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Abstract. Device miniaturization is pointing towards tolerating imper-
fect hardware provided it is “good enough”. Software design theories will
have to face the impact of such a trend sooner or later.
A school of thought in software design is relational : it expresses specifi-
cations as relations and derives programs from specifications using rela-
tional algebra.
This paper proposes that linear algebra be adopted as an evolution of
relational algebra able to cope with the quantification of the impact of
imperfect hardware on (otherwise) reliable software.
The approach is illustrated by developing a monadic calculus for compo-
nent oriented software construction with a probabilistic dimension quan-
tifying (by linear algebra) the propagation of imperfect behaviour from
lower to upper layers of software systems.

1 Introduction

In the trend towards miniaturization of automated systems the size of circuit
transistors cannot be reduced endlessly, as these eventually become unreliable.
There is, however, the idea that inexact hardware can be tolerated provided it
is “good enough” [16].

Good enough has always been the way engineering works as a broad discipline:
why invest in a “perfect” device if a less perfect (and less expensive) alternative
fits the needs? Imperfect circuits will make a certain number of errors, but these
will be tolerated if they nevertheless exhibit almost the same performance as
perfect circuits. This is the principle behind inexact circuit design [16], where
accuracy of the circuit is exchanged for cost savings (e.g. energy, delay, silicon)
in a controlled way.

If unreliable hardware becomes widely accepted on the basis of fault tolerance
guarantees, what will the impact of this be into the software layers which run on
top of it in virtually any automated system? Running on less reliable hardware,
functionally correct (e.g. proven) code becomes faulty and risky. Are we prepared
to handle such risk at the software level in the same way it is tackled by hardware
specialists? One needs to know how risk propagates across networks of software
components so as to mitigate it.
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The theory of software design by stepwise refinement already copes with some
form of “approximation” in the sense that “vague” specifications are eventually
realized by precise algorithms by taking design decisions which lead to (deter-
ministic) code. However, there is a fundamental difference: all input-output pairs
of a post-condition in a software specification are equally acceptable, giving room
for the implementer to choose among them. In the case of imperfect design, one
is coping with undesirable, possibly catastrophic outputs which one wishes to
prove very unlikely.

In the area of safety critical systems, NASA has defined a probabilistic risk
assessment (PRA) methodology [27] which characterizes risk in terms of three
basic questions: what can go wrong? how likely is it? and what are the conse-
quences? The PRA process answers these questions by systematically modeling
and quantifying those scenarios that can lead to undesired consequences.

Altogether, it seems that (as happened with other sciences in the past) soft-
ware design needs to become a quantitative or probabilistic science. Consider
concepts such as e.g. reliability. From a qualitative perspective, a software sys-
tem is reliable if it can successfully carry out its own task as specified [9]. But
our italicized text is a inexact quotation of [9], the exact one being: reliability
[is] defined as a probabilistic measure of the system ability to successfully carry
out its own task as specified.

From a functional perspective, this means moving from specifications (in-
put/output relations) and implementations (functions) to something which lives
in between, for instance probabilistic functions expressing the propensity, or
likelihood of multiple, possibly erroneous outputs. Typically, the classic non-
deterministic choice between alternative behaviours,

bad ∪ good (1)

has to be replaced by probabilistic choice [19]

bad p� good (2)

and the reasoning should be able to ensure that the probability p of bad be-
haviour is acceptably small.

Does the above entail abandoning relational reasoning in software design?
Interestingly, the same style of reasoning will be preserved provided binary rela-
tions are generalized to (typed) matrices, the former being just a special case of
the latter. This leads to a kind of linear algebra of programming [21]. Technically,
in the same way relations can be transposed to set valued functions, which rely on
the powerset monad to express non-determinism, so do probabilistic matrices,
which transpose to distribution-valued functions that rely on the distribution
monad to express probabilistic behaviour. It turns out that it is the converse of
such transposition which helps, saving explicit set-theoretical constructions in
one case and explicit distribution manipulation in the other via pointfree styled,
algebraic reasoning.

Contribution. This paper proposes that, similarly to what has happened with the
increasing role of relational algebra in computer science [7, 5, 25], linear algebra
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be adopted as its natural development where quantitative reasoning is required.
Relation algebra and linear algebra share a lot in common once addressed from
e.g. a categorial perspective [8, 17]. So it seems that there is room for evolution
rather than radical change.

In this setting, this paper contributes (a) with a case study on such an evolu-
tion concerning a calculus of software components [2, 3] intended for quantitative
analysis of software reliability; (b) with a strategy for reducing the impact of the
“probabilistic move” based on re-interpreting software component semantics in
linear algebra through a so-called “Kleisli-lifting’ which keeps as much of the
original semantics definition as possible.

2 Context

Quantitative software reliability analysis is not so easy in practice because, as
is well-known, software systems are nowadays built component-wise. Cortellessa
and Grassi [9] quantify component-to-component error propagation in terms of a
matrix whose entry (i, j) gives the probability of component i transferring control
to component j — a kind of probabilistic call-graph. For our purposes, this ab-
stracts too much from the semantics of component-oriented systems, which have
been quite successfully formalized under the components as coalgebras motto
(see e.g. [2]), building on extensive work on automata using coalgebra theory
[24, 12].

Coalgebra theory can be regarded as a generic approach to transition systems,
described by functions of type

f : S → F S (3)

where S is a set of states and F S captures the future behaviour of the system ac-
cording to evolution “pattern” F which (technically) is a functor. For F S = P S ,
the powerset functor, f is the power-transpose [5] of a binary relation on the state
space S . Other instances of F lead to more sophisticated transition structures,
for instance Mealy and Moore machines involving inputs and outputs. Barbosa
[2] gives a software component calculus in which components are regarded as
such machines, expressed as coalgebras.

In this paper we wish to investigate a (technically) cheap way of promoting
the components as coalgebras approach from the qualitative, original formula-
tion [2] to a quantitative, probabilistic extension able to cope with the impact of
inexact circuit design into software. As the survey by Sokolova [26] shows, prob-
abilistic systems have been in the software research agenda for quite some time.
From the available literature we focus on a paper [12] which suits our needs: it
studies trace semantics of state-based systems with different forms of branching
such as e.g. the non-deterministic and the probabilistic, in a categorial setting.
This fits with our previous work [22] on probabilistic automata as coalgebras in
categories of matrices which shows that the cost of going quantitative amounts
essentially to changing the underlying category where the reasoning takes place.
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3 Motivation

This section presents a brief account of the component algebra [2] which is cen-
tral to the current paper. For illustrative purposes, we have implemented this
algebra of component combinators in Haskell, for the particular situation in
which components are regarded as (monadic) Mealy machines. The original al-
gebra has furthermore been extended probabilistically relying on the PFP library
written by Erwig and Kollmansberger [10]. On purpose, the examples hide many
technical details which are deferred to later sections.

Abstract Mealy machines. An F-branching Mealy machine is a function of type

S × I → F (S ×O) (4)

where S is the machine’s internal state space, I is the set of inputs and O the
set of outputs. Our main principle is that of regarding a software system as a
combination of Mealy machines, from elementary to more complex ones. For
this to work, F in (4) will be regarded as a monad capturing effects which are
propagated upwards, from component to composite machines.

Functions of type (4), for F a monad, will be referred to as monadic Mealy
machines (MMM) in the sequel. This type (4) can be written in two other equiv-
alent (isomorphic) ways, all useful in component algebra: the coalgebraic S →
(F (S ×O))I — compare with (3) — and the state-monadic I → (F (S ×O))S ,
depending on how currying is applied.

Methods = elementary Mealy machines. Let us see an example which shows how
an aggregation of (possibly partial) functions sharing a data type already is a
Mealy machine. In the example, a stack is modelled as a (partial) algebra of
finite lists written in Haskell syntax as follows

push (s, a) = a : s
pop = tail
top = head
empty s = (0 ≡ length s)

whose types are

push :: ([a ], a) → [a ]
pop :: [a ] → [a ]
top :: [a ] → a
empty :: [a ] → B

Below we show how to write each individual function as an elementary Mealy
machine on the shared state space S = [a ] before aggregating them all into a
single machine (component).

In the case of push, I = a. (Note that in Haskell syntax type variables are
denoted by lower-case letters). What about O? We may regard it as an instance
of the singleton type 1, whose unique inhabitant carries the information that the
action indeed took place:

push ′ :: ([a ], a) → ([a ], 1)
push ′ = push M !

This definition relies on the pairing operator, (f M g) x = (f x , g x ) and on the
uniquely defined (total and constant) function ! :: b → 1, often referred to as the
”bang” function.
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Note how action (“method”) push ′ is pure in the sense that it does not
generate any effect. The same happens with

empty ′ :: ([a ], 1) → ([a ], B)
empty ′ = (id M empty) · π1

where this time the singleton type is at the input side, meaning a “trigger” for
the operation to take place. Functions id and π1 are the identity function and the
projection π1 (x , y) = x , respectively, the former ensuring that no state change
takes place.

Concerning pop and top we have a new situation: as these are partial func-
tions, some sort of totalization is required before promoting them to Mealy ma-
chines. The cheapest way of totalizing partial functions resorts to the “Maybe”
monad M, mapping into an error value ⊥ the inputs for which the function is
undefined and otherwise signaling a successful computation using the monad’s
unit η :: S → M S :1

· ⇐ · ::(a → b) → (a → B) → a → M b
(f ⇐ p) a = if p a then (η · f ) a else ⊥

Note how f ⇐ p “fuses” f with a given pre-condition p, as in the following
promotion of top to a M-monadic Mealy machine

top′ :: ([a ], 1) → M ([a ], a)
top′ = (id M top ⇐ (¬ · empty)) · π1

which, as empty ′, does not change the state. Opting for the usual semantics of
the pop method,

pop′ :: ([a ], 1) → M ([a ], a)
pop′ = (pop M top ⇐ (¬ · empty)) · π1

we finally go back to pure push ′ and empty ′ making them M-compatible (ie.
M-resultric) through the success operator:

push ′ :: ([a ], a) → M ([a ], 1)
push ′ = η · (push M !)
empty ′ :: ([a ], 1) → M ([a ], B)
empty ′ = η · (id M empty) · π1

Components =
∑

methods. Now that we have the methods of a stack written
as individual Mealy machines over the same monad and shared state space, we
add them up to obtain the intended stack component 2

stack :: ([a ], 1 + 1 + a + 1) → M ([a ], a + a + 1 + B)
stack = pop′ ⊕ top′ ⊕ push ′ ⊕ empty ′

1 Symbols ⊥ and η pretty-print Nothing and Just of Haskell’s concrete syntax, respec-
tively, cf. definition data M a = Nothing | Just a.

2 Notation x + y pretty-prints Haskell’s syntax for disjoint union, Either x y .
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1 + 1 + a + 1

��
stack

��
a + a + 1 + B

Before giving the details of the binary operator ⊕
which binds methods together, note that stack is also
a (composite) Mealy machine (4), for I = 1+1+a +1
and O = a + a + 1 + B. This I/O interfacing, pictured
aside, captures the four alternatives which are available
for interacting with a stack. Note how singleton types
(1) at the input side mean “do it!” and at the output
side mean “done!”.

· ⊕ · ::(Functor F) ⇒
-- input machines
((s, i) → F (s, o)) →
((s, j ) → F (s, p)) →
-- output machine
(s, i + j ) → F (s, o + p)
-- definition

m1 ⊕m2 = (F dr◦) ·∆ · (m1 + m2) · dr

Components such as stack arise
as the sum of their methods, a MMM
binary combinator whose definition
in Haskell syntax is given aside. Iso-
morphism dr::(s, i+j ) → (s, i)+(s, j )
(resp. its converse dr◦) distributes
(resp. factorizes) the shared state
across the sum of inputs (resp. out-
puts); m1 +m2 is the sum of m1 and
m2 and “cozip” operator ∆ :: F a +
F b → F (a + b) promotes sums through functor F .

I ��
m1

BC J@A

GF ED
J��

; m2

K ��

(5)
Systems = component composi-
tions. Let us now consider the
idea of building a system in which
two stacks interact with each
other, e.g. by popping from one
and pushing the outcome onto the
other.3 For this another MMM
combinator is needed taking two
I/O compatible MMM m1 and m2 (with different internal states in general) and
building a third one, m1 ; m2, in which outputs of m1 are sent to m2 (5).

· ; · ::(Strong F,Monad F) ⇒
-- input machines
((s, i) → F (s, j )) →
((r , j ) → F (r , k)) →
-- output machine
((s, r), i) → F ((s, r), k)

The type of this combinator as
implemented in Haskell is given
aside. It requires F to be a strong
monad [15], a topic to be addressed
later. Note how the output machine
has a composite state pairing the
states of the two input machines.

We defer to a later stage the anal-
ysis of the formal definition of this
combinator, which is central to the principle of building components out of
other components [2]. Instead, we build the composite machine already antici-
pated above,

m = pop′ ; push ′

3 This interaction will of course fail if the source stack is empty, but this is not our
concern — monad M will take care of such effects.
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which pops from a source stack (m1 = pop′) and pushes onto a target stack
(m2 = push ′). By running e.g. 4

> m(([1],[2]),())

Just (([],[1,2]),())

we obtain the expected output and new state, while

> m(([],[2]),())

Nothing

fails, because the source stack is empty.

Faulty components. Let us finally consider the possibility of, due to hardware
imperfection, pop′ behaving in the source stack as expected, with probability p,
and unexpectedly like top′ with probability 1− p,

pop′′ :: P → ([a ], 1) → D (M ([a ], a))
pop′′ p = pop′ p� top′

recall (2). P pretty-prints the probability representation data type ProbRep of
the PFP library and D denotes the (finite) distribution monad implemented in
the same library. The choice operator · p� · is the pointfree counterpart of a
similar operator in PFP.

Concerning the target stack, the conjectured fault of push ′ is that it does not
push anything with probability 1− q :

push ′′ :: P → ([a ], a) → D (M ([a ], 1))
push ′′ q = push ′ q� !′

where !′ = η · (id × !), of generic type (s, a) → M (s, 1), is the promotion of the
bang function ! to a MMM.

· ;D · ::
-- input probabilistic MMMs
((s, i) → D (M (s, j ))) →
((r , j ) → D (M (r , k))) →
-- output probabilistic MMM
((s, r), i) → D (M ((s, r), k))

Note how pop′′ and push ′′

have become “doubly” monadic
in their cascading of the distri-
bution (D) and Maybe (M) mon-
ads. To compose them as in m =
pop′ ; push ′ above we need a more
sophisticated version of the semi-
colon combinator (aside) whose actual implementation is once again intention-
ally skipped. Thanks to this new combinator, we can build a faulty version of
machine m above 5

m2 = (pop′′ 0.95) ;D (push ′′ 0.8)

and test it for the same composite state ([1], [2]) as in the first experiment above,
obtaining
4 Recall that () is the Haskell notation for the unique inhabitant of type 1.
5 The probabilities in these examples are chosen with no criterion apart from leading

to distributions visible to the naked eye. By all means, 5% would be extremely high
risk in realistic PRA [27], where only figures as small as 1.0E-7 become “acceptable”.
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> m2(([1],[2]),())

Just (([],[1,2]),()) 76.0%

Just (([],[2]),()) 19.0%

Just (([1],[1,2]),()) 4.0%

Just (([1],[2]),()) 1.0%

The simulation shows that the overall risk of faulty behaviour is 24% (1− 0.76),
structured as 1%: both stacks misbehave; 4%: source stack misbehaves; 19%:
target stack misbehaves. As expected, the second experiment

> m2(([],[2]),())

Nothing 100.0%

is always catastrophic (again popping from an empty stack).
Summing up: our animation in Haskell has been able to simulate fault prop-

agation between two stack components with different fault patterns arising from
conjectured hardware imperfections. In the sequel we will want to reason about
such fault propagation rather than just simulate it.

4 Related work and research questions

Elsewhere [21, 20] we have shown that fault propagation can be reasoned about
for functional programs of a particular kind — they are inductive extensions
(termed folds or catamorphisms) of given algebras. In particular, the linear (ma-
trix) algebra of programming mentioned in the introduction is used to decide
which laws of programming [5] hold probabilistically or to find side-conditions
for them to hold.

In the current paper we are faced with the dual situation: our programs are
coalgebras and we want to observe and compare their behaviour expressed by
unfolds (also known as anamorphisms) which tell how likely particular execution
traces are. In particular, we want to be able to ascertain which (different) ma-
chines exhibit the same (probabilistic) traces for the same starting states (trace
equivalence).

Looking at the types of push ′′, m2 etc. above we realize that our MMMs have
become probabilistic, leading to coalgebras of general shape

S → (D(F(S ×O)))I (6)

This leads into our main research questions: How tractable (mathematically) is
this doubly-monadic framework? Can F be any monad?

Relatives of shape (6) have been studied elsewhere [26], namely reactive prob-
abilistic automata, S → (M (D S ))I ; generative probabilistic automata, S →
M (D (O × S )); bundle systems, S → D (P (O × S )) and so on. In a coalge-
braic approach to weighted automata, reference [6] studies coalgebras of functor
S → K×(KS

ω)I for K a field. Such coalgebras rely on the so-called field valuation
(exponential) functor K−

ω calling for vector spaces.
Inspired by this approach, a similar framework was studied directly in suit-

able categories of matrices [22]. We will follow a similar strategy in the current
paper concerning probabilistic MMMs and their combinators.
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5 Composition

The essence of the component algebra of [2] is a notion of component composition
stated in a coalgebraic, categorial setting. Let us briefly review this framework,
instantiated for generic F-branching Mealy machines (4).

Let X
η // FX F2X

µoo be a monad and m1, m2 be two machines (func-
tions) of types S × I → F (S × J ) and Q × J → F (Q × K ), respectively. Ab-
stracting from their internal states as in picture (5) above, these machines can

be represented by the arrows I
m1 // J and J

m2 // K , respectively. Their

composition by I
m1;m2 // K is a machine with composite state S × Q built in

the following way: first, m1 is “wrapped” with the state Q of m2,

F (S × J )×Q

τr

��

(S × I )×Q
m1×idoo (S ×Q)× Ixroo

grrffffffffffffffffffffff

F ((S × J )×Q)

where xr is the obvious isomorphism and τr is the right strength of monad F,
τr : (F A) × B → F (A × B), which therefore has to be a strong monad. The
purpose of xr is to ensure the compound state and input I on the input side. In
turn, m2 is wrapped with the state of m1,

F (S × (Q ×K ))

F a◦

��

S × F (Q ×K )
τloo S × (Q × J )

id×m2oo (S × J )×Qxloo

f
qqcccccccccccccccccccccccccccccccccccccccc

F ((S ×Q)×K )

where a◦ is the converse of isomorphism a :(A×B)×C → A×(B×C ) and xl is a
variant of xr above. Finally, τl is the left strength of F, τl :(B×F A) → F (B×A).

F (F C )

µ

��

F B
F foo A

goo

f •g

ggF C B
foo

(7)
Note how F a◦ ensures the com-

pound state and type K on the out-
put. In spite of the efforts of xl to ap-
proximate the input of contribution
f to the output of the other (g), they
do not match, as the latter is F-more
complex than the former.

This suggests that f and g be composed using the Kleisli composition as-
sociated with monad F, denoted by f • g and depicted in diagram (7). Thus
we obtain the Haskell implementation of machine composition which was left
unspecified in section 3:

m1 ; m2 = ((F a◦) · τl · (id ×m2) · xl) • (τr · (m1 × id) · xr) (8)

An advantage of relying on Kleisli composition (7) is its rich algebra, forming a
monoid with η

f • (g • h) = (f • g) • h (9)
f • η = f = η • f (10)
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and trading nicely with normal composition, cf. for instance

(F f ) · (h • k) = (F f · h) • k (11)
(f · g) • h = f • (F g · h) (12)

It turns out that Mealy machines too form a monoid whose binary operator

is (8) and whose unit is the machine J
copy // J which faithfully passes its input

to the output, never changing state:

copy : 1× J → F (1× J )
copy = η

However, such an algebraic structure holds up to behavioural equivalence only,
denoted by symbol ':

m ; copy ' m ' copy ; m (13)
m ; (n ; p) ' (m ; n) ; p (14)

F (S × J )

F (h×id)

��

S × I
m1oo

h×id

��

S

h

��
F (Q × J ) Q × I

m2
oo Q

Behavioural equivalence can be established
by defining morphisms between equivalent
machines regarded as coalgebras. In gen-
eral, given two F-Mealy machines m1 and
m2 (aside), a state transformation h :S → Q
is a morphism between them if the diagram
aside commutes.

For instance, to establish the first part of (13) it suffices to show that the
natural isomorphism lft :A×1 → A is a morphism between m ;copy and m itself:
F (lft× id) · (m ;copy) = m · (lft× id). As example of pointfree calculation typical
of ' reasoning, the proof of this equality is given next, where rgt : 1×A → A is
another natural isomorphism:

F (lft× id) · (m ; copy) = m · (lft× id)

≡ { definition of composition (8) }

F (lft× id) · (((F a◦) · τl · (id × η) · xl) • τr · (m × id) · xr) = m · (lft× id)

≡ { trading (11); τl · (id × η) = η; lft commutes with rgt via a◦ }

(F (id × rgt) · η · xl) • (τr · (m × id) · xr) = m · (lft× id)

≡ { naturality of η; (id × rgt) · xl = lft }

(η · lft) • (τr · (m × id) · xr) = m · (lft× id)

≡ { (12); unit η (10) }

(F lft) · τr · (m × id) · xr = m · (lft× id)

≡ { F lft · τr = lft ; lft · xr = lft× id }

lft · (m × id) · xr = m · lft · xr
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≡ { cancel xr; naturality of lft: lft · (m × id)= m · lft }

true

The component algebra of [2] contains several other combinators which are of
interest. For economy of space we will restrict ourselves to composition, as this
is enough for our main point in the paper: what is the impact in the component
algebra of [2] of having faulty Mealy machines as models of components?

6 Composing non-deterministic components

Recall from the motivation how we have simulated faulty composition of M-
Mealy machines on top of the PFP Haskell library. In general, this means han-
dling machines of type I → J , that is, functions of type Q × I → D (F (Q × J ))
for some space state Q , where before we had Q × I → F (Q × J ). Thus, further
to monad F, another monad is around, the distribution monad D.

Generalizing even further, we want to consider machines of type

Q × I → T (F (Q × J )) (15)

where monad X
ηF // F X F2X

µFoo caters for transitional effects (how the

machine evolves) and monad X
ηT // T X T2X

µToo specifies the branching
type of the system [12]. A typical instance is T = P (powerset) and F = M = (1+)
(‘maybe’), that is, we have machines

m : Q × I → P (1 + Q × J ) (16)

which are reactive, non-deterministic finite state automata with explicit termi-
nation.

Note, however, that m (16) could alternatively be specified as a binary re-
lation R of type Q × I → 1 + Q × J of which m is the power transpose [5],
following the equivalence

R = dme ≡ 〈∀b, a :: b R a ≡ b ∈ m a〉 (17)

which tells that a set-valued function m is uniquely represented by a binary
relation R = dme and vice-versa. Moreover, dm • ne = dme · dne holds, where
m • n means the Kleisli composition of two set-valued functions and dme · dne
is the relational composition of the corresponding binary relations:

b (R · S ) a ≡ 〈∃c :: b R c ∧ c S a〉 (18)

In categorial-speak, this means that the category of binary relations coincides

with the Kleisli category of the powerset monad X
sing // P X P2X

dunionoo where
sing a = {a} and dunion S =

⋃
s∈S s.
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Back to (16), the advantage of “thinking relationally” is that machine m can
be “replaced” by the relation dme : Q × I → 1 + Q × J from whose (relational)
type the powerset has vanished. So, in a sense, it is as if we were back to the
situation where only M = (1+) is present.

How do relational, M-machines compose? Recall from (8) that machine com-
position relies on Kleisli composition (7) — in this case, of monad M X = 1+X ,

with structure X
i2 // 1 + X 1 + (1 + X )

[i1,id]oo , where i1 and i2 are the in-
jections associated to binary sums. Thus

f • g = [i1, id ] · (id + f ) · g = [i1, f ] · g (19)

where [f , g ] is the junc combinator satisfying [f , g ] · i1 = f and [f , g ] · i2 = g . How
about relations? Consider evaluating expression [i1, f ] · g for f replaced by some

relation 1 + B C
Roo ,6 g replaced by some other relation 1 + C A

Soo

and functional composition replaced by relational composition:

R • S = [i1,R] · S (20)

Unfolding [i1,R] to i1 · i◦1 ∪ R · i◦2 — where R◦ denotes the converse of R —
one obtains, abbreviating by ∗ the application of i1 to the unique inhabitant of
singleton type 1:

y (R • S ) a ≡ (y = ∗) ∧ (∗ S a) ∨ 〈∃c :: (y R c) ∧ ((i2 c) S a)〉

In words: composition R •S is doomed to fail wherever S fails; otherwise, it will
fail where R fails. For the same input, R • S may both succeed or fail.

Summing up: we have encoded the Kleisli composition of a monad (M) not in
the category of sets and functions but in the Kleisli category of another monad
(the powerset) which eventually we found familiar with — we met relational
algebra there. Back to (8), can think of M-monadic Mealy machines as binary
relations which compose (as machines) according to definition

S ; R = [i1, (id + a◦) · τl · (id × R) · xl] · τr · (S × id) · xr (21)

where all dots mean relational composition (18).7

7 Composing probabilistic components

For the above constructions to help in reasoning about non-deterministic compo-
nents we have to check if the properties of monad M remain intact once encoded

6 Relations of this type express the possibility that for some inputs, both termination
and nontermination are possible [that is] relations from legal states to a “lifted”
state set containing all legal states and in addition one “illegal state” standing for
nontermination [13].

7 As usual, every function symbol f in (21) should be regarded as the homonym
relation f such that b f a holds iff b = f a.
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relationally, extensive to the properties of the strength operators also present in
(21).

Prior to this, however, let us not forget that our aim is to prepare relational
algebra for “just good enough” hardware and its imprecision, calling for a prob-
abilistic treatment of faults. In this direction, we should also check the scenario
of the previous section once the distribution monad replaces the powerset,

m : Q × I → D (1 + Q × J ) (22)

whereupon non-deterministic branching becomes weighted with probabilities in-
dicating the likelihood of state transitions, recall (2). So, m is now a distribution-
valued function. We assume below that such distributions have countable sup-
port.8

It turns out that the strategy to cope with this situation is similar to that of
the previous section: distribution-valued functions are adjoint to so-called column
stochastic (CS) matrices, which represent the inhabitants of the Kleisli category
associated with monad D; and, for this monad, Kleisli composition corresponds
to matrix composition, usually termed matrix multiplication:

b (M ·N ) a ≡ 〈
∑

c :: (b M c)× (c N a)〉 (23)

In this formula, both M and N are matrices. We prefer to denote the cell in
(say) M addressed by row b and column a by the infix notation b M a, rather
than the customary M (b, a) or Mb,a. This stresses on the notational proximity
with relations: matrices are just weighted relations.9

Summing up: in the same way the “Kleisli lifting” of section 6 makes the
powerset monad implicit, leading into relational algebra, the same lifting now
hides the distribution monad and leads to the linear algebra of CS matrices [21],
under the universal correspondence

M = df e ≡ 〈∀b, a :: b M a = (f a) b〉 (24)

where f :A → D B is a probabilistic function and D B is the set of all distributions
on B with countable support; that is, for every a ∈ A, f a = µ where µ : B →
[0, 1] is a function such that

∑
b ∈ B m b = 1.

Correspondence (24) establishes the isomorphism

A → D B ∼= A → B (25)

where on the left hand side we have D-valued functions and on the right hand
side A → B denotes the set of all CS matrices with columns indexed by A, rows
indexed by B and cells taking values from the interval [0, 1].10 This matrices as

8 This is reasonable in the sense that they arise from a finite number of applications
of the choice (2) operator.

9 Reference [22] argues in this direction by adapting rules typical of relational algebra
to linear algebra.

10 Each such column represents a distribution and therefore adds up to 1, as written
above.
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arrows approach [17] regards them as morphisms of suitable categories (of typed
matrices). In the current paper we only consider matrices on the interval [0, 1]
subject to the column stochasticity constraint expressed above.

With no further detours let us adapt definition (20) of (relational) M-Kleisli
composition to the corresponding definition in linear algebra, where relation R

gives place to matrix 1 + B C
Moo , relation S to matrix 1 + C A

Noo and
the little dot now denotes matrix composition (23):

M •N = [i1|M ] ·N (26)

The reader may wonder about how does injection i1 (a function) fit into
a linear algebra expression (26). The explanation is the same as for functions
in relational expressions: every function f : A → B is uniquely represented by
the homonym matrix f defined by b f a = 1 if b = f a and 0 otherwise.11

Combinator [M |N ] occurring in (26) means the juxtaposition of matrices M and
N , which therefore have to exhibit the same output type (and thus the same
number of rows). Similarly to relations, it decomposes into [M |N ] = M ·i◦1+N ·i◦2
where addition of matrices is the obvious cell-wise operation and the converse
M ◦ of a matrix M swaps its rows with columns (it is commonly known as the
transpose of M ). Because matrix multiplication is bilinear, we obtain M • N =
i1 · i◦1 ·N + M · i◦2 ·N and therefore the following pointwise version of (26)

y (M •N ) a = (y = ∗)× (∗ N a) + 〈
∑

c :: (y M c)× ((i2 c) N a)〉

where ∗ is the same abbreviation used before and term y = ∗ evaluates to 1 if
the equality holds and to 0 otherwise.12

The picture aside shows an example of
probabilistic, M-Kleisli composition of two
matrices N : {a1, a2, a3} → 1 + {c1, c2} and
M : {c1, c2} → 1 + {b1, b2}. Injection i1 : 1 →
1+{b1, b2} is the leftmost column vector. Note
how, for input a1, there is 60% probability of
M • N failing, partly due (50%) to N failing
or (50%) to passing output c1 to M , which
for such an input has 20% probability of fail-
ing again.

As before with relations, we can think of probabilistic M-monadic Mealy
machines as column stochastic matrices which compose (matricially) as follows

N ; M = [i1|(id ⊕ a◦) · τl · (id ⊗M ) · xl] · τr · (N ⊗ id) · xr (27)

where relational product becomes matrix Kronecker product

(y, x)(M ⊗N)(b, a) = (yMb)× (xNa) (28)
11 See section 8 for a technically more detailed explanation.
12 See [22, 20] for a number of useful rules interfacing index-free and index-wise matrix

notation. Such rules, expressed in the style of the Eindhoven quantifier calculus [1],
provide evidence of the safe mix among matrix, predicate and function notation in
typed linear algebra.
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and relational sum gives place to matrix direct sum, M ⊕N =
[
M 0
0 N

]
.

8 Monads in relational/linear algebra

The evolution from relational to (typed) linear algebra proposed in the previous
sections corresponds to moving from non-deterministic choice (1) to probabilistic
choice (2). The latter can now be defined matricially, for probabilistic f and g :
df p� ge = p⊗ dfe+ (1− p)⊗ dge.

A generic strategy can be identified: having a notion of composition (8) for
machines of type Q×I → F (Q×J ) (4), where monad F captures their transition
pattern, we want to reuse such a definition for more sophisticated machines of
type Q × I → T (F (Q × J )) (15) by porting it “as is” to the Kleisli category of
the extra monad T which captures the branching structure.

For this to make sense we must be sure that the lifting of monad F by T still

is a monad in the Kleisli category of T. In general, let X
ηT // TX T2X

µToo

and X
ηF // FX F2X

µFoo be two monads in a category C, and let C[ denote

the Kleisli category induced by T. Denote by B A
f[

oo the morphism in C[

corresponding to TB A
foo in C and define:

f [ · g[ = (f • g)[ = (µT · T f · g)[ (29)

For any morphism B A
foo in C define its lifting to C[ by f = (ηT · f )[. As

in [12], assume a distributive law λ : FT → TF and define, for each endofunctor
F in C, its lifting F to C[ by

F(f [) = (λ · F f)[ cf. diagram TFB FTB
λoo F A

F foo (30)

for T B A
foo . For F to be a functor in C[ two conditions must hold [12]:

λ · F ηT = ηT (31)
µT · Tλ · λ = λ · F µT (32)

We want to check under what conditions monad F lifts to a monad in the Kleisli
of T, that is, whether

X
ηF=(ηT·ηF)

[

// FX F
2
X

µF=(ηT·µF)
[

oo (33)

is a monad in C[. The standard monadic laws, e.g. µF · ηF = id , hold by con-
struction.13 It can be checked that the remaining natural laws, F f [ · ηF = ηF · f [

13 The general rule is that f = (ηT · f )[ embeds C in C[. Thus the lifting of e.g. an

equality f · g = h in C, that is f · g = h in C[, is (ηT · f )[ · (ηT · f )[ = (ηT · h)[
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and F f [ · µF = µF · (F
2

f [) are ensured by two “monad-monad” compatibility
conditions:14

λ · ηF = TηF (34)
TµF · λ · Fλ = λ · µF (35)

Recall that, in our component algebra illustration, F is the maybe monad M
and T is one of either the powerset or distribution monads. From a result in [12]
it can immediately be shown that the distributive law λ : 1 + T X → T (1 + X )
between M and any other monad T, λ = [ηT · i1, T i2], satisfies (31,32) in both
cases.15

It is also easy to show that M satisfies (34,35) for any T. 16 So nondetermin-
istic (resp. probabilistic) composition of M-monadic Mealy machines regarded as
binary relations (resp. matrices) given by monadic definitions (21) (resp. (27)) is
sound, where M can be generalized to any T-liftable monad F satisfying (34,35).

In retrospect, recall from the motivation that we went as far as simulating
probabilistic composition of M-machines in Haskell using the operator m1 ;D
m2, the probabilistic evolution of m1 ; m2 (8). Although we have not seen its
actual definition, we can say that fact dm1 ;D m2e = dm1e ; dm2e holds, where
composition dm1e ; dm2e is given by (27).17

Instead of staying in the original category and elaborating the definition to
the probabilistic case we have kept the original definition by changing cate-
gory. The advantage is that all probabilistic accounting is silently carried out by
(monadic) matrix composition and is not our concern.

9 Strong monads in relational/linear algebra

We are not yet done, however: definition (27) is strongly monadic and we need
to know in what sense strength is preserved through Kleisli-lifting. The question
is, which strong monads (F) are still strong once lifted to the Kleisli category of
another monad (T)? Recall that the two strengths

τl : B × F A → F (B × A)
τr : F A× B → F (A× B)

distribute context (B) across F-data structures. Their basic properties, F lft·τr =
lft and F a◦ · τr = τr · (τr× id) · a◦ (similarly for τl) are preserved by their liftings

which, by (29), reduces to the original f ·g = h. Within the image of the embedding,
everything in C[ “works as if” in C. Our previous use of a function symbol f as
denotation of the corresponding relation or matrix f is a very convenient abuse of
notation.

14 See e.g. [28], among the literature emerging from [4].
15 This happens because the powerset and distribution monads are commutative.
16 Concerning (34): [ηT · i1, T i2] · i2 = T i2; concerning (35): T [i1, id ] · [ηT · i1, T i2 ·λ] =

[ηT · [i1, id ] · i1, λ] = [λ · i1, λ] = λ · [i1, id ].
17 The actual implementation of ·;D · in the Haskell simulator follows verbatim pointfree

formula (27) carefully using the encodings of section 8.
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τr and τl, recall footnote 13. So, what may fail is their naturality, e.g.

τl · (N ⊗ F M ) = F (N ⊗M ) · τl (36)

where M and N are arbitrary column-stochastic matrices. This is important
because strength naturality is essential to many proofs of the component algebra
of [2], for instance to that of (14). All proofs go in the style of that given for
(13), with matrices in the place of functions.

Let us investigate (36) for F = M, in which case we have τl = (!⊕ id) · dr, of
type B × (1 + A) → 1 + B ×A, where dr : A× (C + B) → A×C + A×B is the
obvious isomorphism and ! : A → 1 lifts the “bang” function to the row vector
of its type wholly filled with 1s.

The naturality of τl (hereupon we drop the lifting bars, under the convention
we have used before) arises from that of dr and of !⊕ id . The naturality of dr is
easy to prove from that of its converse using relational/matrix biproducts [17].
Concerning !⊕ id :

(id ⊕N ) · (!⊕ id) = (!⊕ id) · (M ⊕N )

≡ { bifunctor · ⊕ · }

!⊕N = (! ·M )⊕N

≡ { ! ·M = ! because M is assumed column stochastic [22] }

true

The calculation for τr is similar. Thus M is strong. 
F T

(F ,F ) 1 0
(F ,T ) 0 0
(T ,F ) 0 0
(T ,T ) 0 1


Note, however, that not every natural transforma-

tion remains natural once “Kleisli lifted”. A very sim-
ple example is the diagonal function ∆ : A → A × A,
∆ a = (a, a), shown aside for A = B. Its natural prop-
erty, (M ⊗ M ) · ∆ = ∆ · M does not hold because
(y , z ) ((M ⊗ M ) · ∆) x = (y M x ) × (z M x ) on the
left hand side, and (y , z ) (∆ ·M ) x = (if y = z then y M x else 0) on the right
hand side. Thus the distributions captured by (M ⊗ M ) · ∆ have, in general,
larger support. The same happens, of course, for relations: (R ⊗ R) ·∆ ⊇ ∆ · R
holds but the converse inclusion does not.

In the terminology of categorial physics, ∆ fails to be a uniform copying
operation [8]. This has to do with the fact that the pairing operator (f M g) a =
(f a, g a) (note that ∆ = id M id) does not form a categorial product once
Kleisli-lifted [20]. The corresponding matrix operation is the so-called Khatri-
Rao matrix product, defined by (b, c) (M M N ) a = (b M c) × (c N a). In
relational algebra it is known as (strict) fork [11, 25]. 18

18 Both Khatri-Rao and fork can be regarded as the lifting of the pairing operator,
f [ M g[ = (dstr · (f M g))[ where dstr denotes the “double strength” of a commutative
monad [12], a class of monads which includes both D and P.
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10 Conclusions and future work

Faced with the need to quantify software (un)reliability in presence of faults
arising from (intentionally) inexact hardware, the semantics of software systems
has to evolve towards weighted nondeterminism, for instance in a probabilistic
way.

This paper proposes that such semantics evolution be obtained without sac-
rificing the simplicity of the original (qualitative) semantics definition. The idea
is to keep quantification implicit rather than explicit, the trick being a change
of category: instead of the category of sets where traditional (e.g. coalgebraic)
semantics is expressed, we change to a suitable category (e.g. of matrices) tuned
to the specific quantitative (e.g. probabilistic) effect.

Technically, this “keep definition, change category” approach consists of in-
vesting in the Kleisli category of the monad chosen to capture the new (e.g.
quantitative) effect. The approach is useful because such a Kleisli lifting leads
to rich algebraic theories: to relational algebra and linear algebra19 in particular,
both offering a useful pointfree styled calculus.

The approach is illustrated in the paper by enriching an existing software
component calculus with fault propagation, by lifting it through a discrete dis-
tribution monad. As the original semantics are already monadic and coalgebraic,
“keeping the definitions” entails monad-monad lifting.

Ideally, the proposed Kleisli-lifting should preserve theories, not only defi-
nitions (the theory of component behavioural equivalence of [2], in our case).
But things are not so immediate in presence of tupling (cf. strong monads) as
products become weak once lifted. Weak tupling calls for a wider perspective,
interestingly bridging relational algebra to categorial quantum physics under the
umbrella of monoidal categories. Thus the remarks by Coecke and Paquette, in
their Categories for the Practising Physicist [8]:

Rel [the category of relations] possesses more ’quantum features’ than the cat-
egory Set of sets and functions [...] The categories FdHilb [of finite dimensional
Hilbert spaces] and Rel moreover admit a categorical matrix calculus.

Future work. This paper is part of a research line aiming at promoting linear
algebra as the “natural” evolution of (pointfree) relational algebra towards quan-
titative reasoning in the software sciences. Work in this direction is still in its
infancy [21, 17, 22, 20].

A full-fledged coalgebraic trace semantics for probabilistic, component ori-
ented software systems will call for sub-distributions and, more generally, to
measure theory [12, 23, 14]. The main result of [12] — that the (final) behaviour
coalgebra in a Kleisli category is given by an initial algebra in sets — is central
to the approach.

The connection to categorial quantum physics and monoidal categories [8]
should be exploited, in particular concerning partial orders defined for quantum
states which could be used to support a notion of refinement.
19 This carries over to more sophisticated algebras and monads, for instance that of

stochastic relations, the “Kleisli lifting” of the Giry monad [23].
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On the applications side, it would be interesting to address case studies such
as that of [18], the verification of a persistent memory manager (in IBM’s 4765
secure coprocessor) in face of restarts and hardware failures, using probabilis-
tic component algebra. As the authors of [18] write, the inclusion of hardware
failures incurs a significant jump in system complexity.
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