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Abstract. Hybrid logics, which add to the modal description of transition structures the ability to refer to specific1

states, offer a generic framework to approach the specification and design of reconfigurable systems, i.e., systems2

with reconfiguration mechanisms governing the dynamic evolution of their execution configurations in response3

to both external stimuli or internal performance measures. A formal representation of such systems is through4

transition structures whose states correspond to the different configurations they may adopt. Therefore, each5

node is endowed with, for example, an algebra, or a first-order structure, to precisely characterise the semantics6

of the services provided in the corresponding configuration. This paper characterises equivalence and refinement7

for these sorts of models in a way which is independent of (or parametric on) whatever logic (propositional,8

equational, fuzzy, etc) is found appropriate to describe the local configurations. A Hennessy–Milner like theorem9

is proved for hybridised logics.10
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1. Introduction12

This paper discusses equivalence and refinement of structured transition systems. Or, to put it in another way, of13

models of specifications written in hybridised logics. These two qualifiers entail the need for a word of explanation.14

States in a structured transition system are endowed with a specific structure (e.g., algebraic, first order, etc.). In15

the development of software systems, one may think of such sort of states as (local) specifications of individual16

system configurations. The global transition structure, on the other hand, defines how the software evolves from17

a configuration to another. Such systems are called reconfigurable in the sense that they behave differently in18

different modes of operation (configurations) and commute between them along their lifetime.19

At present, reconfigurable software is the norm than the exception: a typical, everyday example is provided20

by cloud based applications that elastically react to client demand levels, for example by allocating new server21

units to meet higher rates of service requests. Modern cars offer a second example: in each of them hundreds22

of electronic control units must operate in different modes, depending on the current situation—such as driving23

on a highway or in town where different speed regulations are applied. Switching between these modes is a24

typical example of a dynamic reconfiguration. Actually, reconfigurability [SC11], together with related issues like25

self-adaptation or context-awarness, became a main research topic, in the triple perspective of foundations,26

methods and technologies.27
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Specifications of this sort of systems, as discussed in [MFMB11], should be able to make assertions both28

about the transition dynamics and, locally, about each particular configuration. This leads to the adoption of29

hybrid logic [AtC06, Bra10], which adds to the modal description of transition structures the ability to refer to30

specific states, as the specification lingua franca for reconfigurable systems.31

An elementary example to be discussed later in the paper (see Example 5.3) is that of a storing system equipped32

with a read operation which retrieves the first or the last element stored depending on the current execution mode.33

Reconfiguration between such modes is achieved by a control event, shift. The properties of each mode are specified34

equationally, whereas switching between them is encoded as a modality. Nominals provide a unique way to refer35

to each execution mode and its properties. Therefore, hybridised (equational) logic provides a suitable framework36

to develop the overall specification.37

However, because specific problems may require specific logics to describe their configurations (e.g., equa-38

tional, first-order, fuzzy, etc.), our approach is rooted on very general grounds. Instead of choosing a particular39

version of hybrid logic, we play with hybridised logics. The latter are the result of hybridising [MMDB11] whatever40

logic is found suitable for expressing and reasoning about the requirements at the configuration (static) level. This41

process, hybridisation, was characterised in [MMDB11, DM14] as well as in [Mad13]. To be completely general,42

it is framed in the context of the theory of institutions of J. Goguen and R. Burstall [GB92, Dia08], each logic43

(base and hybridised) treated abstractly as an institution. This is later taken as the base logic on top of which44

the characteristic features of hybrid logic, both at the level of syntax (i.e. modalities, nominals, etc.) and of the45

semantics (i.e. possible worlds), are developed.46

In this context, the quest for suitable notions of equivalence and refinement between models of hybridised logic47

specifications becomes fundamental to the development of a design methodology for reconfigurable systems. Such48

is the purpose of the present paper. Its contributions are characterisations of bisimilarity and of two notions of49

refinement for (models of) specifications in hybridised logics. As discussed below, this requires a form of elementary50

equivalence [Hod97] between bisimilar states, as a generic formulation of the usual informal requirement that truth51

remains invariant. Clearly what elementary equivalent means in each case boils down to the way the satisfaction52

relation is defined for the base logic used in local configurations.53

The choice of similarity and bisimilarity to base refinement and equivalence of (models of) reconfigurable54

systems seems quite standard as a fine grained approach to observational methods for systems comparison. The55

notion of bisimulation and the associated conductive proof method, which is now pervasive in Computer Science,56

originated in concurrency theory due to the seminal work of David Park [Par81] and Robin Milner in the quest57

for an appropriate definition of observational equivalence for communicating processes as understood in CCS58

[Mil89]. But the concept also arose independently in modal logic as a refinement of notions of homomorphism59

between algebraic models—see [San09] for an extensive historical account.60

Contributions and organisation This paper extends preliminary work on refinement in hybridised institutions61

[MMB13] along three main directions: (1) the proof of a Hennessy–Milner result for hybridised logics, (2) the char-62

acterisation of two dual notions of refinement, forward and backward, and (3) a discussion on refinement of spec-63

ifications. From a wider perspective, it is part of a broader research line on logics for software reconfigurabilty doc-64

umented in [MMDB11, DM14] (for the hybridisation process), and [MFMB11, MNMB13, MMDB11, MMB13]65

(for the associated design methodology).66

The paper is organised as follows: Sect. 2 recalls institutions as abstract characterisations of logics and67

provides a brief, and simplified, overview of the hybridisation method proposed in [MMDB11, DM14]. This68

forms the context for the paper’s contribution. Then, Sect. 3 introduces a general notion of bisimulation for69

hybridised logics and Sect. 4 proves a Hennessy–Milner like theorem. Section 5 introduces notions of forward70

and backward refinement and discusses preservation of logic satisfaction under them. This discussion is extended71

to the specification level in Sect. 6. Finally, Sect. 7 concludes and points out directions for further research.72
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2. Background73

2.1. Institutions74

An institution is a category theoretic formalisation of a logical system, encompassing syntax, semantics and75

satisfaction. The concept was put forward by Goguen and Burstall, in the end of the seventies, in order to76

“formalise the formal notion of logical systems”, in response to the “population explosion among the logical systems77

used in Computing Science” [GB92].78

The universal character of institutions proved effective and resilient as witnessed by the wide number of logics79

formalised in this framework. Examples range from the usual logics in classical mathematical logic (proposi-80

tional, equational, first order, etc.), to the ones underlying specification and programming languages or used for81

describing particular systems from different domains. Well-known examples include probabilistic logics [BKI05],82

quantum logics [CMSS06], hidden and observational logics [BD94, BH06], coalgebraic logics [C0̂6], as well as log-83

ics for reasoning about process algebras [MR06], functional [ST12, SM09] and imperative programing languages84

[ST12].85

The theory of institutions (see [Dia08] for an extensive account) was motivated by the need to abstract86

from the particular details of each individual logic and characterise generic issues, such as satisfaction and87

combination of logics, in very general terms. In Computer Science, this lead to the development of a solid88

institution-independent specification theory, on which structuring and parameterisation mechanisms, required to89

scale up software specification methods, are defined ‘once and for all’, irrespective of the concrete logic used in90

each application domain [Tar03]. The definition is recalled below (e.g., [GB92, Dia08]) and illustrated with a few91

examples to which we return later in the paper.92

Definition 2.1 (Institution) An institution93

I !
(
SignI , SenI , ModI , (|!I

!)!∈|SignI |
)

94

consists of95

• a category SignI whose objects are called signatures and arrows signature morphisms;96

• a functor SenI : SignI → Set giving for each signature a set whose elements are called sentences over that97

signature;98

• a functor ModI : (SignI )op → CAT , giving for each signature ! a category whose objects are called99

!-models, and whose arrows are called !-(model) homomorphisms; each arrow ϕ : ! → !′ ∈ SignI ,100

(i.e., ϕ : !′ → ! ∈ (SignI )op) is mapped into a functor ModI (ϕ) : ModI (!′) → ModI (!) called a reduct101

functor, whose effect is to cast a model of !′ as a model of !; when M ! ModI (ϕ)(M ′) we say that M is the102

ϕ-reduct of M ′ and that M is an ϕ-expansion of M ;103

• a relation |!I
!⊆| ModI (!) | ×SenI (!) for each ! ∈| SignI |, called the satisfaction relation,104

such that for each morphism ϕ : ! → !′ ∈ SignI , the satisfaction condition105

M ′ |!I
!′ SenI (ϕ)(ρ) iff ModI (ϕ)(M ′) |!I

! ρ (1)106

holds for each M ′ ∈| ModI (!′) | and ρ ∈ SenI (!). Graphically,107

!

ϕ

!!

ModI (!)
|!I
!

SenI (!)

SenI (ϕ)
!!

!′ ModI (!′)

ModI (ϕ)

""

|!I
!′

SenI (!′)

108

Example 2.1 (The trivial institution TRIV) The simplest institution one can think of is TRIV. Its category of109

signatures, SignTRIV, is the final category, i.e., the category whose class of objects is the singleton set {∗} and110

morphisms reduce to the identity 1∗(∗) ! ∗. Functor SenTRIV sends object ∗ into the empty set ∅ and morphism111

1∗ into the empty function. The models functor, ModTRIV, sends the signature ∗ to the final category. Since the112

set of sentences is empty, the satisfaction condition holds trivially.113
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Example 2.2 (Propositional Logic PL) A signature Prop ∈| SignPL | in the institution PL is a set of symbols,114

called propositional variables, and a signature morphism is just a function ϕ : Prop → Prop ′. Therefore, SignPL
115

coincides with the category Set .116

Functor Mod maps each signature Prop to the category ModPL(Prop) and each signature morphism ϕ to117

the reduct functor ModPL(ϕ). Objects of ModPL(Prop) are functions M : Prop → {⊤,⊥} and its morphisms118

functions h : Prop → Prop such that M (p) ! M ′(h(p)). Given a signature morphism ϕ : Prop → Prop ′,119

the reduct of a model M ′ ∈| ModPL(Prop ′) |, say M ! ModPL(ϕ)(M ′), is defined, for each p ∈ Prop, as120

M (p) ! M ′(ϕ(p)).121

Functor SenPL maps each signatureProp to the set of propositional sentences SenPL(Prop) and each morphism122

ϕ : Prop → Prop ′ to the sentences’ translation SenPL(ϕ) : SenPL(Prop) → SenPL(Prop ′). The set SenPL(Prop)123

is the usual set of propositional formulas defined by the grammar124

ρ ::! p | ρ ∨ ρ | ρ ∧ ρ | ρ ⇒ ρ | ¬ρ125

for p ∈ Prop. The translation of a sentence SenPL(ϕ)(ρ) is obtained by replacing each proposition of ρ by the126

respective ϕ-image.127

Finally, for each Prop ∈ SenPL, the satisfaction relation |!PL
Prop is defined as usual:128

– M |!PL
Prop p iff M (p) ! ⊤, for any p ∈ Prop,129

– M |!PL
Prop ρ ∨ ρ ′ iff M |!PL

Prop ρ or M |!PL
Prop ρ

′.130

and similarly for the other connectives.131

Example 2.3 (Equational logic EQ) Signatures in the institution EQ of equational logic are pairs (S ,F ) where132

S is a set of sort symbols and F ! {Far→s | ar ∈ S ∗, s ∈ S } is a family of sets of operation symbols indexed133

by arities ar (for the arguments) and sorts s (for the results). Signature morphisms map both components in a134

compatible way: they consist of pairs ϕ ! (ϕst,ϕop) : (S ,F ) → (S ′,F ′), where ϕst : S → S ′ is a function, and135

ϕop ! {ϕop
ar→s : Far→s → F ′

ϕst(ar)→ϕst(s) | ar ∈ S ∗, s ∈ S } is a family of functions mapping operation symbols136

according to their arities.137

A model M for a signature (S ,F ) is an algebra interpreting each sort symbol s as a carrier set Ms and each138

operation symbol σ ∈ Far → s as a function Mσ : Mar → Ms , where Mar is the product of the arguments’139

carriers. This interpretation is extended to (S ,F )-terms t ! σ (t1, . . . , tn ), by Mσ (t1,...,tn ) ! Mσ (Mt1, . . . ,Mtn ).140

Model morphisms are homomorphisms of algebras, i.e., S -indexed families of functions {hs : Ms → M ′
s | s ∈ S }141

such that for any m ∈ Mar, and for each σ ∈ Far→s , hs (Mσ (m)) ! M ′
σ (har(m)). For each signature morphism ϕ,142

the reduct of a model M ′, say M ! ModEQ(ϕ)(M ′) is defined by (M )x ! M ′
ϕ(x ) for each sort and function symbol143

x from the domain signature of ϕ. The models functor maps signatures to categories of algebras and signature144

morphisms to the respective reduct functors.145

Sentences are universally quantified equations (∀X )t ! t ′. Sentence translations along a signature morphism146

ϕ : (S ,F ) → (S ′,F ′), i.e., SenEQ(ϕ) : SenEQ(S ,F ) → SenEQ(S ′,F ′), replace symbols of (S ,F ) by the respective147

ϕ-images in (S ′,F ′). Functor SenEQ maps each signature to the set of universally quantified equations and each148

signature morphism to the respective sentences translation.149

The satisfaction relation is the usual Tarskian satisfaction defined recursively on the structure of the sentences150

as follows:151

• M |!(S ,F ) t ! t ′ when Mt ! Mt ′ ,152

• M |!(S ,F ) (∀X )ρ when M ′ |!(S ,F/X ) ρ for any inc-expansion M ′ of M where inc : (S ,F ) ↪→ (S ,F / X ) is153

the inclusion morphism that enrich (S ,F ) with the set of variables X .154

Example 2.4 (Propositional Fuzzy Logic MVLL) Multi-valued logics [Got01] generalise classic logics by replac-155

ing, as their truth domain, the 2-element Boolean algebra by larger sets structured as complete residuate lattices.156

They were originally formalised as institutions in [ACEGG90] (see also [Dia11] for a recent reference).157
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A residuate lattice is a tuple L ! (L,≤,∧,∨,⊤,⊥,⊗,⇒), where158

• (L,∧,∨,⊤,⊥) is a lattice ordered by ≤, with carrier L, with (binary) infimum (∧) and supremum ( ∨), and159

bigest and smallest elements ⊤ and ⊥;160

• ⊗ is an associative binary operation such that, for any elements x , y, z ∈ L,161

– x ⊗ ⊤ ! ⊤ ⊗ x ! x ,162

– y ≤ z implies that (x ⊗ y) ≤ (x ⊗ z ),163

– the following Galois connection holds:164

y ≤ (x ⇒ z ) iff x ⊗ y ≤ z .165

A residuate lattice L is complete if any subset S ⊆ L has infimum and supremum, denoted by
∧

S and
∨

S ,166

respectively.167

Given a complete residuate lattice L, the institution MVLL is defined as follows:168

• MVLL-signatures are PL-signatures, i.e., signatures are sets Prop and morphisms are functions169

ϕ : Prop → Prop ′.170

• Sentences of MVLL consist of pairs (ρ, p) where p is an element of L and ρ is defined as a PL-sentence over171

the set of connectives {⇒,∨,⊤,⊥,⊗}.172

• A MVLL-model M is a function M : Prop → L,173

• For any M ∈ ModMVLL (Prop) and for any (ρ, p) ∈ SenMVLL(Prop), the satisfaction relation is174

M |!MVLL
Prop (ρ, p) iff p ≤ (M |! ρ),175

where M |! ρ is inductively defined as follows:176

– for any proposition p ∈ Prop, (M |! p) ! M (p)),177

– (M |! ⊤) ! ⊤,178

– (M |! ⊥) ! ⊥,179

– (M |! ρ1 ⋆ ρ2) ! (M |! ρ1) ⋆ (M |! ρ2), for ⋆ ∈ {∨,⇒,⊗}.180

This institution captures many multi-valued logics in the literature. For instance, taking L as the Łukasiewicz181

arithmetic lattice over the closed interval [0, 1], where x ⊗ y ! 1 − max{0, x + y − 1} (and x ⇒ y !182

min{1, 1 − x + y}), yields the standard propositional fuzzy logic.183

2.2. Hybridisation184

The hybridisation method proposed in [MMDB11, DM14, Mad13], enriches an arbitrary institution185

I ! (SignI , SenI , ModI , (|!I
!)!∈|SignI |) with the (modal) hybrid logic features and the corresponding Kripke186

semantics. The result is still an institution, HI , called the hybridisation of I . The construction is revisited in the187

sequel. This overview is focussed on a simplified version, consisting of the quantifier-free and non-constrained188

version of the general method. The results in this paper are developed in the context of this simplified version,189

referred to as the hybridisation process.190

The category of HI -signatures. First of all the base signature is enriched with nominals and polyadic modalities.191

Therefore, the category of I -hybrid signatures, denoted by SignHI , is defined as the direct (cartesian) product of192

categories:193

SignHI ! SignI × SignREL.194

where REL is the sub-institution of (the institution of) single sorted first order logic, without non-constant195

operation symbols. Thus, signatures are triples (!, Nom,'), where ! ∈ |SignI | and, in the REL-signature196

(Nom,'), Nom is a set of constants called nominals and ' is a set of relational symbols called modalities;197

'n stands for the set of modalities of arity n. Morphisms ϕ ∈ SignHI ((!, Nom,'), (!′, Nom′,'′)) are triples198

ϕ ! (ϕSign,ϕNom,ϕMS) where ϕSign ∈ SignI (!,!′), ϕNom : Nom → Nom′ is a function and ϕMS ! (ϕn : 'n →199

'′
n )n∈N a N-family of functions mapping nominals and n − ary-modality symbols, respectively.200
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Functor of the HI-sentences. The second step is to enrich the base sentences accordingly. The sentences of the201

base institution and the nominals are taken as atoms and composed with the boolean connectives, modalities,202

and satisfaction operators as follows: SenHI (!, Nom,') is the least set such that203

• SenI (!) ⊆ SenHI ((),204

• Nom ⊆ SenHI ((),205

• ρ ⋆ ρ ′ ∈ SenHI (() for any ρ, ρ ′ ∈ SenHI (() and any ⋆ ∈ {∨,∧,⇒},206

• ¬ρ ∈ SenHI ((), for any ρ ∈ SenHI ((),207

• @iρ ∈ SenHI (() for any ρ ∈ SenHI (() and i ∈ Nom,208

• [λ](ρ1, . . . , ρn ), for any λ ∈ 'n+1, ρi ∈ SenHI ((), i ∈ {1, . . . ,n},209

• ⟨λ⟩(ρ1, . . . , ρn ), for any λ ∈ 'n+1, ρi ∈ SenHI ((), i ∈ {1, . . . ,n}.210

Given a HI-signature morphism ϕ ! (ϕSign,ϕNom,ϕMS) : (!, Nom,') → (!′, Nom′,'′), the translation of211

sentences SenHI (ϕ) is defined as follows:212

• SenHI (ϕ)(ρ) ! SenI (ϕSign)(ρ) for any ρ ∈ SenI (!),213

• SenHI (ϕ)(i ) ! ϕNom(i ),214

• SenHI (ϕ)(ρ ⋆ ρ ′) ! SenHI (ϕ)(ρ) ⋆ SenHI (ϕ)(ρ ′), ⋆ ∈ {∨,∧,⇒},215

• SenHI (ϕ)(¬ρ) ! ¬SenHI (ϕ)(ρ),216

• SenHI (ϕ)(@iρ) ! @ϕNom(i)SenHI (ρ),217

• SenHI (ϕ)([λ](ρ1, . . . , ρn )) ! [ϕMS(λ)](SenHI (ρ1), . . . , SenHI (ρn )),218

• SenHI (ϕ)(⟨λ⟩(ρ1, . . . , ρn )) ! ⟨ϕMS(λ)⟩(SenHI (ρ1), . . . , SenHI (ρn )).219

HI-models functor Models of the hybridised logic HI can be regarded as ('-)relational structures whose220

worlds are I -models. Formally (!, Nom,')-models are pairs (M ,W ) where221

• W is a (Nom,')-model in REL, called a hybrid structure,222

• M is a function | W |→| ModI (!) |.223

In each model (M ,W ), {Wn | n ∈ Nom} provides interpretations for nominals in Nom, whereas relations {Wλ |224

λ ∈ 'n ,n ∈ N} interpret modalities'. We denote the I -model M (w ) simply by Mw . The reduct definition is lifted225

from the base institution I : the reduct of a(′-model (M ′,W ′) along a signature morphismϕ ! (ϕSign,ϕNom,ϕMS) :226

( → (′, denoted by ModHI (ϕ)(M ′,W ′), is the (-model (M ,W ) such that227

• W is the (ϕNom,ϕMS)-reduct of W ′, i.e.228

– |W | ! |W ′|,229

– for any n ∈ Nom,Wn ! W ′
ϕNom(n),230

– for any λ ∈ ', Wλ ! W ′
ϕMS(λ),231

• for any w ∈| W |, Mw ! ModI (ϕSign)(M ′
w ).232

The Satisfaction Relation. Let (!, Nom,') ∈| SignHI | and (M ,W ) ∈| ModHI (!, Nom,') |. For any w ∈ |W |233

we define:234

• (M ,W ) |!w ρ iff Mw |!I ρ, when ρ ∈ SenI (!),235

• (M ,W ) |!w i iff Wi ! w ; when i ∈ Nom,236

• (M ,W ) |!w ρ ∨ ρ ′ iff (M ,W ) |!w ρ or (M ,W ) |!w ρ ′,237

• (M ,W ) |!w ρ ∧ ρ ′ iff (M ,W ) |!w ρ and (M ,W ) |!w ρ ′,238

• (M ,W ) |!w ρ ⇒ ρ ′ iff (M ,W ) |!w ρ implies that (M ,W ) |!w ρ ′,239

• (M ,W ) |!w ¬ρ iff (M ,W ) ̸ |!wρ,240

• (M ,W ) |!w @jρ iff (M ,W ) |!Wj ρ,241

• (M ,W ) |!w [λ](ξ1, . . . , ξn ) iff for any (w ,w1, . . . ,wn ) ∈ Wλ we have that (M ,W ) |!wi ξi for some 1 ≤ i ≤ n,242

• (M ,W ) |!w ⟨λ⟩(ξ1, . . . , ξn ) iff there exists (w ,w1, . . . ,wn )∈Wλ such that and (M ,W ) |!wi ξi for any 1≤ i ≤n.243
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Fig. 1. HTRIV-model

i0

λ0

i1

λ1

Fig. 2. H2TRIV-model

λ0

Fig. 3. HTRIV-model

λ1

λ0

λ0

λ0

λ1

λ1

Fig. 4. H2TRIV-model

We write (M ,W ) |! ρ iff (M ,W ) |!w ρ for any w ∈| W |.244

As expected, HI is itself an institution satisfying the satisfaction condition:245

Theorem 2.1 [MMDB11] Let( ! (!, Nom,') and(′ ! (!′, Nom′,'′) be two HI-signatures and ϕ : ( → (′
246

a morphism of signatures. For any ρ ∈ SenHI ((), (M ′,W ′) ∈| ModC ((′) |, and w ∈| W |,247

ModHI (ϕ)(M ′,W ′) |!w ρ iff (M ′,W ′) |!w SenHI (ϕ)(ρ).248

Let us illustrate the method by applying it to the trivial institution (twice) as well as to the three other249

institutions described above.250

Example 2.5 (HTRIV and H2TRIV) Let us consider the hybridisation of the institution TRIV of Example 2.1.251

The signature category corresponds to252

SignTRIV × SignREL ∼! SignREL.253

Since SenTRIV(∗) ! ∅, SenHTRIV(∗, Nom,') is the set of sentences built up from nominals in Nom by the254

application of modalities in ' and boolean connectives. This kind of formulas are called pure hybrid formulas in255

[BdRV01, Ind07]. Models of ModHTRIV(∗, Nom,') are relational structures (W ,M ), where M is the constant256

function Mw ! ∗, for any w ∈| W | (see Figs. 1, 2).257

An interesting institution for the specification of hierarchical state transition systems is obtained through258

the hybridisation of HTRIV i.e., the double hybridisation of TRIV, which we denote by H2TRIV. Models259

of this institution are hybrid structures of hybrid structures (see Fig. 2). Thus H2TRIV signatures are triples260

((∗, Nom0,'0), Nom1,'1) with Nom0, '0 and Nom1, '1 denoting the nominals and the modalities of the first261

and second layer of hybridisation, respectively. In order to prevent ambiguities, we tag the symbols of each hybrid262

signature, as well as the connectives and satisfaction operator introduced in each hybridisation, with 0 for the263

first layer, and with 1 for the second one. For instance, the expression @j 1k 0 ∧1 [λ1](ρ1, . . . , ρn ) is a sentence of264

H2TRIV where the symbols k and j represent nominals of the first and second level of hybridisation, respectively.265

Our tagging convention is extended also to H2TRIV models: a (P , Nom0, Nom1)-model is denoted by (M 1,W 1)266

where, for any w ∈| W 1 |, the models M 1
w are denoted by (W 0

w ,M 0
w ) (Figs. 3, 4).267
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Example 2.6 (HPL) The hybridisation of the propositional logic institution PL is an institution where signatures268

are triples (Prop, Nom,') and sentences are generated by269

ρ ::! ρ0 | i | @iρ | ρ ⊙ ρ | ¬ρ | ⟨λ⟩(ρ, . . . , ρ) | [λ](ρ, . . . , ρ) (2)270

where ρ0 ∈ SenPL(Prop), i ∈ Nom, λ ∈ 'n and ⊙ ! {∨,∧,⇒}. Note that there is a double level of connectives in271

the sentences: one coming from base PL-sentences and another introduced by the hybridisation process. However,272

they “semantically collapse” in the sense that the semantic interpretation of boolean connectives in both levels is273

the same, and, hence, no distinction between them needs to be done. (see [DM14] for details). A (Prop, Nom,')-274

model is a pair (M ,W ), where W is a transition structure with a set of worlds |W |. Constants Wi , i ∈ Nom,275

stand for the named worlds and (n + 1)-ary relations Wλ, λ ∈ 'n , are the accessibility relations characterising276

the structure. For each world w ∈| W |, M (w ) is a (local) PL-model assigning propositions in Prop to the world277

w .278

Restricting the signatures to those with just a single unary modality (i.e., where '2 ! {λ} and 'n ! ∅ for279

n ̸! 2), results in the usual institution for classical hybrid propositional logic [Bra10].280

Example 2.7 (HMVLL) The institution obtained through the hybridisation of MVLL, for a fixed L, is similar to281

HPL defined above, but for two aspects,282

• sentences are defined as in (2) but considering MVL Prop-sentences (ρ0, p) as atomic;283

• a function, associated to each world w ∈| W |, assigning to each proposition its value in L.284

It is interesting to note that expressivity increases even if one restricts to the case of a (one-world) standard285

semantics. For instance, differently from the base case where each sentence is tagged by a L-value, one may now286

deal with more structured expressions involving several L-values, as in, for example, (ρ, p) ∧ (ρ ′, p ′).287

Example 2.8 (HEQ) Signatures of HEQ are triples ((S ,F ), Nom,') and sentences are defined as in (2) but taking288

(S ,F )-equations (∀X )t ! t ′ as atomic base sentences. Models are hybrid structures with a (local)-(S ,F )-algebra289

per world. This institution is a suitable framework to specify reconfigurable systems in a “configurations-as-290

worlds” perspective: distinct configurations are modelled by distinct algebras; and reconfigurations are expressed291

by transitions (cf. [MFMB11, Mad13]). Clearly, in this sort of specifications configurations can be specified292

equationally, based on EQ-signatures, with an initial algebra interpretation. Nominals identify the “relevant”293

configurations and reconfigurations amount to state transitions. Therefore, one resorts to local equations (i.e.294

equations tagged by satisfaction operators @i (∀X )t ! t ′) to specify local properties of named configurations;295

to global equations, (i.e. non tagged equations) to specify global properties, i.e. properties true in any state; and,296

finally, to modal features to specify the reconfigurability dynamics.297

3. Bisimulation for hybridised logics298

Having briefly reviewed what an institution is and how, through a systematic process, one may build upon an299

arbitrary logic both modalities and nominals to explicitly refer to states in a specification, we may now focus on300

the paper’s specific contribution. Our starting point is a method to specify reconfigurable software as transition301

systems whose states represent particular configurations. Each state can endow an algebra, a relation structure302

or even another, local transition system. Such two-staged specifications are common in the Software Engineering303

practice (see, e.g., Gurevich’s Abstract State Machines [BS03]).304

The originality of our method lies in its genericity: whatever logic is found useful to specify each concrete305

configuration, a method is offered to compute its hybrid counterpart. In this setting, within the next three306

sections, we look for suitable notions of equivalence and refinement for this kind of specifications. Naturally,307

such notions should also be parametric on the base logic used, i.e. on the language in which the specification of308

each concrete configuration is written. The price to pay is, of course, some extra notation and the use of a generic309

framework—that of institutions—in which concepts can be formulated and results proved once and for all.310

As the external layer of a reconfigurable system specification is that of a transition system, it is natural to311

resort to suitable formulations of bisimilarity and similarity to capture equivalence and refinement, respectively.312

The precise characterisation of such notions at the high level of abstraction chosen, is, in fact, the paper’s main313

contribution.314
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Intuitively a bisimulation relates worlds which exhibit the “same” (observable) information and preserve this315

property along transitions. Thus, to define a general notion of bisimulation over Kripke structures whose states are316

models of whatever base logic was chosen for expressing specifications, we have to make precise what the “same”317

information actually means. For example, if the system’s configurations are specified by equations, establish that318

two such configurations are bisimilar will certainly require that each specification generates the same variety.319

Actually, in this case they are essentially the same data type. In the more general setting of this paper the base320

logic I is a parameter and we have to deal with its hybridised version HI .321

Our proposal is, thus, to resort to the broader notion of elementary equivalence (see e.g. [Hod97]), and add to the322

definition of bisimulation the requirement that local configurations, i.e. local I -models related by a bisimulation323

have to be elementarily equivalent. Two models M ,M ′ ∈ Mod(!) are elementarily equivalent if they satisfy the324

same sentences, as formalised in Definition 3.1 below.325

In certain cases, as detailed below, it is convenient to restrict this equivalence by considering only a specific326

subset of sentences. For instance, we may want to identify FOL-models with elementarily equivalent algebraic327

reducts. As an illustration consider two models Nodd and Neven over the natural numbers, both with the operation328

+, one with a predicate even and the other with a predicate odd . Clearly they are not elementarily equivalent329

if we consider the entire set of sentences. However, Nodd ≡S Neven , for a subfunctor S of the sentences functor330

defined without making use of predicates. Another example, in hybrid Kripke semantics, is to consider models331

elementarily equivalent only at the frames level, which can be achieved by restricting the sentences to the so-called332

pure formulas (i.e. sentences without propositional variables). This can be done by parameterising the definition333

of elementary equivalence (and, consequently, those of bisimulation and refinement) with a subfunctor S of the334

sentences’ functor in order to capture the ‘right’ set of sentences, as proposed in [MMB13]. Doing this, however,335

is equivalent to restrict the base institution I to an institution defined as I but replacing SenI by S. In the sequel336

we stick to this alternative to simplify notation.337

Definition 3.1 Let M ,M ′ ∈ ModI (!) be two models. M and M ′ are elementarily equivalent, in symbols M ≡ M ′,338

if for any ρ ∈ SenI (!)339

M |!I ρ iff M ′ |!I ρ . (3)340

Under the institution theory motto—truth is invariant under change of notation—we write M ≡ϕ M ′ whenever341

M ≡ ModI (ϕ)(M ′) for a given ϕ ∈ SignI (!,!′), M ∈ ModI (!) and M ′ ∈ ModI (!′). Then M and M ′ are said342

to be ϕ-elementarily equivalent. If only the left to right implication of (3) holds, we write M ≫ϕ M ′.343

Resorting to the satisfaction condition in I , the following characterisation of ϕ-elementary equivalence pops344

out:345

Corollary 3.1 M ≡ϕ M ′ iff, for any ρ ∈ SenI (!), M |!I
! ρ ⇔ M ′ |!I

!′ SenI (ϕ)(ρ).346

Note the role ofϕ above: as a signature morphism it captures the possible change of notation from a specification347

to another. For example it may cater for a renaming of propositions, as in Example 3.1, or signature components,348

as in Example 3.2. However, its pertinence becomes clearer in refinement situations, as discussed in the next349

section. At that level it may accommodate a number of forms of interface enrichment or adaptation (e.g. through350

the introduction of auxilliar operations).351

Let us now define bisimulation in this general setting.352

Definition 3.2 Let HI be the hybridisation of the institution I and ϕ ∈ SignHI ((,(′) a signature morphism.353

A ϕ-bisimulation between models (M ,W ) ∈ ModHI (() and (M ′,W ′) ∈ ModHI ((′) is a non-empty relation354

Bϕ ⊆| W | × | W ′ | such that355

(i) for any wBϕw ′, Mw ≡ϕSign M ′
w ′ ,356

(ii) for any wBϕw ′, and for any i ∈ Nom, Wi ! w iff W ′
ϕNom(i) ! w ′,357

(iii) for any i ∈ Nom, WiBϕW ′
ϕNom(i),358

(iv) For any λ ∈ 'n , if (w ,w1, . . . ,wn ) ∈ Wλ and wBϕw ′, then for each k ∈ {1, . . . ,n} there is a w ′
k ∈ |W ′| such359

that wkBϕw ′
k and (w ′,w ′

1, . . . ,w
′
n ) ∈ W ′

ϕMS(λ) (zig-condition),360

(v) For any λ ∈ 'n if (w ′,w ′
1, . . . ,w

′
n ) ∈ W ′

ϕMS(λ) and wBϕw ′, then for each k ∈ {1, . . . ,n} there is a wk ∈ |W |,361

such that wkBϕw ′
k and (w ,w1, . . . ,wn ) ∈ Wλ (zag-condition).362
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Note that clause (i) enforces local models of bisimilar states to be elementary equivalent. Clauses (ii) and363

(iii) deal with nominals: named bisimilar states are identified by the same nominal (ii) and all of them are in the364

bisimulation (iii). Finally, clauses (iv) and (v) correspond to the usual zig-zag conditions. As usual, a bisimilarity365

relation can be defined as the greatest bisimulation whose existence is guaranteed by Lemma 3.1 below. Therefore,366

we say that (M ,W ) and (M ′,W ′) are ϕ-bisimilar, and write (M ,W ) !ϕ (M ′,W ′), if there is a ϕ-bisimulation367

Bϕ between them. Whenever ϕ is the identity we simply talk of a bisimulation B and the bisimilarity relation !.368

Lemma 3.1 Let HI be the hybridisation of the institution I and ϕ ∈ SignHI ((,(′) a signature morphism. The set369

of ϕ-bisimulations between models (M ,W ) ∈ ModHI (() and (M ′,W ′) ∈ ModHI ((′) is closed under union.370

Proof. Let B0
ϕ ,B1

ϕ ⊆| W | × | W ′ | be two ϕ-bisimulations between models (M ,W ) ∈ ModHI (() and371

(M ′,W ′) ∈ ModHI ((′). Their union Bϕ ! B0
ϕ ∪ B1

ϕ is also a ϕ-bisimulation because372

1. Clearly, all points named by nominals are related by Bϕ as they are either by B0
ϕ or B1

ϕ . Moreover, for any pair373

(w ,w ′) such that wBϕw ′ either wB0
ϕw ′ or wB1

ϕw ′. As both B0
ϕ and B1

ϕ are ϕ-bisimulations, clauses (i), (ii) and374

(iii) in Definition 3.2 hold for Bϕ .375

2. A similar argument applies to both (zig) and (zag) conditions. For clause (iv) let (w ,w1, . . . ,wn ) ∈ Wλ and376

wBϕw ′. Then, either wB0
ϕw ′ or wB1

ϕw ′. Then, for each k ∈ {1, . . . ,n} there is a w ′
k ∈| W ′ | such that wkB0

ϕw ′
k377

or wkB1
ϕw ′

k , i.e., wkBϕw ′
k , and (w ′,w ′

1, . . . ,w
′
n ) ∈ W ′

ϕMS(λ). The (zag) condition is proved similarly. "378

Consider, now, the relational composition of bisimulations.379

Lemma 3.2 Let HI be the hybridisation of the institution I , ϕ ∈ SignHI ((,(′′) and ψ ∈ SignHI ((′′,(′) two380

signature morphisms. Consider a ϕ-bisimulation Bϕ between models (M ,W ) ∈ ModHI (() and (M ′′,W ′′) ∈381

ModHI ((′′) and a ψ-bisimulation Bψ between models (M ′′,W ′′) ∈ ModHI ((′′) and (M ′,W ′) ∈ ModHI ((′).382

Then Bψ .Bϕ is a (ψ.ϕ)-bisimulation between models (M ,W ) and (M ′,W ′).383

Proof. Let wBψ .Bϕw ′. Therefore, there is a w ′′ ∈| W ′′ | such that wBϕw ′′ and w ′′Bψw ′. Then, for any i ∈ Nom,384

Wi ! w iff W ′′
ϕNom(i) ! w ′′ iff W ′

ψNom(i) ! w ′, which proves clause (ii) in Definition 3.2. Clauses (i) and (iii) follow385

from similar arguments, considering, for the former, that elementary equivalence is an equivalence relation. To386

establish (iv) suppose that (w ,w1, . . . ,wn ) ∈ Wλ. As Bϕ is a ϕ-bisimulation, for each k ∈ {1, . . . ,n} there is w ′′
k387

such that wkBϕw ′′
k and (w ′′,w ′′

1 , . . . ,w ′′
n ) ∈ W ′′

λ . As Bψ is a ψ-bisimulation, there is also a w ′
k such that w ′′

kBψw ′
k388

and (w ′,w ′
1, . . . ,w

′
n ) ∈ W ′

λ, which establishes the (zig)-condition for relation Bψ .Bϕ . The (zag)-condition, (v), is389

shown similarly. "390

Clearly,391

Corollary 3.2 ! is an equivalence relation.392

Proof. If no change of signature is involved, this follows from Lemma 3.2 for ϕ,ψ the identity, together with the393

observation that the identity relation and the converse of a id -bisimulation are themselves id -bisimulations (for394

the latter resort to the (zig) and (zag) conditions interchangeably). "395

Theorem 3.1 Let HI be the hybridisation of the institution I and ϕ ∈ SignHI ((,(′) a signature morphism. Let396

(M ′,W ′) ∈ ModHI ((′). Then,397

ModHI (ϕ)(M ′,W ′) !ϕ (M ′,W ′)398

witnessed by the identity relation.399

Proof. All the conditions in Definition 3.2 follow from the definition of reduct of HI . "400

Example 3.1 (Bisimulation in HPL) Let us instantiate Definition 3.2 for the HPL case (cf. Example 2.2). More401

precisely, a sub-institution of HPL with '2 ! {λ} and 'n ! ∅ for n ̸! 2. A bisimulation B is such that402

(M ,W )B(M ′,W ′), for any two models (M ,W ), (M ′,W ′) ∈| ModHPL(P , Nom, {λ}) |, if403
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λ

ϕ(λ)

ϕ(λ)
B

B

Fig. 5. HTRIV-Bisimulation

λ0 ϕ(λ0)

B

B

Fig. 6. HTRIV-Bisimulation

(i) Mw ≡ M ′
w ′ , i.e., bisimilar states satisfy the same sentences,404

(ii) for any i ∈ Nom, wBw ′, w ! Wi iff w ′ ! W ′
i ,405

(iii) for any i ∈ Nom, WiBW ′
i ,406

(iv) for any (w ,w1) ∈ Wλ with wBw ′, there is a w ′
1 ∈ |W ′| such that w1Bw ′

1 and (w ′,w ′
1) ∈ W ′

λ,407

(v) for any (w ′,w ′
1) ∈ W ′

λ with wBw ′, there is a w1 ∈ |W | such that w1Bw ′
1 and (w ,w1) ∈ Wλ.408

Note that condition (i) is equivalent to say that bisimilar states are assigned the same set of propositions (for any409

p ∈ P , Mw (p) ! ⊤ iff M ′
w ′(p) ! ⊤). As expected, this definition corresponds exactly to standard bisimulation410

for propositional hybrid logic (see, e.g. [tC05, Defn. 4.1.1]).411

The definition of bisimulation computed in the previous example can also capture the case of propositional412

modal logic: just consider pure modal signatures (i.e. with an empty set of nominals), as condition (i) is trivially413

satisfied. Moreover, instantiating Theorem 4.1 below, we get the classical result about preservation of modal truth414

by bisimulation.415

Example 3.2 (Bisimulation for HEQ) Consider now the instantiation of 3.2 for HEQ (cf. Ex 2.8). All one has to416

do is to replace condition (ii) in Defn 3.2 by its instantiation for algebras: two algebras are elementarily equivalent417

if the respective generated varieties coincide [Grä79].418

Example 3.3 (Bisimulation in HTRIV and H2TRIV) Let us play the same game for HTRIV. Since there are419

no sentences in SenTRIV(∗), property (i) trivially holds. Hence bisimulations for HTRIV consist of standard420

bisimulations in labeled transition systems with the additional assumptions on named states [clauses (ii) and (iii)421

in Definition 3.2]. Two examples are depicted in Figs. 5 and 6.422

Finally, consider bisimulations in H2TRIV. At the local level, according to the forthcoming Theorem 4.2423

it is enough to have a total and surjective bisimulation to guarantee elementary equivalence in condition (i).424

Therefore, bisimulation in H2TRIV follows from hierachical bisimulation between structured transition systems.425

An example is depicted in Fig. 7 where B0 and B1 are the bisimulations at the local and global levels, respectively.426

Another example is illustrated in Fig. 8.427

4. A Hennessy–Milner theorem428

This section discusses the relationship between bisimulation and logical equivalence in the context of hybridised429

logics. The following result establishes that (local)-hybrid satisfaction is invariant under ϕ-bisimulations:430

Theorem 4.1 Let HI be the hybridisation of the institution I and ϕ ∈ SignHI ((,(′) a signature morphism. Let431

Bϕ ⊆| W | × | W ′ | be a ϕ-bisimulation. Then, for any wBϕw ′ and for any ρ ∈ SenHI ((),432

(M ,W ) |!w ρ iff (M ′,W ′) |!w ′
SenHI (ϕ)(ρ). (4)433

1 6 5 0 3 2 7
Jour. No Ms. No.

B Dispatch: 3/12/2014
Total pages: 21
Disk Received
Disk Used

Journal: FAC
Not Used
Corrupted
Mismatch



R
ev

is
ed

 P
ro

of

A. Madeira et al.

λ0

λ1

ϕ1(λ1)
ϕ1(λ1)

B0

B1

B1

B0

B0

B0

ϕ0(λ0)

ϕ0(λ0)

ϕ0(λ0)

ϕ0(λ0)

Fig. 7. H2TRIV-Bisimulation

λ1

ϕ1(λ1)

ϕ1(λ1)

B1

B1

ϕ1(λ1)

λ0

ϕ0(λ0)

ϕ0(λ0)

ϕ0(λ0)

Fig. 8. H2TRIV-Bisimulation

Proof. The proof is by induction on the structure of the sentences.434

1. ρ ! i for some i ∈ Nom:435

(M ,W ) |!w i436

⇔ { definition of |!w }437

Wi ! w438

⇔ { clause (ii) of Definition 3.2 }439

W ′
ϕ(i) ! w ′

440

⇔ { definition of |!w ′}441

(M ′,W ′) |!w ′
ϕNom(i )442

⇔ { definition of SenHI (ϕ)}443

(M ′,W ′) |!w ′
SenHI (ϕ)(i )444

2. ρ ∈ SenI (!):445

(M ,W ) |!w ρ446

⇔ { definition of |!w }447

Mw |!I ρ448

⇔ { by hypothesis Mw ≡ϕSign M ′
w ′ and Corollary 3.1}449

M ′
w ′ |! SenI (ϕSign)(ρ)450

⇔ { definition of |!w ′}451

(M ′,W ′) |!w ′
SenI (ϕSign)(ρ)452

⇔ { definition of SenHI (ϕ)}453

(M ′,W ′) |!w ′
SenHI (ϕ)(ρ)454

3. ρ ! ξ ∨ ξ ′ for some ξ, ξ ′ ∈ SenHI (():455

(M ,W ) |!w ξ ∨ ξ ′
456

⇔ { definition of |!w }457

(M ,W ) |!w ξ or (M ,W ) |!w ξ ′
458
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⇔ { induction hypothesis }459

(M ′,W ′) |!w ′
SenHI (ϕ)(ξ ) or460

(M ′,W ′) |!w ′
SenHI (ϕ)(ξ ′)461

⇔ { definitionof |!w }462

(M ′,W ′) |!w ′
SenHI (ϕ)(ξ ∨ ξ ′)463

The proofs for cases ρ ! ξ ∧ ξ ′, ρ ! ξ ⇒ ξ ′, ρ ! ¬ξ , etc. are analogous.464

4. ρ ! [λ](ξ1, . . . , ξn ) for some ξ1, . . . , ξn ∈ SenHI ((), λ ∈ 'n+1:465

(M ,W ) |!w [λ](ξ1 , . . . , ξn )466

⇔ { definition of |!w }467

for any (w ,w1, . . . ,wn ) ∈ Wλ there is some k ∈ {1, . . . ,n}468

such that (M ,W ) |!wk ξk469

⇔ {* }470

for any (w ′,w ′
1, . . . ,w

′
n ) ∈ W ′

ϕMS(λ) there is some471

p ∈ {1, . . . ,n} such that (M ′,W ′) |!w ′
p SenHI (ϕ)(ξp)472

⇔ { definition of |!w ′}473

(M ′,W ′) |!w ′
[ϕMS(λ)](SenHI (ϕ)(ξ1), . . . , SenHI (ϕ)(ξn ))474

⇔ { definition of SenHI (ϕ)}475

(M ′,W ′) |!w ′
SenHI (ϕ)([λ](ξ1, . . . , ξn ))476

For the step marked with * we proceed as follows. Assuming (w ′,w ′
1, . . . ,w

′
n ) ∈ W ′

ϕMS(λ) with wBϕw ′, we have477

by clause (v) of Definition 3.2 that there are wk , with k ∈ {1, . . . ,n}, such that (w ,w1, . . . ,wn ) ∈ Wλ. By478

hypothesis, (M ,W ) |!wp ξp for some p ∈ {1, . . . ,n}. Moreover, by the induction hypothesis, (M ′,W ′) |!w ′
p479

SenHI (ϕ)(ξp). Clause (iv) of Definition 3.2 entails the converse implication. The proof for sentences with480

shape ρ ! ⟨λ⟩(ξ1, . . . , ξn ) is analogous.481

5. ρ ! @iξ for some ξ ∈ SenHI (() and i ∈ Nom:482

(M ,W ) |!w @iξ483

⇔ { definition of |!w }484

(M ,W ) |!Wi ξ485

⇔ { induction hypothesis and clause (iii) of Definition 3.2}486

(M ′,W ′) |!W ′
ϕNom(i) SenHI (ϕ)(ξ )487

⇔ { definition of |!w }488

(M ′,W ′) |!w @ϕNom(i)SenHI (ϕ)(ξ )489

⇔ { definition of SenHI (ϕ)}490

(M ′,W ′) |!w SenHI (ϕ)(@iξ )491 "492

As in the standard modal case the converse of Theorem 4.1 does not hold in general, i.e., logical equivalence493

is not a bisimulation. Such is the case, however, for image-finite Kripke models, as well known from the plain494

case of modal logic [BVB07]. A model (M ,W ) is image-finite if for each state w ∈ W and each relation Wλ,495

λ ∈ ', the set {(w1, . . . ,w ′) : (w ,w1, . . . ,w ′) ∈ Wλ} is finite. No condition is imposed on the number of relations496

present or the cardinality of W .497
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We are, thus, prepared to state and prove the following Hennessy–Milner like theorem:498

Theorem 4.2 Let HI be the hybridisation of the institution I and ϕ ∈ SignHI ((,(′) a signature morphism. Let499

(M ,W ) and (M ′,W ′) be two image-finite( and(′-models, respectively. Then, for every w ∈ W and w ′ ∈ W ′, the500

following conditions are equivalent:501

(i) (M ,W ) |!w ρ iff (M ′,W ′) |!w ′
SenHI (ϕ)(ρ), for any formula ρ,502

(ii) There is a ϕ-bisimulation Bϕ ⊆| W | × | W ′ | such that wBϕw ′.503

Proof. We have just to prove that (i) implies (ii). Let us prove that504

Z :!
{

(w ,w ′) ∈ W × W ′ : for any ρ, (M ,W ) |!w ρ iff (M ′,W ′) |!w ′
SenHI (ϕ)(ρ)

}
505

is a bisimulation.506

The atomic conditions trivially hold. For the (zig) condition, let λ ∈ ' be, without loss of generality, a507

binary modality symbol. Assume that wZw ′ and let u ∈ W such that wWλu. To obtain a contradiction, suppose508

that there is no u ′ ∈ W ′ with w ′W ′
λu

′ and uZu ′. As in the standard case the image-finite condition makes509

S ′ ! {u ′ : w ′W ′
λu

′} finite. Moreover, S ′ cannot be empty since in such a case (M ,W ) |!w [λ]¬(@i i ) [equivalently,510

(M ,W ) |!w ¬⟨λ⟩(@i i )], which is incompatible with the fact that (M ,W ) |!w ⟨λ⟩(@i i ), which holds because511

wWλu.512

By assumption, for every v ∈ S ′ there is a formulaψv such that (M ,W ) |!u ψv and it is false that (M ′,W ′) |!v
513

SenHI (ϕ)(ψv ). Consider now the conjunction514

ψ !
∧

v∈S ′
ψv515

of all of these formulas. Then, on the one hand, (M ,W ) |!w ⟨λ⟩ψ . On the other, however, for all v ∈ S ′, it is516

false that (M ′,W ′) |!w ′
SenHI (ϕ)(⟨λ⟩ψ). This contradicts the fact that wZw ′.517

The (zag) condition is shown in a similar way. "518

5. Forward and backward refinement519

Consider again a reconfigurable system described by a set of configurations and a transition structure entailing520

changes from one to another. If equivalence of such systems corresponds to a notion of bisimilarity in which521

bisimilar configurations are enforced to be elementary equivalent, a refinement relation corresponds to similarity.522

This can be defined in two different ways. One of them entails preservation of transitions from the abstract to the523

concrete model; the other proceeds dually.524

5.1. Forward refinement525

Forward refinement means that behaviours (on the system’s global dynamics) valid in the abstract model are also526

allowed in the concrete one, which, however, may exhibit further behaviour. On the other hand, at each local527

configuration, the original properties are preserved along local refinement. We call this forward refinement.528

Definition 5.1 Let HI be the hybridisation of an institution I and ϕ ∈ SignHI ((,(′) a signature morphism. A529

forward ϕ-refinement relation between models (M ,W ) ∈ ModHI (() and (M ′,W ′) ∈ ModHI ((′) is a non-empty530

relation Rϕ ⊆| W | × | W ′ | such that, for any wRϕw ′,531

(i) Mw ≫ϕ M ′
w ′ ,532

(ii) for any i ∈ Nom, if Wi ! w then W ′
ϕNom(i) ! w ′,533

(iii) for any i ∈ Nom, Wi Rϕ W ′
ϕNom(i),534

(iv) for any λ ∈ 'n , if (w ,w1, . . . ,wn ) ∈ Wλ then for each k ∈ {1, . . . ,n} there is a w ′
k ∈| W ′ | such that wkRϕw ′

k535

and (w ′,w ′
1, . . . ,w

′
n ) ∈ W ′

ϕMS(λ).536
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We say that (M ′,W ′) is a forward ϕ-refinement of (M ,W ), in symbols (M ,W ) ⇁ϕ (M ′,W ′), if there is a forward537

ϕ-refinement between them. When ϕ is the identity we denote it simply by ⇁.538

The relevant question is whether (forward) refinement preserves (hybrid) satisfaction. Actually, this is not539

the case. Note that in the proof of Theorem 4.1 preservation of hybrid satisfaction of sentences of the form540

[λ](ξ1, . . . , ξn ) is entailed by conditions (iv) and (v) of Definition 3.2, but the latter is not considered in a (forward)541

refinement situation. Boxed formulas are, as a matter of fact, not preserved. As a simple counter-example, define542

a Rϕ-refinement from a (-hybrid model (M ,W ) with | W |! {w} and Wλ ! ∅, for λ ∈ 'n , to any other (′-543

hybrid model (M ′,W ′) such that ModHI (ϕSign)(M ′)w ′ ! Mw for some w ′ ∈| W ′ |. Any sentence [λ](ξ1, . . . , ξn ),544

which trivially holds in the world w of (M ,W ), may fail to be satisfied in the Rϕ-related world w ′ of (M ′,W ′).545

Negative sentences ¬ξ , are also in general not preserved through refinement because, only the (zig) condition546

being enforced, non satisfaction in one direction does not imply non satisfaction in the other.547

Definition 5.2 (Positive existential sentences) The positive existential sentences of a signature ( ∈| SignHI | are548

given by the subfunctor SenHI
✸ ⊆ SenHI defined inductively for each signature( as SenHI ((), but excluding both549

negation and boxed formulas. For each signature morphism ϕ : ( → (′, SenHI
✸ (ϕ) is the restriction of SenHI (ϕ)550

to SenHI
✸ (().551

Theorem 5.1 Let HI be the hybridisation of an institution I , ϕ ∈ SignHI ((,(′) a signature morphism, Rϕ a ϕ-552

refinement relation and (M ,W ) ∈ ModHI (() and (M ′,W ′) ∈ ModHI ((′) two models such that (M ′,W ′) is a553

forward refinement of (M ,W ) witnessed by relation Rϕ . Then, for any wRϕw ′ and ρ ∈ SenHI
✸ ((),554

(M ,W ) |!w ρ implies that (M ′,W ′) |!w ′
SenHI (ϕ)(ρ).555

Proof. The proof is by induction on the structure of the existential positive sentences and comes directly from556

the proof of Theorem 4.1, taking the left to right implication. What remains to be proved is the case ρ !557

⟨λ⟩(ξ1, . . . , ξn ). Thus,558

(M ,W ) |!w ⟨λ⟩(ξ1 , . . . , ξn )559

⇔ { definition of |!w }560

there exists (w ,w1, . . . ,wn ) ∈ Wλ561

such that (M ,W ) |!wk ξk for any k ∈ {1, . . . ,n}562

⇒ {By (iii) and (iv) (the (zig) condition) and the induction hypothesis. }563

there exists (w ′,w ′
1, . . . ,w

′
n ) ∈ W ′

ϕMS(λ)564

such that (M ′,W ′) |!w ′
k ξk for any k ∈ {1, . . . ,n}565

⇔ { definition of |!w ′}566

(M ′,W ′) |!w ′ ⟨ϕMS(λ)⟩(SenHI (ϕ)(ξ1), . . . , SenHI (ϕ)(ξn ))567

⇔ {definition of SenHI (ϕ)}568

(M ′,W ′) |!w ′
SenHI (ϕ)(⟨λ⟩(ξ1, . . . , ξn ))569 "570

The following examples illustrate refinement situations in this setting.571

Example 5.1 (Refinement in HPL) Forward refinement notion in HPL consists of the standard notion of simu-572

lation in Kripke structures. Theorem 5.1 generalises the well known preservation result of positive sentences by573

simulation (see [BdRV01] for the modal standard case). In this case SenHPL
✸ (() consists exactly in the restriction574

of SenHPL(() to all the sentences without occurrences of negations and boxes.575

Example 5.2 (Refinement in HMVLL) Figure 9 presents an example of a refinement in multi-valued logic based576

on the lattice L4 (on the left of Fig. 9). Let MVL∗
L4

be the institution obtained from MVLL4 by restricting the577

functor of the sentences to the subfunctor S defined by S(LProp) ! {(p, l ), p ∈ LProp and l ∈ L4}. Consider578

now the hybridisation HMVL∗
L4

of MVL∗
L4

.579
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p = ⊥; q = b

p = ⊥; q = b

p = ⊥; q = ⊤

p = ⊥; q = ⊤

closeclose
p = ⊥; q = ⊤

⊤

⊥

a bL4
p = ⊥; q = a

p = ⊥; q = a

p = ⊥; q = ⊤

Fig. 9. Forward refinement in HMVLL

Conditions (ii) and (iii) are obviously satisfied. In what concerns the verification of condition (i) for which580

(p, l ) ∈ S(LProp), Mw |!MVL∗
L4

LProp (p, l ) ⇒ M ′
w ′ |!MVL∗

L4
LProp (p, l ), it is sufficient to see that, (Mw |! p) ≤ (M ′

w ′ |! p),581

p ∈ LProp.582

Example 5.3 (Refinement in HEQ) Consider a store system abstractly modelled as the initial algebra A with583

signature ((S ,F ),-) where S ! {mem, elem}, F→mem ! {new}, F→elem ! {0} Fmem×elem→mem ! {write},584

Fmem→mem ! {del} and Far→s ! ∅ otherwise, and where - is the following set of equations:585

del (new ) ! new ,586

del (write(m, e)) ! m.587

Suppose one intends to refine this structure by adding a read function configurable in two different modes:588

in one of them it reads the first element in the store, in the other the last. Reconfiguration between the two589

execution modes is enforced by an external control event shift . Note that this abstract model can be seen as the590 (
(S ,F ),∅, {shift}

)
-hybrid model M ! (M ,W ), taking | W |! {⋆}, Wshift ! id and M⋆ ! A (see Fig. 10). Then,591

we take the inclusion morphism ϕSign : (S ,F ) ↪→ (S ,F ′) where F ′ extends F with F ′
mem→elem ! {read}. For the592

envisaged refinement let us consider model M′ ! (M ′,W ′) where W ′ ! {s1, s2} and W ′
shift ! {(s1, s2), (s2, s1)}593

and where M ′
s1

and M ′
s2

are respectively, two algebras satisfying the equations594

read (new ) ! 0,595

del (new ) ! new ,596

del (write(m, e)) ! m,597

read (write(m, e)) ! e,598

and599

read (new ) ! 0,600

del (new ) ! new ,601

del (write(m, e)) ! m,602

read (write(write(m, e), e ′)) ! read (write(m, e)),603

read (write(new , e)) ! e604

respectively.605

It is not difficult to see that R ! {(⋆, s1), (⋆, s2)} is a ϕ-refinement relation: conditions (ii) and (iii) are trivially606

fulfilled; the initiality of (the algebra) M∗ entails the condition (i): as is well known (e.g. [EM85]) properties valid607

in the initial model of a set of equation are the ones valid in all the models of the respective variety. This includes608

the models Mod(ϕ)(Ms1 ) and Mod(ϕ)(Ms2 )).609
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shiftshiftM

M′
shift

Fig. 10. Forward refinement in HEQ.

5.2. Backward refinement610

Forward refinement simulates the abstract model behaviour by the concrete one, i.e. the refined model allows611

all behaviours specified at the abstract level. A dual notion goes in the opposite direction, enforcing all concrete612

behaviours to be allowed in the abstract model. Actually this notion is more common in the literature: it constrains613

the concrete, refined model to exhibit only behaviours allowed in its specification. Formally this leads to a notion614

of backward refinement by replacing condition (iv) in Definition 5.1 by the (zag) condition:615

(iv) For any λ ∈ 'n , if (w ′,w ′
1) ∈ W ′

ϕMS(λ) then for each k ∈ {1, . . . ,n} there is a wk ∈| W | such that wkRϕw ′
k616

and (w ,w1, . . . ,wn ) ∈ Wλ.617

leading to618

Definition 5.3 Let HI be the hybridisation of an institution I and ϕ ∈ SignHI ((,(′) a signature morphism. A619

backward ϕ-refinement relation between models (M ,W ) ∈ ModHI (() and (M ′W ′) ∈ ModHI ((′) is a non-empty620

relation Rϕ ⊆| W | × | W ′ | such that, for any wRϕw ′,621

(i) Mw ≫ϕ M ′
w ′ ,622

(ii) for any i ∈ Nom, if Wi ! w then W ′
ϕNom(i) ! w ′,623

(iii) for any i ∈ Nom, Wi Rϕ W ′
ϕNom(i),624

(iv) For any λ ∈ 'n , if (w ′,w ′
1) ∈ W ′

ϕMS(λ) then for each k ∈ {1, . . . ,n} there is a wk ∈| W | such that wkRϕw ′
k625

and (w ,w1, . . . ,wn ) ∈ Wλ.626

We say that (M ′,W ′) is a backward ϕ-refinement of (M ,W ), in symbols (M ,W ) ↽ϕ (M ′,W ′), if there is a627

backward ϕ-refinement between them. Again ↽ϕ is abbreviated to ↽ whenever ϕ is the identity.628

Note that existential (‘diamond’) sentences are no longer preserved through backward refinement: effective629

transitions at the abstract level can be backward-refined into a non-transition at the concrete level. Univer-630

sal (‘boxed’) sentences, however, are preserved, leading to a re-phrasing of Theorem 5.1 for positive, universal631

sentences, collected in SenHI
✷ ((). Formally,632

Definition 5.4 (Positive universal sentences) The positive universal sentences of a signature ( ∈| SignHI | are633

given by the subfunctor SenHI
✷ ⊆ SenHI defined inductively for each signature ( as SenHI ((), but excluding634

both negation and ✸-formulas. For each signature morphism ϕ : ( → (′, SenHI
✷ (ϕ) is the restriction of SenHI (ϕ)635

to SenHI
✷ (().636

Theorem 5.2 Let HI be the hybridisation of an institution I , ϕ ∈ SignHI ((,(′) a signature morphism, Rϕ a637

backward ϕ-refinement relation and (M ,W ) ∈ ModHI (() and (M ′,W ′) ∈ ModHI ((′) two models such that638

(M ′,W ′) is a backward ϕ-refinement of (M ,W ) witnessed by relation Rϕ . Then, for any wRϕw ′ and ρ ∈ SenHI
✷ ((),639

(M ,W ) |!w ρ implies that (M ′,W ′) |!w ′
SenHI (ϕ)(ρ).640
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Proof. The crucial step in the proof is the preservation of ‘boxed’ formulas ρ ! [λ](ξ1, . . . , ξn ), as follows:641

(M ,W ) |!w [λ](ξ1 , . . . , ξn )642

⇔ { definition of |!w }643

for all (w ,w1, . . . ,wn ) ∈ Wλ, (M ,W ) |!wk ξk , for any k ∈ {1, . . . ,n}644

⇒ { (⋆)}645

for all (w ′,w ′
1, . . . ,w

′
n ) ∈ W ′

ϕMS(λ), (M ′,W ′) |!w ′
k ξk , for any k ∈ {1, . . . ,n}646

⇔ { definition of |!w ′}647

(M ′,W ′) |!w ′
[ϕMS(λ)](SenHI (ϕ)(ξ1), . . . , SenHI (ϕ)(ξn ))648

⇔ { definition of SenHI (ϕ)}649

(M ′,W ′) |!w ′
SenHI (ϕ)([λ](ξ1, . . . , ξn ))650

The proof step marked with (⋆) above is justified as follows: the (zag) condition guarantees that if there is a set of651

transitions from w in the abstract model, a subset (possibly empty) of corresponding transitions is also present652

in the concrete model from state w ′. Actually, this is an equivalence step, with the implication from right to left653

being just a direct consequence of the (zag) condition. "654

Of course the restriction to positive sentences is also enforced here. If such was not the case the whole argument655

would collapse as existential sentences could be built from universal ones and vice-versa.656

Therefore, we end up with two notions of refinement defined in terms of which transitions are globally657

preserved and in which direction. If one regards ‘boxed’ properties as a sort of (elementary) safety requirements,658

one could state that backward refinement preserves safety. Dually, regarding existential sentences as (elementary)659

liveness requirements, forward refinement preserves liveness. It comes to no surprise that the more common notion660

of refinement, that of backward refinement, preserves safety.661

6. Refinement of specifications662

Until now we have been seeking for suitable notions of equivalence and refinement between models of specifica-663

tions in hybridised institutions. We shall now turn to the specifications themselves, in the sense the word has in664

the tradition of property oriented specification methods (see [ST12] for a recent overview).665

A specification is a collection of properties a system is supposed to obey, i.e. a theory in a suitable institution. Its666

semantics is the class of models satisfying such a theory. Formally, a (non-structured) specification in a institution667

I consists of a pair ((,E ), where ( ∈ SignI and E ⊆ SenI ((). Its (loose) semantics is given by668

– its signature Sig [SP ] ! (, for some ( ∈| SignI | ,669

– its class of models [| SP |] ! {M ∈| ModI (() |: M |!I
( E }.670

Conceptually, [| SP |] can be understood as the class of admissible implementations for the system and, the671

implementation of SP , as one of these models chosen to realise the system. The construction of this particular672

model proceeds by a stepwise refinement process. Formally, we say that SP ′ refines SP via ϕ, in symbols, SP ′ ❀ϕ673

SP , if674

– ϕ ∈ SignI (Sig(SP ),Sig(SP ′)) ,675

– [| SP ′ |] |ϕ⊆ [| SP |], where [| SP ′ |] |ϕ! {ModI (ϕ)(M ) | M ∈ [| SP |]}.676

Note that this is a straightforward generalisation of the notion of simple refinement in algebraic specification e.g.677

[San99], in which case Sig [SP ] ! Sig [SP ′] and ϕ is the identity. Similarly, two specifications SP and SP ′ are678

equivalent up to a signature morphism ϕ : Sig [SP ] → Sig [SP ′] when [| SP ′ |] |ϕ! [| SP |].679

Back to dealing with classes of models, we are also back to the notions of bisimulation and refinement used680

before. Although in process algebra, where such notions were born, their formulation is essentially local (e.g.,681

two processes are bisimilar if their initial states are related by a bisimulation), when reasoning with specifications682
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a notion of initial state is usually absent. This entails the need for a shift of perspective for“globalising” the683

preservation results. In particular, the local characterisation established in Theorem 4.1, can be re-framed as684

follows:685

Theorem 6.1 Let HI be the hybridisation of institution I and ϕ ∈ SignHI ((,(′) a signature morphism. Let686

Bϕ ⊆| W | × | W ′ | be a total and surjective ϕ-bisimulation. Then,687

(M ,W ) |!HI ρ iff (M ′,W ′) |!HI SenHI (ϕ)(ρ) (5)688

Proof. Let us suppose (M ,W ) |!HI ρ, i.e. that for any w ∈| W |, (M ,W ) |!w ρ. Since Bϕ is surjective, for any689

w ′ ∈| W ′ | there is aw ∈| W | such thatwBϕw ′. Since (M ′W ) |!w ρ, by Theorem 4.1, (M ′,W ′) |!w ′
SenHI (ϕ)(ρ).690

Hence (M ′,W ′) |!HI SenHI (ϕ)(ρ). The converse implication is proved similarly using resorting to the totality691

of Bϕ . "692

A similar global characterisation of preservation results for both forward and backward refinements arises as693

a corollary of Theorem 5.1 and its backward counterpart explained in Sect. 5.2.694

Corollary 6.1 Let HI be the hybridisation of an institution I , ϕ ∈ SignHI ((,(′) a signature morphism, (M ,W ) ∈695

ModHI (() and (M ′,W ′) ∈ ModHI ((′) two HI-models and Rϕ :| W | × | W ′ | a relation.696

1. if Rϕ is a surjective forward ϕ-refinement relation, we have that for any ρ ∈ SenHI
⋄ ((),697

(M ,W ) |!HI ρ implies that (M ′,W ′) |! SenHI (ϕ)(ρ).698

2. if Rϕ is a total backward ϕ-refinement relation, we have that for any ρ ∈ SenHI
✷ ((),699

(M ,W ) |!HI ρ implies that (M ′,W ′) |! SenHI (ϕ)(ρ).700

The following results relate specification refinement (❀) with bisimulation and with refinement of specification701

models as previously introduced.702

Theorem 6.2 Let SP ! ((,E ) and SP ′ ! ((,E ′) be two specifications. Then, the following statements are703

equivalent:704

1. SP ❀ϕ SP ′ ,705

2. for any (M ′,W ′) ∈ [| SP ′ |], there is a (M ,W ) ∈ [| SP |] such that (M ,W ) !ϕ (M ′,W ′) witnessed by a total706

and surjective bisimulation.707

Proof. 1 ⇒ 2 By assumption, that for any (M ′,W ′) ∈ [| SP ′ |], ModHI (ϕ)(M ′,W ′) ∈ [| SP |]. By Theorem 3.1,708

there is a model (M ,W ) ∈ [| SP |](! ModHI (ϕ)(M ′,W ′)) such that (M ,W ) !ϕ (M ′,W ′) witnessed by the709

identity relation, a total and surjective bisimulation.710

2 ⇒ 1 Let us consider a model (M ′,W ′) ∈ [| SP ′ |]. By hypothesis there is a (M ,W ) ∈ [| SP |] such that711

(M ,W ) !ϕ (M ′,W ′). Hence by Corollary 6.1, for any ρ ∈ SenHI ((), (M ,W ) |! ρ iff (M ′,W ′) |! SenHI
712

(ϕ)(ρ). In particular, (M ′,W ′) |! SenHI (ϕ)(E ). By Satisfaction Condition we have ModHI (ϕ)(W ′,M ′) |! E ,713

i.e., ModHI (ϕ)(M ′,W ′) ∈ [| SP |]. Therefore SP ❀ϕ SP ′. "714

Theorem 6.3 Let SP ! ((,E ) and SP ′ ! ((,E ′) be two specifications with E ⊆ SenHI
⋄ ((). Then, the following715

statements are equivalent:716

1. SP ❀ϕ SP ′ ,717

2. for any (M ′,W ′) ∈ [| SP ′ |], there is a (M ,W ) ∈ [| SP |] such that (M ,W ) ⇁ϕ (M ′,W ′) witnessed by a718

surjective refinement relation.719

Proof. 1. ⇒ 2. This implication is proved analogously to the implication 1 ⇒ 2 in Theorem 6.2 using the fact720

that (M ,W ) !ϕ (M ′,W ′) implies (M ,W ) ⇁ϕ (M ′,W ′) and also (M ,W ) ↽ϕ (M ′,W ′).721

2. ⇒ 1. Let us consider a model (M ′,W ′) ∈ [| SP ′ |]. By hypothesis there is a (M ,W ) ∈ [| SP |] such that722

(M ,W ) ⇁ϕ (M ′,W ′). Hence by item 1. of Corollary 6.1, for any ρ ∈ SenHI
⋄ ((), (M ,W ) |! ρ implies723

that (M ′,W ′) |! SenHI (ϕ)(ρ). In particular, (M ′,W ′) |! SenHI (ϕ)(E ). The Satisfaction Condition entails724

ModHI (ϕ)(W ′,M ′) |! E , i.e., ModHI (ϕ)(M ′,W ′) ∈ [| SP |]. Therefore SP ❀ϕ SP ′. "725
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Theorem 6.4 Let SP ! ((,E ) and SP ′ ! ((,E ′) be two specifications with E ⊆ SenHI
✷ ((). Then, the following726

statements are equivalent:727

1. SP ❀ϕ SP ′ ,728

2. for any (M ′,W ′) ∈ [| SP ′ |], there is a (M ,W ) ∈ [| SP |] such that (M ,W ) ↽ϕ (M ′,W ′) witnessed by a729

total refinement relation.730

Proof. The proof is analogous to the one of Theorem 6.3 but using, in the implication 2 ⇒ 1, item 2. of Corollary731

6.1. "732

7. Conclusions733

This paper introduced notions of equivalence and refinement for models of hybrid specifications, i.e., specifications734

formalised in hybridised versions of logics used to describe systems’ possible configurations. The definition is735

parametric on precisely the base logic relevant for each application.736

From an engineering point of view, the characterisation of suitable, generic notions of equivalence and refine-737

ment is fundamental to a software design methodology to deal with systems’ reconfigurability in a rigorous way.738

Such a methodology was introduced in [MFMB11], and provided with effective, computer-based proof support739

through the recent implementation [NMMB13] of the hybridisation method in the Hets platform [MML07].740

Current work on this topic includes the study of typical constructions on Kripke structures (e.g. bounded741

morphism images, substructures and disjoint unions) and their characterisation under bisimilarity and refinement.742

Whether the complexity of each hybridised logic can be computed from the complexity of the corresponding base743

logic remains a somehow lateral, but challenging research topic.744
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