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Abstract—Ordinal classification is a specific and demanding
task, where the aim is not only to increase accuracy, but
to also capture the natural order between the classes, and
penalize incorrect predictions by how much they deviate from
this ranking. If an ordinal classifier must be able to comply
with all these requirements, a suitable ordinal metric must be
able to accurately measure its degree of compliance. However,
the current metrics are unable to completely capture these con-
siderations when assessing classification performance. Moreover,
most suffer from sensitivity to imbalanced classes, very common
in ordinal classification. In this paper, we propose two variants of
a novel performance index that accounts for both accuracy and
ranking in the performance assessment of ordinal classification,
and is robust against imbalanced classes.

I. INTRODUCTION

Classification consists on the attribution of a class to an
object given a set of characteristics or features, using a model
previously trained with similar data for that purpose. Unlike
most cases, where classes are unrelated, ordinal classification
problems blur the boundaries between classification and re-
gression. In ordinal classification, although there is a finite set
of possible labels like in any classification task, the labels
present a natural inherent order among themselves like in
regression problems [1]-[3].

It is incautious to objectively state that there is a natural
definitive order among cats, dogs, and koalas, but it is un-
deniable that grade A is superior to grade B and grade C
on an exam. While the first example pertains to a nominal
classification task, the second illustrates the nature of ordinal
classification problems, where labels typically present relation-
ships of superiority and inferiority between them.

This generates extraordinary requirements for classifiers on
ordinal contexts. Recalling the example above, misclassifying
a cat as a dog or a koala is equally undesirable, but it is
much worse to misclassify grade A students as grade C than
to attribute them grade B. This means misclassifications should
not be treated equally, and their influence should relate to the
natural order between classes [3].

Similarly, if we attribute grade B to a grade A student,
it would be more adequate and fair to misclassify a grade
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B student as grade C, than to give it grade A. This reveals
another property of ordinal classifiers: misclassifications that
preserve the natural order of the labels are more desirable than
misclassifications that infringe it.

A good ordinal classifier should address these concerns [1],
[4], [5], and a suitable ordinal classification metric should be
able to adequately capture the degree to which the classifiers
comply to them. Furthermore, the metric should also be robust
against common classification issues, such as imbalanced
classes [6]. Due to the natural order between classes, imbal-
anced classes are even more common in ordinal settings [7],
with the first and last classes generally being under-represented
in samples/datasets.

Furthermore, ordinal classification problems are currently
present in all fields of research, from computer vision to social
sciences [8], which magnifies the need for adequate perfor-
mance measurement. In this paper, we aim to fill this void with
two variants of a novel index, for performance assessment and
comparison of ordinal classification in imbalanced settings,
that more closely follows the explained desirable behavior.

II. CURRENT METRICS IN ORDINAL AND IMBALANCED
CLASSIFICATION

Several metrics are currently used for the measurement of
performance of ordinal classifiers. However, each one presents
its own weaknesses when dealing with this very specific and
demanding scenario.

One of such metrics is the Misclassification Error Rate
(MER) (1). Despite considering the accuracy of the predic-
tions, it fails to account for the natural order of the classes
by attributing equal cost to all misclassifications, which is un-
desirable for performance assessment in ordinal classification
tasks.
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Mean Squared Error (MSE) (2) or Mean Absolute Error
(MAE) (3) are two of the most common, where higher
numerical differences between the actual and predicted labels
are reflected on the error, resulting in higher penalization of
bigger mistakes (such as estimating class § = 5 to an object
of true class y = 1) over smaller mistakes (attributing § = 2



for the same object). The error sum is then averaged over all
N observations.
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Nevertheless, both metrics present the significantly disad-
vantageous dependence on the numbers arbitrarily assigned to
each class. This can be fixed by defining the classes by their
indexes on a confusion matrix, but MSE and MAE will still
equally penalise "forwards” (estimating a following class) and
“backwards” errors (estimating a previous class). In ordinal
classification problems, where ranking plays a major role, this
lack of distinction between errors is a significant flaw.

To attend to the relevance of ranking in ordinal classifica-
tion, one common metric is the Spearman’s rank correlation
coefficient Rg [9], based on two rank vectors p and ¢, of
length N, associated with the variables y and y:
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However, as verifiable on (4), the Spearman’s coefficient

is still dependent on the values chosen for the ranks to

representing the classes.

Kendall’s 75, [10], in turn, also takes into account ranking
in the measurement of classification performance, but is inde-
pendent from the values used to represent each class:
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where ¢;; behaves as follows:

Ty —

gij =1, if ¢ > g;
qi; =0, if s =¢q; , (6)
gij = —1, if ¢; < g,
and the same is true for p;;.
In the same line of thought, and taking into consideration
the high number of cases in which a tie happens, Pinto da
Costa et al. [11] introduced 7;,¢:
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Here, the total number of observations whose true class
iS i, Mie, 1S given by Zj{zl ni;, and the total number of
observations whose predicted class is y;, ne;, is given by
Zfil n;j, and we get:
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All three indices of similarity, Rg, 73, and r;,,;, vary between
-1 and 1.

However, it is fair to affirm that both Kendall’s 7, and
Tint> Dy assuming that the only thing that matters is the
order relation between classes, go too far in their quest for
abstraction from class labels. The reliance on relative order
is beneficial for robust ranking error measurement, but causes
critical loss of information on absolute classification error.

The ideal solution would consider both the natural ranking
between classes and the absolute classification accuracy on
the performance assessment. Considering this, the Ordinal
Classification Index was proposed by Cardoso and Sousa [2],
fitted for accounting for both absolute classification error and
ranking error. With r denoting a row and ¢ a column of the
considered confusion matrix, the OC’; was defined as:
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where the minimization is performed over the set of all
consistent paths that can be traced over the confusion matrix,
from entry (1,1) to entry (K, K). As defined in [2], a path
is consistent if every pair of nodes is nondiscordant, which
in turn means that the relative order of the true classes for
that pair is not opposite to the relative order of the predicted
classes.

Each path is characterized by a benefit and a penalty. The
benefit will give advantage to paths that include the largest
entries on the confusion matrix, rewarding paths that better
follow the natural class order. The penalty will punish paths
as they deviate from the main diagonal, effectively acting
as a regularizer and including classification accuracy on the
performance assessment. The parameter § will weight the
benefit and penalty, allowing the metric to focus more on
accuracy or ranking.

However, this metric suffers from two main setbacks. First,
the freely tunable parameter, [, generates ambiguity as it
allows users to choose its value for their own benefit. Second,
and similarly to all aforementioned metrics, it is sensitive
to imbalanced classes: the influence of each class is not
necessarily uniform, and is instead linked to the number of
instances of each on the considered population sample.

This implies that, if a class is significantly better represented
in the sample than the others, it will have a much higher impact
on the metric than the remaining classes, which is generally
undesirable. To address this issue, some alternative metrics
have been proposed.
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If the imbalanced classification problem at hand is binary,
then two metrics are commonly used: the F3 (12) and the G-
mean (13). However, they are largely limited by being solely
applicable to binary classification.
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For imbalanced problems with K > 2 classes, several
adaptations of MAE have been proposed to more robustly
assess the performance of the classifiers. Namely, Maximum
(MMAE) [12], and Average Mean Absolute Error (AMAE)
[13], presented in (14) and (15), respectively. With these, the
error is determined separately for each class, and the metric
assumes the maximum or average of the values obtained, effec-
tively enforcing uniform influence of all classes, independently
of possible imbalanced representations.

MMAE = max {MAE;k=1,..., K} (14)
1 K

AMAE = — MAFE 15

% ; k (15)

Nevertheless, these metrics, more devoted for imbalanced
problems, present the major weakness of overlooking the
importance of ranking for ordinal classification. Furthermore,
the adaptations of Mean Absolute Error still depend on the
values chosen as labels for each class.

Considering this current panorama in ordinal imbalanced
metrics here presented, it is possible to conclude that there
is still no metric that can adequately combine classification
accuracy and ranking in the same metric, while remaining
robust against the influence of imbalanced classes. In the
following sections, two variants of a new index, based on the
aforementioned Ordinal Classification Index, are formulated
and proposed to fill this void.

III. THE PROPOSED PERFORMANCE INDEX
A. Conceptual formulation

The proposed index results of the adaptation of the afore-
mentioned Ordinal Classification Index, OC[}, proposed by
Cardoso and Sousa [2], and aims towards the achievement
of robustness against imbalanced classes, and the suppression
of the freely tunable parameter /3. First, to fix the weakness
related to imbalanced classes, we start by re-interpreting the
OC’; in a stochastic formulation. Towards that goal, a simple
algebraic manipulation of OC[;Y gives:

OCg = min {1—
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where 5 € IR>¢ and v € IR».

Interpreting Y and Y as random variables, the normalized
confusion matrix with entries "]:, can be understood as an
approximation of the joint probability function between Y and
Y, p(y, 7). Adopting this stochastic view, OC} can be written

as:

OC’g = min {1—
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where (y,y) is equivalent to the notation (r,c), used for
confusion matrices.

Since, for any pair of random variables A and B, the joint
probability can be written as p(a,b) = p(a)p(bla), we have:

OC} = min {1
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This is equivalent to:
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In (19), the dependency of OCg on the class distribution
p(y) is evident. When classes are highly imbalanced, classes
with high probability dominate the result. Like AMAE brings
robustness to the MAE metric in imbalance settings by replac-
ing the original p(y) distribution with uniform probabilities
1/K for each class, we propose to modify OCg using the
same strategy. Thus, we propose the first variant of our index,
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the Uniform Ordinal Classification Index, U OCg, as:
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which can be simplified to:
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As 3 is, still, a user defined constant, it is possible to recast
Np as f3, finally giving the proposed formulation to UOC:
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Following a procedure similar to [2], it is possible to show
that for 3 > 1, U OC; in (22) results in a metric and
the optimal path is always over the main diagonal. Thus,
considering § € [0, 1], for specific settings that require especial
emphasis in either ranking error or instance-based error, the
variant U OC’; can be used with a user-defined 3 in the lower
or higher end, respectively, of its range.

Nevertheless, the existence of 3 and - remains a source of
ambiguity in most applications. For -, we propose the value
1, as used for OC, as the Minkowski distance is generally
used for the values of 1, 2, or infinity, and the variation of
the results with different v values will not be significant [2].
For 3, we propose its elimination through the formulation of
a second variant, with the integration of U OC% along (s
aforementioned range of values, through:

1
Ayoc = / UOC} dp (23)
0

B. Application from estimates in a confusion matrix

When applied to a real scenario, p(y, ) and p(y) can easily
be estimated through Maximum Likelihood Estimation, and
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Fig. 1. Tllustration of Ayoc and the values of UOCé obtained from an

example confusion matrix.
UOC; can be applied from a confusion matrix.
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With (25), it is also easy to integrate and obtain Ayoc from
a confusion matrix. In Fig. 1, we illustrate Ayoc and the
values of U OC’é obtained from an example confusion matrix.

nT‘C

C. Handling unobserved classes

One particular issue can arise from the application of U OCg
to confusion matrices: it is not guaranteed that every class
will be observed in the considered set/sample, especially if
the latter is small, and [V, can, in some cases, be zero. We
propose to generalise (22) to attend to these situations.

Let 1, be the indicator function of the set & of the observed

classes:
1 €0
1oy) =4 * 7
0 y¢o

and K’ < K the cardinality of &' (the number of observed
classes). In order to make (19) robust in imbalanced settings

(26)
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and to address unobserved classes, we propose to fix the
probability distribution for y to an uniform distribution over
the observed classes only, with p(y) = 7 1¢(y). Introducing
this proposed distribution in (19) and simplifying as before,
one obtains

UOCg =min< 1—
> (. epatn P Lo (y)

’ R . 1/'\/
K’ + & (ZV(M)p(yly)lﬁ(y)ly - yl”)

p " X
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For real scenarios, in place of (25), we can rewrite (27) in
order to make it robust against unobserved classes while using
estimates from a confusion matrix, and we obtain:

UOCg =minq 1—
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that can be similarly used in (23) for settings that do not
present a preferential value for (.

All this effectively amounts to ignore classes that are
not observed in the considered sample. Alternatives such as
considering uniform conditional probabilities on those cases
presents the disadvantage of consistently penalizing perfor-
mance because of each unobserved class. On the other hand,
assuming perfect performance for each unobserved class is
overly optimistic, as it rarely will be true. Our proposal avoids
generating tendencies to either benefit or penalise performance
due to unobserved classes, and instead bases it entirely on the
classes that are observed.

IV. EXPERIMENTAL STUDY
A. Single Sample and Tridiagonal Matrices

As stated by Cardoso and Sousa [2], one of the weaknesses
between 7, R, or 7;,; and MER, MAE, or MSE, is that the
former are not applicable to performance assessment with a
single observation.

Similarly to OC}, UOCj is applicable to single obser-
vations, and its value increases monotonically from 0 to 1
with the increase of the sample’s distance to the diagonal,
and the rate is dependent from the chosen value of 3. The
value of Ayoc, although independent from (3, presents similar
behavior (cf. Fig. 2).

One other issue of r;,;, Rs, and 73, is the result of their
application to tridiagonal matrices (cf. Fig. 3). These confusion
matrices present zeros on all entries except their three main

1.0 A =
o84  If . _e-mmTT
Q
S
< 0.6 4
—
(o]
U 04_
o e B=
S B=0.5
B=0.125
0.2 1 -==- B=0.0313
——- B=0.0
0.0 1 — Auvoc

o 1 2 3 4 5 6 7 8 9
Ir=cl

Fig. 2. Values of UOC, for several 8 values, and Ay oo, obtained with a
confusion matrix with a single sample, according to its distance to the diagonal

[r —¢|.
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Fig. 3. Evolution of metric values with the total number of classes K, when
applied to tridiagonal matrices.

diagonals, where the entries are 1. As K, the number of
classes, increases, the three aforementioned metrics converge
to 1. To affirm a certain score is the most appropriate for
this situation would be reckless, as the relevance on the
performance of the two diagonals (other than the main one)
is subjective. Nevertheless, attributing a near-perfect perfor-
mance to classifiers that, simultaneously, present a MER of
2/3, is clearly inappropriate. The proposed variants, U OC;
and Ayoc, present an intermediate behavior between the
remaining metrics, while steering away from the undesirable
behavior of r;,:, Rs, and 7.
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TABLE I

RESULTS FOR THE SIMULATED CONFUSION MATRICES, WITH 31 = 0.25 AND 2 = 0.75

Accuracy-focused Ranking-Focused Mixed Focus
Classifier | Sensitive to imbalance | Robust to imbalance Sensitive to imbalance Robust to imbalance
MER | MSE | MAE | MMAE AMAE Rs Th Tint OC’é1 OC’Z32 UOCg, UOCg, | Avoc
A 0.00 0.00 0.00 0.00 0.00 1.00 | 1.00 | 1.00 0.00 0.00 0.00 0.00 0.00
B 0.56 0.56 0.56 1.00 0.50 0.90 | 0.86 | 0.86 0.40 0.50 0.46 0.67 0.56
C 0.56 1.22 0.78 2.00 0.75 0.67 | 0.61 | 0.69 0.50 0.63 0.62 0.71 0.65
D 0.56 0.56 0.56 1.00 0.50 0.73 | 0.60 | 0.74 0.53 0.58 0.56 0.67 0.61
E 0.77 0.77 0.77 1.00 0.50 0.24 | 0.11 | 0.53 0.65 0.72 0.68 0.80 0.74
F 0.85 0.85 0.85 1.00 0.50 0.29 | 0.23 | 0.79 0.58 0.71 0.56 0.67 0.61

B. Simulated Examples, Missing, and Imbalanced Classes

To show that the proposed index variants combine both
accuracy and ranking in the performance assessment, while re-
maining robust to missing classes and imbalance, the following
simulated confusion matrices (K = 4), each one representing
the behavior of a classifier, were considered. A comparison
between the different metrics is also presented in Table 1.

(4 0 0 0] [0 4 0 0]
06 00 00 6 0
CMa= 1y g 5 o|“MB=15 ¢ 5 ¢
0 0 0 3] 0 0 0 3]
0 0 4 0] [0 4 0 0]
00 6 0 6 0 0 0
CMco= 1y o 5 o|“M>p=1g o 5 0
0 0 0 3] 0 0 0 3]
040 0 0 40 0 0O
6 0 0 0 6 0 0 0
CMe= 1y 0 0 ol“M" =1y o 5 o0
000 3 0 0 0 3

All compared metrics attribute a perfect performance score
to classifier A. This is expectable, as a perfect accuracy implies
the absence of ranking error. However, the classifiers B, C,
and D present classification errors.

In an accuracy perspective, B, C, and D present equal
MER, but classifier C' has higher MSE and MAE. Regarding
ranking, B clearly resembles more closely the true order of
the classes than the other two classifiers. Thus, the ranking-
focused metrics, 7;,,¢, Rs, and 7, attribute worse performance
scores to D than B, and 7, goes even further and gives the
lowest score to C' as it presents lower ranking error than D,
despite the lower accuracy.

All accuracy-focused metrics disregard ranking and give
equal scores to B and D, and a lower score to C. UOC
retains some similarity to OC', as both have the flexibility to
resemble ranking-focused metrics for low-range values of g3,
and to focus on accuracy with higher 3 values. As expectable,
Apoc presents an intermediate behavior.

Finally, £ and F' can be considered similar to classifier D.
However, classifier EY was tested without objects of class 3, and
the dataset used to evaluate classifier F' is highly imbalanced.
Most existing metrics present sensitivity to imbalanced classes,

as they do not attribute equal scores to classifiers D and F,
as they should. The exceptions are MMAE, AMAE, and the
proposed variants UOC and Ayoc.

Nevertheless, while other metrics, including the proposed
ones, will penalize classifier &£ due to the missing class,
MMAE and AMAE assume an optimistic scenario (no error
on the missing classes), which may be rarely true. The
proposed index, as stated before, deals with missing classes in
a balanced fashion, by ignoring them completely. In this case,
this results on a slight performance penalisation, as two thirds
of the classes do not conform to ranking order or accuracy,
while for D it is only one half.

V. EXPERIMENTS ON REAL CLASSIFIERS

To showcase the behavior of the proposed index on real
situations, and compare it with the aforementioned state-of-
the-art alternatives, we trained a Support Vector Machine, a
k-Nearest Neighbors, and a Random Forest classifier on 70%
of the data of two real public datasets of ordinal classification
problems, with imbalanced classes. The predictions of each
classifier on the remaining 30% of each dataset were used to
build confusion matrices (cf. Figures 4 and 5) and compute
the metrics (cf. Table II). Here, our goal was not to assert
the superiority or inferiority of any classifier over the others,
but to showcase how each metric allows us to measure and
compare their performances based on the resulting confusion
matrices.

A. Wine Quality Dataset

This dataset relate eleven numerical features (such as acid-
ity, sulphates, density, pH, and residual sugar) of Portuguese
red wines with its quality ranking [14]. The dataset includes
1599 samples for quality classes three to eight, and is available
on Kaggle datasets!.

Analysing the regular confusion matrices of the classifiers,
all three appear to have a very similar performance. Never-
theless, when inspecting the normalized confusion matrices, it
can be clearly concluded that the predictions of the Random
Forest classifier resembles much more closely the true ranking
order of the classes, and the overall accuracy inside each class
is higher. SVM clearly presented the worst results, while kKNN
showed an intermediate performance.

'Red Wine Quality - Kaggle datasets. Available at: https://www.kaggle.
com/uciml/red- wine-quality-cortez-et-al-2009.
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TABLE II
RESULTS FOR THE CLASSIFIERS IN REAL DATASETS, WITH 81 = 0.25 AND f2 = 0.75

Accuracy-focused Ranking-Focused Mixed Focus
Classifier Sensitive to imbalance | Robust to imbalance g Sensitive to imbalance Robust to imbalance
MER | MSE | MAE | MMAE AMAE Rs Th Tint OC[%1 OC’é2 UOC’B1 UOC'g2 Avoc
‘Wine kNN 0.38 0.58 0.44 3.00 1.10 0.57 | 0.52 | 0.64 0.46 0.48 0.76 0.82 0.79
Wine SVM 0.37 0.50 0.41 3.00 1.27 0.53 | 0.50 | 0.65 0.42 0.44 0.82 0.87 0.84
Wine RF 0.33 0.38 0.34 2.00 0.88 0.66 | 0.62 | 0.71 0.37 0.39 0.70 0.81 0.75
ESL kNN 0.37 0.39 0.37 1.00 0.50 0.91 0.84 | 0.81 0.39 0.40 0.54 0.72 0.63
ESL SVM 0.31 0.80 0.40 5.00 1.11 0.83 | 0.79 | 0.78 0.37 0.38 0.75 0.80 0.78
ESL RF 0.37 0.46 0.40 2.00 0.61 0.91 0.83 0.81 0.41 0.42 0.63 0.73 0.68
Wine kNN Wine kNN ESL kNN ESL kNN
0 0 0 1 0 0 0.00 0.00 0.00 EXNY 0.00 0.00 0 0 0 0O0OO O O O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
00 2 00 O0O0O0 O 0.00 vooo 000.000.000.000.000.00)
2 2 4 9 0 0 0.12 0.12 0.24 [UEEEY 0.00 0.00 01 6 5 0 0 0 0 O 0.000.080.50 0.420.00 0.00 0.00 0.00 0.00)|
> 8 9 o0 0.01 0.03 0.25 0.05 0.00 0 0 5 7 0 000 0.000.000.16[:710.22 0.00 0.00 0.00 0.00)
0 0 0 6 31 00 0.000.000.00 0.17 0l 0.08 0.03 0.00 0.00
0 6 44 22 1 0.00 0.03 0.22 Mo'll 0.01 0 0 0 0 7 3 0 O 0.000.000.000.00 0.19[¢%/30.08 0.00 0.00)
0 0 1 18 39 3 0.00 0.00 0.02 0.30 NN 0.05 0 0 0 0 O 2 0 0.000.00 0.00 0.00 0.00 0.29 iK5#10.10 0.00
0O 0 0 0 O 2 1 0.000.00 0.00 0.00 0.00 0.00
0 0 0 1 4 1 0.00 0.00 0.00 0.17 GRCZH 0.17 0 0 0 0 0 0 0 2 0 0.000.000.000.000.000.00 0.00Ks]§J0.00)
Wine SVM Wine SVM ESL SVM ESL SVM
0 0 0 1 0 0 0.00 0.00 0.00 EXNY 0.00 0.00 0 0 0 0 0O 0 0 0 O 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00|
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Fig. 4. Confusion matrices, regular and normalized, for the classifiers kNN,
SVM, and Random Forest, used on the wine quality dataset.

MER, by considering equal all misclassifications, attributed
similar scores to all classifiers, with Random Forest only
slightly better. MSE and MAE, sensitive to imbalance, at-
tributed a worse score to kNN than SVM. The same was veri-
fied for the ranking-focused 7;,,; and the mixed-focus metrics
OC’él, and OC’éZ, denoting that this undesirable behavior is
probably due to their sensitivity to imbalanced datasets.

MMAE presented flaws in its claim to be robust against

Fig. 5. Confusion matrices, regular and normalized, for the classifiers KNN,
SVM, and Random Forest, used on the ESL dataset.

imbalanced classes, since the scores it presents are clearly
a major result of the worse represented class 1, with one
object that is misclassified by all classifiers. On the other hand,
AMAE shows the desired behavior, but the non-normalised
values it takes are not fit for absolute performance assessment,
and unfortunately limit its use to the relative comparison of
classifiers in equal settings.

Both proposed variants UOCy and Ayoc present the
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desired behavior. UOC'3 presents the advantage of flexibility:
with the lower value of [, the index favored ranking and
the difference between the classifiers’ performance scores
was amplified; and with the higher value of (3, the focus on
accuracy increased and the behavior of UOC' approached that
of an accuracy-focused metric robust to imbalance. On the
other hand, Ayoc presented an intermediate behavior, ideal
for situations where neither ranking nor accuracy should be
especially favored.

B. Employee Selection (ESL) Dataset

The ESL dataset includes numerical evaluations of 488 job
applicants in four relevant psychometric parameters, and a
final ordinal classification of the applicants according to their
fit to the job (from 1 up to 9). The dataset belongs to the
Business Administration School of the Tel Aviv University,
and is available at Weka datasets?.

Again, looking at the regular confusion matrices of the
classifiers gives an impression of similarity between perfor-
mances. However, the normalized confusion matrices dissipate
this idea. Regarding the true ranking order of the classes,
it is clear the distinction between SVM and the other two
classifiers. In terms of pure ranking, kNN and RF have
similar performance and both present better results than SVM,
which has the best result when using MER, a completely
accuracy-focused metric. Furthermore, MAE was not able to
differentiate between the SVM and the RF.

Mixed-focus metrics OC%1 and OC’é2 erroneously consider
the SVM as the best classifier. This happens due to a class
imbalance in the ESL dataset. On the contrary, UOCj, and
UOCg,, being robust to class imbalance, acknowledge the
best performance of the kKNN. Ayoc, which represents an
equilibrium between ranking and accuracy, is also capable of
distinguishing the performances between the three classifiers
and is in agreement with UOC3, and UOCj,.

VI. CONCLUSION

In this paper, two variants of a novel index for performance
assessment of ordinal classification in imbalanced settings are
proposed. The first, UOC7, is tunable to give preference to
ranking or accuracy error, and thus allows for tailored perfor-
mance assessment to fit settings that present such preferences.
For a fixed, parameter-free performance assessment, Ayoc
presents an intermediate behavior.

The proposed index was evaluated and compared with state-
of-the-art alternatives in several simulated and real scenarios.
The results show that its variants, unlike most other alterna-
tives, are able to capture both ranking and instance-based error
in the performance assessment, while remaining impervious
against imbalanced classes, and presenting a desirable behav-
ior when faced with unobserved classes.

Thus, it can be concluded that the proposed metrics are
suitable to be applied in the complete absolute assessment
of classification performance, as well as the adequate and

2Dr. Arie Ben David ordinal datasets - Weka datasets. Available at: http:
/Iweka.wikispaces.com/Datasets.

robust relative comparison between sets of ordinal classifiers
in imbalanced settings.
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