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Abstract

The problem of Label Ranking is receiving increasing attention
from several research communities. The algorithms that have been
developed/adapted to treat rankings of a fixed set of labels as the tar-
get object, include several different types of decision trees (DT). One
DT-based algorithm, which has been very successful in other tasks but
which has not been adapted for label ranking is the Random Forests
(RF) algorithm. RFs are an ensemble learning method that combines
different trees obtained using different randomization techniques. In
this work, we propose an ensemble of decision trees for Label Ranking,
based on Random Forests, which we refer to as Label Ranking Forests
(LRF). Two different algorithms that learn DT for label ranking are
used to obtain the trees. We then compare and discuss the results of
LRF with standalone decision tree approaches. The results indicate
that the method is highly competitive.

1 Introduction

Label Ranking (LR) is an increasingly popular topic in the machine learn-
ing literature (Ribeiro et al., 2012; de Sá et al., 2011; Cheng & Hüllermeier,
2011; Cheng et al., 2012; Vembu & Gärtner, 2010). LR studies a problem of
learning a mapping from instances to rankings over a finite number of prede-
fined labels. It can be considered a natural generalization of the conventional
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classification problem, where the goal is to predict a single label instead of a
ranking of all the labels (Cheng et al., 2009).

Some application of Label Ranking approaches are (Hüllermeier et al.,
2008): Meta-learning (Brazdil & Soares, 1999), where we try to predict a
ranking of a set of algorithms according to the best expected accuracy on a
given dataset; Microarray analysis (Hüllermeier et al., 2008) to find patterns
in genes from Yeast on five different micro-array experiments (spo, heat, dtt,
cold and diau); Image categorization (Fürnkranz et al., 2008) of landscape
pictures from several categories (beach, sunset, field, fall foliage, mountain,
urban).

There are two main approaches to the problem of LR: methods that
transform the ranking problem into multiple binary problems and methods
that were developed or adapted to treat the rankings as target objects, with-
out any transformation. An example of the former is the ranking by pair-
wise comparisons (Hüllermeier et al., 2008). Examples of algorithms that
were adapted to deal with rankings as the target objects include decision
trees (Todorovski et al., 2002; Cheng et al., 2009), naive Bayes (Aiguzhinov
et al., 2010) and k -Nearest Neighbor (Brazdil et al., 2003; Cheng et al., 2009).
Some of the latter adaptations are based on statistical distribution of rank-
ings (e.g., (Cheng et al., 2010)) while others are based on ranking distance
measures (e.g., (Todorovski et al., 2002; de Sá et al., 2011)).

Tree-based models have been used in classification (Quinlan, 1986), re-
gression (Breiman et al., 1984) and also label ranking (Todorovski et al., 2002;
Cheng et al., 2009; de Sá et al., 2015) tasks. These methods are popular for a
number of reasons, including how they can clearly express information about
the problem, because their structure is relatively easy to interpret even for
people without a background in learning algorithms.

In classification, combining the predictive power of an ensemble of trees
often comes with significant accuracy improvements (Breiman, 2001). One
of the earliest examples of ensemble methods is bagging (a contraction of
bootstrap-aggregating) (Breiman, 1996). In bagging, an ensemble of trees is
generated and each one is learned on a random selection of examples from
the training set. A popular ensemble method is Random Forests (Breiman,
2001) which combines different randomization techniques.

Considering the success of Random Forests in terms of improved accu-
racy for classification and regression problems (Biau, 2012), some approaches
have been proposed to deal with different targets, such as bipartite rankings
(Clémençon et al., 2013). Label Ranking Forests should also be seen as a
potential robust approach for LR. Adapting RF to Label Ranking can be a
straightforward process once you have adapted decision trees.

In this work, we propose an approach of ensemble learners which we
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refer to as Label Ranking Forests (LRF). The proposed method is a natural
adaptation of Random Forests for LR, combining the task-independent RF
algorithm with the traditional algorithm for top-down induction of decision
trees adapted for label ranking. The available adaptations of decision tree
algorithms for LR include Label Ranking Trees (LRT) (Cheng et al., 2009),
Ranking Trees (Rebelo et al., 2008) and Entropy-based Ranking Trees (de Sá
et al., 2015). Considering that the set of trees, in most cases, predict distinct
rankings, one should also take into account ranking aggregation methods.

This paper extends previous work (de Sá et al., 2015), in which we pro-
posed a new version of decision trees for LR, called the Entropy-based Rank-
ing Trees and empirically compared them to existing approaches. The main
contribution in this paper is the new Label Ranking Forests algorithm, which
is an adaptation of the RF ensemble method, using Entropy-based Ranking
Trees as the base level algorithm. The results indicate that LRF are compet-
itive with state of the art methods and improve the accuracy of standalone
decision trees. An additional contribution is an extension of the original
experimental study on Entropy-based Ranking Trees, by analyzing model
complexity.

2 Label Ranking

In this section, we start by formalizing the problem of label ranking (Sec-
tion 2.1) and then we discuss the adaptation of the decision trees algorithm
for label ranking (Section 2.2) and one such adaptation, Entropy Ranking
Trees (Section 2.3).

2.1 Formalization

The Label Ranking (LR) task is similar to classification. In classification,
given an instance x from the instance space X, the goal is to predict the label
(or class) λ to which x belongs, from a pre-defined set L = {λ1, . . . , λk}. In
LR, the goal is to predict the ranking of the labels in L that is associated
with x (Hüllermeier et al., 2008). A ranking can be represented as a total
order over L defined on the permutation space Ω. A total order can be seen
as a permutation π of the set {1, . . . , k}, such that π(a) is the position of λa
in π.

As in classification, we do not assume the existence of a deterministic
X → Ω mapping. Instead, every instance is associated with a probability
distribution over Ω (Cheng et al., 2009). This means that, for each x ∈
X, there exists a probability distribution P(·|x) such that, for every π ∈
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Ω, P(π|x) is the probability that π is the ranking associated with x. The
goal in LR is to learn the mapping X → Ω. The training data is a set of
instances D = {〈xi, πi〉}, i = 1, . . . , n, where xi is a vector containing the
values xji , j = 1, . . . ,m of m independent variables describing instance i and
πi is the corresponding target ranking.

Given an instance xi with label ranking πi, and the ranking π̂i predicted
by an LR model, we can evaluate the accuracy of the prediction with loss
functions on Ω. Some of these measures are based in the number of discordant
label pairs:

D(π, π̂) = #{(a, b)|π(a) > π(b) ∧ π̂(a) < π̂(b)}

If normalized to the interval [−1, 1], this function is equivalent to Kendall’s τ
coefficient, which is a correlation measure whereD(π, π) = 1 andD(π, π−1) =
−1, where π−1 denotes the inverse order of π (e.g. π = (1, 2, 3, 4) and π−1 =
(4, 3, 2, 1)).

The accuracy of a model can be estimated by averaging this coefficient
over a set of examples. Other correlation measures, such as Spearman’s rank
correlation coefficient (Spearman, 1904), have also been used (Brazdil et al.,
2003). Although we assume total orders, it may be the case that two labels
are tied in the same rank (i.e. πi(a) = πi(b), a 6= b). In this case, a variation
of Kendall’s τ , the tau− b (Agresti, 2010) can be used.

2.2 Ranking Trees

Tree-based models have been used in classification (Quinlan, 1986), regres-
sion (Breiman et al., 1984), and label ranking (Todorovski et al., 2002; Cheng
et al., 2009; de Sá et al., 2015) tasks. These methods are popular for a num-
ber of reasons, including how they can clearly express information about the
problem, because their structure is relatively easy to interpret even for people
without a background in learning algorithms. It is also possible to obtain
information about the importance of the various attributes for the prediction
depending on how close to the root they are used.

The Top-Down Induction of Decision Trees (TDIDT) algorithm is com-
monly used for induction of decision trees (Mitchell, 1997). It is a recursive
partitioning algorithm that iteratively splits data into smaller subsets which
are increasingly more homogeneous in terms of the target variable (Algo-
rithm 1). A split is a test on one of the attributes that divides the dataset
into two disjoint subsets. For instance, given a numerical attribute x2, a
split could be x2 ≥ 5. Given a splitting criterion that represents the gain in
purity obtained with a split, the algorithm chooses the split that optimizes
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its value in each iteration. In its simplest form, the TDIDT algorithm only
stops when the nodes are pure, i.e., when the value of the target attribute
is the same for all examples in the node. This usually causes the algorithm
to overfit, i.e., to generate models that capture the noise in the data, as well
as the regularities that are of general usefulness. One approach to address
this problem is to introduce a stopping criterion in the algorithm that tests
whether the best split is significantly improving the quality of the model. If
not, the algorithm stops and returns a leaf node. The algorithm is executed
recursively for the subsets of the data obtained based on the best split until
the stopping criterion is met. A leaf node is represented by a value of the
target attribute generated by a rule that solves potential conflicts in the set
of training examples that are in the node. That value is the prediction that
will be made for new examples that fall into that node. In classification,
the prediction rule is usually the most frequent class among the training
examples.

Algorithm 1 TDIDT algorithm
Input: Dataset D
BestSplit = Test of the attributes that optimizes the SPLITTING CRI-
TERION
if STOPPING CRITERION == TRUE then

Determine leaf prediction based on the target values in D
Return a leaf node with the corresponding LEAF PREDICTION

else
LeftSubtree = TDIDT(D¬BestSplit)
RightSubtree = TDIDT(DBestSplit)

end if

The adaptation of this algorithm for label ranking involves an appropriate
choice of the splitting criterion, stopping criterion and the prediction rule
(Algorithm 1).

Splitting Criterion The splitting criterion is a measure that quantifies
the quality of a given partition of the data. It is usually applied to all the
possible splits of the data that can be made with tests on the values of
individual attributes.

In Ranking Trees (RT) the goal is to obtain leaf nodes that contain ex-
amples with target rankings as similar between themselves as possible. To
assess the similarity between the rankings of a set of training examples, the
mean correlation between them is calculated using Kendall, Spearman or any
other ranking correlation coefficient. The quality of the split is given by the
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Table 1: Illustration of the splitting criterion
Attribute Condition=true Condition=false

values rank corr. values rank corr.
x1 a 0.3 {b, c} -0.2

b 0.2 {a, c} 0.1
c 0.5 {a, b} 0.2

x2 < 5 -0.1 ≥ 5 0.1

weighted mean correlation of the values obtained for the subsets, where the
weight is given by the number of examples in each subset.

For simplicity, if we ignore the weights, the splitting criterion of ranking
trees is illustrated both for nominal and numerical attributes in Table 1. The
nominal attribute x1 has three values (a, b and c). Therefore, three binary
splits are possible. For the numerical attribute x2, a split can be made in
between every pair of consecutive values. In this case, the best split is x1 = c,
with a mean correlation of 0.5, in comparison to a mean correlation of 0.2
for the remaining, i.e., the training examples for which x1 = {a, b}.

Stopping Criterion The stopping criterion is used to determine if it
is worthwhile to make a split or if there is a significant risk of overfit-
ting (Mitchell, 1997). A split should only be made if the similarity between
examples in the subsets increases substantially. Let Sparent be the similarity
between the examples in the parent node and Ssplit the weighted mean sim-
ilarity in the subsets obtained with the best split. The stopping criterion is
defined as follows (Rebelo et al., 2008):

(1 + Sparent) ≥ γ(1 + Ssplit) (1)

Note that the relevance of the increase in similarity is controlled by the γ
parameter. A γ ≥ 1 does not ensure increased purity of child nodes. On the
other hand, small γ values require splits with very large increase in purity,
which means that the algorithm will stop the recursion early.

Prediction Rule The prediction rule is a method to generate a prediction
from the (possibly conflicting) target values of the training examples in a
leaf node. In LR, the aggregation of rankings is not so straightforward as
in other tasks (e.g. classification or regression) and is known as the ranking
aggregation problem (Yasutake et al., 2012). It is a classical problem in
social choice literature (de Borda, 1781) but also in information retrieval
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Table 2: Illustration of the prediction rule
λ1 λ2 λ3 λ4

π1 1 3 2 4
π2 2 1 4 3
π 1.5 2 3 3.5
π̂ 1 2 3 4

tasks (Dwork et al., 2001). A consensus ranking minimizes the distance to
all rankings (Kemeny & Snell, 1972). A simple approach, which we adopted
in this work, is to compute the average ranking (Brazdil et al., 2003) of
the predictions. It is calculated by averaging the rank for each label λj,
π (j) =

∑
i πi (j) /n. The predicted ranking π̂ is the ranking π of the labels λj

obtained based on the average ranks π (j). Table 2 illustrates the prediction
rule used in this work.

2.3 Entropy Ranking Trees

Recently, we proposed an alternative approach to decision trees for ranking
data, the Entropy-based Ranking Trees (ERT) (de Sá et al., 2015). ERT
uses an adaptation of Information Gain (IG) (de Sá et al., 2016) to as-
sess the splitting points and the Minimum Description Length Principle Cut
(MDLPC) (Fayyad & Irani, 1993) as the stopping criterion. To explain this
method, we start by presenting the IG for rankings measure and then the
adapted splitting and stopping criteria.

Decision trees for classification, such as ID3 (Quinlan, 1986), use Infor-
mation Gain (IG) as a splitting criterion to determine the best split points.
IG is a statistical property that measures the gain in entropy, between the
prior and actual state (Mitchell, 1997). In this case, we measure it in terms
of the distribution of the target variable, before and after the split. In other
words, considering a set S of size nS, since entropy, H, is a measure of disor-
der, IG is basically how much uncertainty in S is eliminated after splitting
on a numerical attribute xa:

IG (xa, T ;S) = H (S)− |S1|
nS

H (S1)−
|S2|
nS

H (S2)

where |S1| and |S2| are the number of instances on the left side (S1) and the
number of instances on the right side (S2), respectively, of the cut point T
in attribute xa.
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In cases where S is a set of rankings, we can use the entropy for rankings
(de Sá et al., 2016) which is defined as:

Hranking (S) =
K∑
i=1

P (πi, S) log (P (πi, S)) log
(
kt (S)

)
(2)

where P (πi, S) is the proportion of rankings equal to πi in S, K is the number
of distinct rankings in S and kt (S) is the average normalized Kendall τ
(Kendall & Gibbons, 1970) distance in the subset S:

kt (S) =

∑K
i=1

∑n
j=1

τ(πi,πj)+1

2

K × nS
.

As in Section 2.2, the leaves of the tree should not be forced to be pure.
Instead, a stopping criterion should be used to avoid overfitting and be ro-
bust to noise in rankings. Given an entropy measure, the adaptation of the
splitting and stopping criteria comes in a natural way. As shown in (de Sá
et al., 2016), the MDLPC Criterion can be used as a splitting criterion with
the adapted version of entropy Hranking. This entropy measure also works
with partial orders, however, in this work, we only use total orders.

3 Random Forests

Random Forests (RF) (Breiman, 2001) are an ensemble method originally
proposed for classification and regression problems. It essentially consists of
the generation of multiple decision trees obtained using different randomiza-
tion techniques. The set of predictions made by each of these trees is then
aggregated to obtain the prediction of the ensemble.

The RF algorithm is related to another popular ensemble method by the
same author, Bagging (Breiman, 1996), which stands for bootstrap-aggregating.
This is an ensemble method that takes a predefined number s of samples
(without replacement) from the training data to construct s models. Given
a new example, s predictions are generated, which are then aggregated, usu-
ally with average or mode, to obtain a combined prediction.

RF can be regarded as an extension of bagging. Given a forest size s and
a training dataset D, a set of bootstrap samples, {D′1 . . . , D′s} is generated
by sampling with repetition from D. A decision tree is learned from each
{D′1 . . . , D′s}, which is grown in a slightly different way from the original. At
each node, only a random subset of the m features can be used for splitting.
In classification, the number of random features used in each split is usually√
m and in regression log2m. This results in what is usually referred to as
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random trees. As in bagging, each of the s random trees makes predictions on
the test data, which are then combined using a suitable aggregation method.

One of the reasons for the popularity of RF lays in the fact that they have
few parameters to tune and can be applied to various tasks (Scornet et al.,
2014). They require a simple implementation and even with small sample
sizes it usually gives accurate results. Moreover, considering that it uses s
independent learners, it can be parallelized.

One of the reasons that makes RF a popular approach is that it is possible
to take advantage of the algorithm to assess variable importance (Genuer et
al., 2010).

3.1 Label Ranking Forests

Considering the success of Random Forests in terms of improved accuracy for
classification and regression problems, some approaches have been proposed
to deal with different targets, such as bipartite rankings (Clémençon et al.,
2013). Label Ranking Forests should also be seen as a potential robust
approach for LR. Adapting RF to Label Ranking can be a straightforward
process once you have adapted decision trees.

Thus, we propose a new ensemble LR algorithm, the Label Ranking
Forests based on Random Forests. With this approach, we expect to in-
crease the accuracy of Label Ranking tree methods.

In classification and regression, the aggregation of predictions is done
in a simple way, mode and mean, respectively. However, as discussed in
Section 2.2, the aggregation of rankings is not so straightforward. Like in
Ranking Trees, we use the average ranking (Brazdil et al., 2003) to aggregate
the predictions.

Given the similarity of the LR task to classification, the number of random
subset features we use in each split is

√
m, the same value that is used in RF

for classification.
When the algorithm is not able to find a good split on any of the

√
m

selected features for the root node, it looks for a split on all the m features
instead. This prevents the random feature selection mechanism from gener-
ating empty trees.

4 Empirical Study

In this section we describe the empirical study to investigate the performance
of LRF and the tree methods used at the base level. We start by describ-
ing the experimental setup (Section 4.1), then the results of the base-level
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algorithms (Section 4.2) and finally the results of the new algorithm (Sec-
tion 4.3).

4.1 Experimental setup

The experiments are carried out on datasets from the KEBI Data Repository
at the Philipps University of Marburg (Cheng et al., 2009) that are typically
used in LR research (Table 3). They are based on classification and regression
datasets, obtained using two different transformation methods: A) the target
ranking is a permutation of the classes of the original target attribute, derived
from the probabilities generated by a Naive Bayes classifier; B) the target
ranking is derived for each example from the order of the values of a set of
numerical variables, which are then no longer used as independent variables.
A few basic statistics of the datasets used in our experiments are presented
in Table 3. Although these are somewhat artificial datasets, they are quite
useful as benchmarks for LR algorithms.

A simple measure of the diversity of the target rankings is the Unique
Ranking’s Proportion, Uπ. Uπ is the proportion of distinct target rankings
for a given dataset (Table 3). As a practical example, the iris dataset has 5
distinct rankings for 150 instances, which yields Uπ = 5

150
≈ 3%. This means

that all the 150 rankings are duplicates of these 5.
The code for all the experiments presented in this paper has been written

in R (R Development Core Team, 2010).1

The generalization performance of the LR methods was estimated using
a methodology that has been used previously for this purpose (Hüllermeier
et al., 2008). The evaluation measure is Kendall’s τ and the performance of
the methods was estimated using ten-fold cross-validation.

4.2 Results with Label Ranking Trees

We evaluate the two variants of ranking trees described earlier: ranking
trees (RT) and entropy ranking trees (ERT) (Sections 2.2 and 2.3). The
RT algorithm has a parameter γ, that can affect the accuracy of the model.
Based on previous results, we use γ = 0.98 for RT (de Sá et al., 2015).

Table 4 presents the results obtained by the two decision tree approaches,
RT and ERT, in comparison to the results for Label Ranking Trees (LRT),
that are reproduced from the original paper (Cheng et al., 2009). We note
that we have no information about the depth of the trees obtained with the
latter and thus such information is omitted in Table 4. Even though LRT

1The code is available at https://github.com/rebelosa/labelrankingforests.
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Table 3: Summary of the KEBI datasets
Datasets type #examples #labels #attributes Uπ
autorship A 841 4 70 2%
bodyfat B 252 7 7 94%
calhousing B 20,640 4 4 0.1%
cpu-small B 8,192 5 6 1%
elevators B 16,599 9 9 1%
fried B 40,769 5 9 0.3%
glass A 214 6 9 14%
housing B 506 6 6 22%
iris A 150 3 4 3%
pendigits A 10,992 10 16 19%
segment A 2310 7 18 6%
stock B 950 5 5 5%
vehicle A 846 4 18 2%
vowel A 528 11 10 56%
wine A 178 3 13 3%
wisconsin B 194 16 16 100%

performs best in most of the cases presented, both RT and ERT are also
competitive methods.

Figure 1 shows how much smaller ERT trees are, in general. By generating
smaller trees, ERT provides more interpretable models when compared with
RT. An exception is the calhousing dataset, where ERT generates larger
trees. However, in this case, the increase in size is justified by a reasonable
increase of accuracy (Table 4).

To compare different ranking methods, we use a combination of Fried-
man’s test and Dunn’s Multiple Comparison Procedure (Neave & Worthing-
ton, 1992), which has been used before for this purpose (Brazdil et al., 2003).
First we run the Friedman’s test to check whether the results are different or
not, with the following hypotheses:

H0 : The distributions of Kendall’s τ are equal

H1 : The distributions of Kendall’s τ are not equal

Using the Friedman test (implemented in the stats package (R Development
Core Team, 2010)) we obtained a p-value < 1%, which shows strong evi-
dence against H0. This means that there is a high probability that the three
methods have different performance.
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Table 4: Results obtained for Ranking Trees on KEBI datasets (the mean
accuracy is represented in terms of Kendall’s tau, τ ; the best mean accuracy
values are in bold)

RT ERT LRT
mean mean mean

accuracy depth accuracy depth accuracy
authorship .883 8.0 .889 4.0 .882
bodyfat .111 11.9 .182 2.7 .117
calhousing .182 1.0 .291 11.6 .324
cpu-small .458 17.2 .437 6.1 .447
elevators .746 18.9 .757 7.9 .760
fried .797 20.2 .774 13.2 .890
glass .871 8.2 .854 3.0 .883
housing .794 12.9 .704 3.4 .797
iris .963 4.3 .853 2.0 .947
pendigits .871 14.0 .838 5.9 .935
segment .929 12.0 .901 5.0 .949
stock .897 10.8 .859 5.0 .895
vehicle .817 11.0 .787 4.1 .827
vowel .833 12.5 .598 3.6 .794
wine .905 4.0 .906 2.0 .882
wisconsin .334 10.0 .337 2.3 .343
average .712 11.1 .685 5.1 .730

Thus, we tested which of the three methods are different from one an-
other with the Dunns Multiple Comparison Procedure (Neave & Worthing-
ton, 1992). Using the R package dunn.test (Dinno, 2015), we tested the
following hypotheses for each pair of methods a and b:

H0 The distributions of Kendall’s τ for a and b are equal

H1 The distributions of Kendall’s τ for a and b are not equal

Table 5 indicates that there is no statistical evidence that the methods are
different. The statistical tests confirm our observation that, although LRT
generally obtains better results than RT and ERT, the latter approaches are
competitive.
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Figure 1: Comparison of the average depth of the trees obtained with RT
(blue) and ERT (red) on KEBI datasets

Table 5: Dunn’s test results (p-values)
RT ERT LRT

RT 0.22 0.37
ERT 0.22 0.13
LRT 0.37 0.13
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4.3 Results with Label Ranking Forests

We generated forests with 100 trees and aggregated the predicted rankings
with the average ranking method (Brazdil et al., 2003). Table 6 presents the
results obtained by the Label Ranking Forests using RT and ERT, referred
to as LRF-RT and LRF-ERT, respectively.

The average depth of the trees for LRF-RT is, for most cases, smaller than
that of the tree obtained with the RT algorithm, while the accuracy is better.
On average, for each 0.019 increase in accuracy there was a decrease of 1.8 in
the average depth of the trees. One exception is the elevators dataset, with
suffered a significant decrease in accuracy by using the LRF method.

The comparison between ERT and LRF-ERT leads to different observa-
tions. The average depth of the trees increases when using LRF. This can be
explained by the fact that the measure of entropy for rankings used in ERT
is very robust to noise in rankings (de Sá et al., 2016). Hence, it requires
a larger amount of dissimilarity in a set of rankings to find a partition. As
noted in Section 4.3 (Figure 1) the depth of the trees is much smaller with
ERT than with RT. An additional observation is that the result obtained
using LRF with ERT yielded a significant reduction in accuracy.

In Figure 2, we can observe how much the accuracy increases/decreases
with LRF when compared to the corresponding base-level trees alone. In the
vast majority of datasets, there is some improvement in accuracy. The only
exception is the elevators dataset, as mentioned above.

Using the same statistical tests as before (Section 4.2), we compare LRF-
RT and LRF-ERT with the RT, ERT and LRT methods. With the Fried-
man’s test we got a p-value < 1%, which shows strong evidence against H0.
Then, now that we know that there are some differences between the 2 meth-
ods we will test which are different from one another with the Dunns Mul-
tiple Comparison Procedure. Since we got a p-value around 25%, between
LRF-RT and the LRF-ERT, we cannot conclude that there is no statistical
evidence that the methods are different.

On the pairwise comparisons of the methods Table 8, we measure how
many time each method wins, in terms of accuracy. In this analysis, we
conclude that Label Ranking Forests using RT give the best results, proving
the effectiveness of the approach.

On the other hand, even though LRF-ERT shows some improvement in
terms of accuracy relatively to ERT, it did not behave much better than RT
or LRT (Table 8). Again, this might be caused by the fact that the measure
of entropy for rankings used in ERT is very robust to noise. For this reason,
the depth of trees in LRF-ERT is, on average, 70% the depth of trees in
LRF-RT. While this can be an advantage in terms of Label Ranking Trees,
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Table 6: Results obtained for Label Ranking Forests on KEBI datasets,
using two different label ranking trees, RT and ERT (the mean accuracy is
represented in terms of Kendall’s tau, τ ; the best mean accuracy values are
in bold)

LRF-RT LRF-ERT
mean mean

accuracy depth accuracy depth
authorship .912 8.3 .906 7.7
bodyfat .212 10.6 .211 5.3
calhousing .185 1.0 .294 8.3
cpu-small .469 13.9 .471 7.8
elevators .605 10.0 .721 9.5
fried .887 15.5 .841 14.5
glass .874 6.0 .849 2.7
housing .780 10.9 .699 3.7
iris .973 4.9 .933 2.3
segment .930 10.8 .917 5.2
stock .892 9.9 .869 5.5
vehicle .850 10.0 .849 9.4
vowel .844 11.5 .701 4.9
wine .932 4.3 .925 2.8
wisconsin .460 8.8 .429 3.7
average .720 9.1 .708 6.2

Table 7: Dunn’s test for all the methods (p-values)
RT ERT LRT LRF-RT LRF-ERT

RT 0.23 0.34 0.31 0.44
ERT 0.23 0.13 0.11 0.28
LRT 0.34 0.13 0.46 0.29
LRF-RT 0.31 0.11 0.46 0.25
LRF-ERT 0.44 0.28 0.29 0.25
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Figure 2: Accuracy gained/lost per dataset for using the ensemble method
LRF, instead of standalone decision trees RT (blue) and ERT (red) on KEBI
datasets

Table 8: Pairwise comparisons of the methods in terms of win statistics.
RT ERT LRT LRF-RT LRF-ERT Total (Rank)

RT 9 6 3 7 25 (4)
ERT 6 3 2 4 15 (5)
LRT 9 12 7 9 37 (2)
LRF-RT 12 13 8 13 46 (1)
LRF-ERT 8 11 6 2 27 (3)
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in Label Ranking Forests it is less relevant because it is hard to interpret 100
trees per dataset.

5 Conclusions

In this work, we propose an ensemble of decision tree methods for Label
Ranking, called Label Ranking Forests (LRF). The method is tested with two
different base-level methods Ranking Trees (RT) and Entropy-based Ranking
Trees (ERT). We present an empirical evaluation using well known datasets
in this field. We also extend the analysis from previous work for tree-based
methods, RT and ERT, and compare with the state of the art Label Ranking
Trees (LRT) approach.

The analysis on the decision trees shows that both RT and ERT are valid
and competitive approaches. While RT usually gives better accuracy, on the
other hand, ERT generates trees with much smaller depth (around 50% less,
in comparison to RT). Our results were also compared with the published
results for Label Ranking Trees (LRT) (Cheng et al., 2009). LRT has in
general better accuracy than RT and ERT, however, statistical tests showed
that none of the methods is significantly different. This means that both
RT and ERT are competitive approaches, and, since they are distance-based
methods, we can also say that this kind of approaches is worth pursuing.

The two ensemble approaches, LRF-RT and LRF-ERT, used the base
ranking tree models RT and ERT, respectively. Similarly to the application
of Random Forests to other tasks, there was a general increase in accuracy
when compared to the corresponding base-level methods. The results confirm
that both LRF-RT and LRF-ERT are highly competitive LR methods. LRF-
RT, in particular, stands out as a clear winner in terms of accuracy.

As future work, we might improve the comparison with LRT method (Cheng
et al., 2009), by implementing it and testing it both as learning algorithm
and as the base-level method for Label Ranking Forests. Also, LRF can po-
tentially produce similar benefits as the Random Forest method, in terms of
feature selection or input variable importance measurement, when applied
to LR datasets. Finally, the experiments in this paper were carried out on a
set of standard benchmark datasets, which represent artificial LR problems.
We plan to apply these approaches on real world datasets e.g. related with
user preferences (Kamishima, 2003).
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