ! ⊗ ! = ! }

[
id ⊗ 2 !

(2 !)

]

= { (k A) ⊗ B = A ⊗ (k B) = k (A ⊗ B) }

2

[
fst
!

]

= { (13) }

2 (τA · fst)

□

Proof of (44). :
θ ◦ · (τA ⊗ τB )

= { definition of θ ; converses }

(i1 ⊗ i1)◦ · (τA ⊗ τB )

= { biproducts [10] }

(π1 ⊗ π1) · (τA ⊗ τB )

= { bifunctor ⊗ }

(π1 · τA ⊗ π1 · τB )

= { (14) ; bifunctor ⊗ }

id

□

Proof of (45).
α ◦ · (τA ⊗ τB ) = fst

≡ { definition of α }

(i1 ▽ i2 · !)◦ · (τA ⊗ τB ) = fst

≡ { taking converses }

(τ ◦A ⊗ τ ◦B ) · (i1 ▽ i2 · !) = fst◦

≡ { absorption (5) ; (14) ; (15) }

(id ▽ !
◦ · !) = fst◦

≡ { absorption (5) }

(id ⊗ !
◦) · (id ▽ !) = fst◦

≡ { M ▽ ! = M = ! ▽ M [11] }

(id ⊗ !
◦) = fst◦

≡ { definition of fst taking converses }

true

□

Proof of (47). :
ω◦ · (τA ⊗ τB ) = !

≡ { taking converses }

(τ ◦A ⊗ τ ◦B ) · ω = !
◦

≡ { definition of ω ; absorption (5) }

τ ◦A · i2 ▽ τ ◦B · i2 = !
◦

≡ { τ ◦ · i2 = !
◦
, equivalent to (15) }

!
◦
▽ !
◦ = !

◦

= { M ▽ ! = M = ! ▽ M [11] }

true

□
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