
Demonstrating that medical devices satisfy user
related safety requirements

M.D. Harrison1,4, P. Masci1, José Creissac Campos2,3, and P. Curzon1

1Queen Mary University of London, School of Electronic Engineering & Computer
Science, Mile End, London E1 4NS, UK

2Dep. Informática / Universidade do Minho, Braga, Portugal
3HASLab / INESC TEC, Braga, Portugal

4School of Computing Science, Newcastle University, Newcastle upon Tyne NE1 7RU

Abstract. One way of contributing to a demonstration that a medical
device is acceptably safe is to show that the device satisfies a set of
requirements known to mitigate hazards. This paper describes experience
using formal techniques to model an IV infusion device and to prove that
the modelled device captures a set of requirements. The requirements
chosen for the study are based on a draft proposal developed by the US
Food and Drug Administration (FDA). A major contributor to device
related errors are (user) interaction errors. For this reason the chosen
models and requirements focus on user interface related issues.

Keywords: Human error, formal verification, performance, medical devices,
model checking, MAL, PVS

1 Introduction

Regulators in diverse domains, including Aviation, Power Generation and Me-
dicine, are tasked to ensure that system or device developers demonstrate that
risks associated with the device are minimal or “as low as reasonably practica-
ble”. This must be done before the system or device can be deployed in a safety
critical context. Such a demonstration can involve proving that the device sat-
isfies a set of safety requirements, designed to mitigate identified hazards (see
[12]). The FDA has produced one such set of requirements in draft documenta-
tion [2] with a focus on medical devices, particularly infusion pumps. This paper
is concerned with how to demonstrate that a device satisfies requirements, em-
phasising those that are user related. FDA guidelines propose that validation is
“highly dependent upon comprehensive software testing, inspections, analyses
and other verification tasks performed at each stage of the software develop-
ment cycle” [19]. The data produced for such validation is usually substantial.
The problem with testing (as has been noted often) is that it does not prove
the absence of bugs. Formal techniques provide additional information. They
are concise, precise and exhaustive. However they have the disadvantage that,
with currently available tools, they are not easy to use.

Preprint of the paper published in Software Engineering in Healthcare (FHIES/SEHC 2014),
volume 9062 of Lecture Notes in Computer Science, pages 113-128. Springer, 2017. The final
publication is available at Springer via: http://dx.doi.org/10.1007/978-3-319-63194-3_8.

2 Harrison, Masci, Campos and Curzon

This paper demonstrates the use of formal techniques to provide assurance
that a user related subset of the FDA requirements are true of an IV infusion
pump. A formal model of the pump is used to prove properties that capture
these requirements. The paper describes the steps taken to demonstrate that the
requirements are satisfied. These steps include demonstrating that: the model is
a faithful representation of the device; the chosen requirements are equivalent
to the proved properties; and that the properties are true of the model. While
it is not possible to describe this process in detail, given space constraints, the
paper aims to illustrate the approach to indicate its feasibility. Prospects for
widespread adoption of formal techniques are also briefly discussed. This work
progresses an agenda suggested by the FDA’s use of formal techniques [11].
Section 2 sketches the infusion pump example. Section 3 to 5 are concerned with
issues associated with producing a model that is a faithful representation of the
device to be assessed. Section 6 suggests formalisations of the requirements that
were used as a basis for proof. Section 7 briefly explores the proofs that were
produced. The final section o↵ers discussion and conclusions.

2 The medical example

The chosen device (the Alaris GP infusion pump [4] — see Figure 1) has charac-
teristics that are common to many devices that control processes over time. The
clinician user sets infusion pump parameters and monitors the infusion process
using the device. A model of the particular pump had already been developed
[8]1 as part of a general analysis of usability properties of the device. The Alaris
GP has two basic modes (besides the o↵ mode): infusing and holding. These each
have sub-modes. In the infusing mode the volume to be infused (vtbi) is pumped
into the patient intravenously according to an infusion rate. In infusing mode the
vtbi can be exhausted, in which case the pump continues in KVO (Keep Vein
Open) mode and sets o↵ an alarm. In holding mode the device is not infusing
and values and settings can be changed. The complexity of the interface to this
device (and other members of the Alaris family of pumps) is mainly concerned
with what is possible in holding mode where values and settings can be changed
using a combination of function keys and chevron buttons (for the device layout,
see Figure 1). A subset of the features that can be changed in holding mode can
also be changed when infusing. Chevron keys are used to increase (fup/sup), or
decrease (fdown/sdown), entered numbers incrementally. Holding the chevron
key down may have the e↵ect of accelerating the size of the increment or decre-
ment. The details of this acceleration, if any, depends on the chevron key and
the type of pump variable being entered. The current data entry mode governs
whether the chevron buttons can be used to change infusion rate, vtbi and time,
or alternatively allow the user to move between options in a menu, for example
in bag mode and in query mode. Bag mode allows the user to select from a set
of infusion bag options, thereby setting vtbi to a predetermined value. Query
mode, invoked by the query button, generates a menu of set-up options. The

1 The models can be found at http://hcispecs.di.uminho.pt.

medical devices satisfy user related safety requirements 3

Fig. 1. Actions and attributes used to model the Alaris pump

set of available options depends on how the device is configured by the manu-
facturer. Options include locking the infusion rate, disabling the locking of it,
setting vtbi and time rather than vtbi and infusion rate, and changing the units
of volume and infusion rate. The device allows movement between display modes
via three function keys (key1 , key2 and key3). Each function key has a display
associated with it indicating its present function (fndisp1 , fndisp2 and fndisp3).

3 Modelling infusion devices: background and approach

3.1 Background

There are a number of ways in which requirements can be proved of a device
using formal techniques. One way of doing this is to develop the device formally
by refining the model as supported by tools such as Event B [1]. An initial model
is first developed that specifies the device characteristics and incorporates the
safety requirements. This initial model is gradually refined using details about
how specific functionalities are implemented. This is not a realistic approach in
the present case because the device had already been developed. Indeed such
techniques are not currently used outside a research context. Alternatively a
model could be generated from the code of an existing device, using a set of
transformation rules that guarantee correctness. This is discussed in [10]. This
approach was not feasible for the present study because the relevant code was not
available. However it is a valuable and e↵ective means of analysing requirements,

4 Harrison, Masci, Campos and Curzon

and has been demonstrated for the number entry components of an infusion
pump, see [15].

Proving that the model is correct with respect to the device can be achieved
systematically through refinement and the development of models from code.
Without either option being available, a model was developed by hand. This
was achieved using a combination of user manuals, simulations and the device
itself. In fact, in this case, the model had previously been developed for other
purposes without the particular FDA requirements in mind. It had been used to
analyse properties of the interactive modes that were described in the previous
section. This analysis had considered whether modes were supported by the
device without ambiguity, see [8]. For the present purpose this model was further
developed to allow analysis of the details of the number entry system required
to prove the FDA requirements.

Fidelity of the model to the implemented device was demonstrated by proving
a range of properties. States of the modelled device were examined by compar-
ing the traces of actions produced by the model checker, as counter-examples
for these properties, with actual sequences generated by the device itself. A pro-
totype was also produced automatically from the model to compare the “look
and feel” of the actual device with the prototype, see [14] for details. The traces
and simulations were produced at a level that meant they were indistinguishable
from the physical device. The only di↵erence between the simulation and the
device was that no drug was infused, no connection was made to the patient and
the precise timings di↵ered. Time will be discussed briefly later. The simulations
were generated with the aim that they could be explored by regulator or manu-
facturer. It is of course the case that they only allow an exploration of the paths
that the regulator chooses to explore. Simulation can also be used to illustrate
what the failure of a property means. Part of the argument to the regulator that
this is acceptable may then involve a demonstration of the features of the device
that fail the requirement, showing that they do not present a risk.

Proving requirements has been the focus of previous work. For example, a
mature set of tools have been developed by Heitmeyer’s team using SCR [9].
Their approach uses a tabular notation to describe requirements which makes
the technique relatively acceptable to developers. Combining simulation with
model checking is the focus of [7]. Recent work concerned with simulations of
PVS specifications provides valuable support to this complementarity [14].

3.2 Modelling and analysis of the infusion pump

The process of proving FDA requirements described in this paper involves a
sequence of steps. These are as follows.

1. Developing a model of the device. Modelling involves two stages. First a
version is produced to be analysed using model checking. Second the model is
transformed systematically into a form to be analysed using theorem proving.

2. Validating the model against the physical device. This is done using a com-
bination of plausibility properties and simulation based on the model.

medical devices satisfy user related safety requirements 5

3. Formalising the requirements. This involves two stages. The first stage dis-
ambiguates the requirement in a form that can be transformed into a device
specific property. This formalisation is described in more detail in [13]. The
second stage involves refining the formalised requirement to be specifically
about the Alaris device. This process is typically interactive and in principle
involves discussion with both human factors specialists, checking the validity
of the interpretation of the user-related requirement, and regulator to check
that the property captures the spirit of the original requirement.

4. Proving the property. Finally prove the property by model checking or the-
orem proving. In the example, all the formalised requirements were proved
using both technologies except those that involve full number entry which
could only be proved using theorem proving.

The purpose of the paper is to show how these concrete steps were taken. Some
details of the di↵erent notations and approaches are skimmed for reasons of
space.

4 Developing a model of the device

The first step involved producing a model that could be analysed using model
checking. This technology has the advantage that, since it is algorithmic, proof
does not require a human prover. Theorem proving, on the other hand, usually
requires proof guidance. The ingenuity in model checking is to formulate the
properties appropriately and to interpret the results. The model under analysis
had been developed in two parts. A generic “pump” component was developed
that could be reused in other models. For example the BBraun infusion pump
has also been studied in detail [8] and uses the same component. The Alaris
version of the model focuses on mode behaviour. Proof with it is not tractable
if the full number entry features of the model are also incorporated. To achieve
tractability, token values were assumed for pump variables: vtbi, infusion rate,
time and volume infused. They are taken to be integers in the range 0 . . . 7. These
simplifications do not a↵ect the mode behaviour of the device. The model used
for the initial analysis was described in Modal Action Logic (MAL) [3] using
the IVY tool [8]. MAL is a simple state transition language, easily translated
from state transition diagrams or the SCR tabular format [9]. The notation is
used because it is of a type that is more readily acceptable by developers. The
MAL model is translated into NuSMV [5]. The properties that translate the
requirements are expressed in CTL (see [6]). The following MAL modal axiom,
involved in proving the requirement discussed in Section 7.1, describes conditions
in which the button key1 has the e↵ect of confirming a device reset.

topline = clearsetup ! [key1]
topline 0 = holding & middisp[drate]0 &
middisp[dvtbi]0 & !middisp[dtime]0 &
middisp[dvol]0 & !middisp[dbags]0 &
!middisp[dkvorate]0 & !middisp[dquery]0 &

6 Harrison, Masci, Campos and Curzon

fndisp1 0 = fvol & fndisp2 0 = fvtbi &
fndisp3 0 = fnull & entrymode 0 = rmode &
!rdisabled 0 & onlight 0 & pauselight 0 &
!runlight 0 & e↵ect(device.reset) & keep(bagscursor , rlock)

This axiom describes (to the right of [key1]) the e↵ect of action key1 . The
expression to the left of the action (topline = clearsetup) states the condition
under which the behaviour described for the action is performed. Hence, when
the top line of the display shows “clear setup”, and the action is invoked, then the
expression on the right hand side describes the behaviour. Most of this behaviour
changes the interface by defining values for attributes: middisp, topline, fndisp1 ,
fndisp2 , fndisp3 , onlight , pauselight , runlight . The priming of an attribute (for
example, topline 0) indicates that the action changes the value of that attribute.
The action key1 also changes the mode of the device (entrymode) to allow entry
of infusion rate (rmode). It also invokes a generic pump action (device.reset) that
initialises all the pump variables. This action reset is accessed in the reusable
pump component which is identified as device in the MAL specification. The
keep(. . .) expression specifies which attributes are not a↵ected by the action
and remain unchanged.

The MAL model focuses on interface features and the modes of the device,
describing concretely how actions change the display and modes of the device.
It has a simple discrete model of time. An action tick increments time as the
infusion process continues, or while the device is paused. In the latter case the
value of time is used to determine how long the pause has been. This model,
even without full number entry, requires substantial processing for analysis –
between one and two hours per property on a typical desktop computer.

A second model was developed by translating the MAL systematically into
PVS [18] (a theorem proving system). The PVS specification allows the anal-
ysis in principle of properties involving infinitely many states. The equivalent
specification for the fragment described above is:

key1_case_clearsetup(st: (per_key1)):alaris =
st WITH [topline := holding,
middisp := LAMBDA(x: imid_type):
COND x = drate -> TRUE,
x = dvtbi -> TRUE, x = dvol -> TRUE,
x = dtime -> FALSE, x = dbags -> FALSE,
x = dkvorate -> FALSE, x = dquery -> FALSE ENDCOND,
device := reset(device(st)),
fndisp1 := fvol, fndisp2 := fvtbi, fndisp3 := fnull,
entrymode := rmode]

The PVS theory captures all the characteristics of the MAL model, includ-
ing time, but also includes a full number entry model. The PVS features that
correspond to MAL elements can be clearly seen in the specification. This func-
tion key1 case clearsetup is invoked in the more general key1 function when
the condition topline(st) = clearsetup is true. The function has domain

medical devices satisfy user related safety requirements 7

(per key1) hence it is only permitted when key1 is accessible to the user. The
reason for having two models was that the counter-example approach supported
by model checking facilitated analysis of the plausibility of the model and also
refinement of the requirements in the early stages of development.

5 Validating the model against the physical device.

Plausibility was investigated first by checking properties and then by exploring
the model through simulation. This simulation process is described in [14]. A
typical example of a property checked that, once relevant pump variables had
been entered, infusion would lead to a state in which the volume infused was
equal to the vtbi.

AG(device.infusionrate = 1 & device.vtbi = 7 !
AG(device.volumeinfused != 7))

Properties such as these are expressed as negations in order to construct a
counter-example that has the required properties. This property asserts that
it is always the case for all paths that if infusion rate is set to 1 (a token) and
vtbi is set to 7 then a state cannot be reached in which volume infused is 7.
This property does not depend on the details of the device interface, depending
only on the generic pump model, but produces results that enable an analysis
of the interface, making possible a comparison between alternative interfaces.
As expected, the property fails when checked and produces a trace of steps in
which the infusion rate is set to 1 and vtbi is set to 7. It indicates that once this
has happened eventually the device is set to infuse and then after more steps a
state is reached where the volume that has been infused becomes 7. The trace
can be compared with the actual device, thereby providing a visualisation of one
possible path in the model.

The model checker (NuSMV [5]) accepts a finite state model and analyses
it exhaustively to prove or disprove a property. Other model checkers exist that
are not limited to finite state models but these do not significantly improve
performance. They can complete the analysis in a reasonable time only if the
models are not too large or complicated [7].

6 Formalising Requirements

Five FDA requirements described in [11] mitigate user related hazards:
R1 Clearing the pump settings and resetting of the pump shall require confir-
mation.
R2 The pump shall issue an alert if paused for more than t minutes.
R3 If the pump is in a state where user input is required, the pump shall issue
periodic alerts/indications every t minutes until the required input is provided.
R4 The flow rate for the pump shall be programmable.
R5 To avoid accidental tampering of the infusion pump’s settings such as flow

8 Harrison, Masci, Campos and Curzon

rate/vtbi, at least two steps should be required to change the setting.
Further requirements were added based on templates supported by the IVY tool
[8]. They mitigate various use or “interaction” hazards for infusion pumps iden-
tified in the hazard analysis presented in [16].
R6 Whenever a pump variable is being entered, the variable should be clearly
identified and its current value visible to the user.
R7 The current mode should be clearly identified. Changes in mode therefore
should have perceivable feedback to that e↵ect.
R8 Confirmation of number entry should be achieved using a consistent action.
R9 Any data entry action can be reversed.
Before these requirements can be proved of the model it is necessary to consider
precisely how the requirements should be interpreted. For reasons of space a
subset of the requirements (R1, R2, R4 and R9) is considered. The formalisation
uses a PVS like specification that combines a functional notation similar to that
used in programming languages, typically used by engineers, with logic connec-
tives such as AND (conjunction), OR (disjunction) => (implication). Precision is
achieved by defining abstractions that can be more readily understood and ex-
pressed as properties that can be proved of either the MAL or PVS models. The
formalisation must capture the essence of the requirements as understood both
by the regulator who developed it in the first place and the human factors spe-
cialists who can comment on the user aspects of the requirements and whether
they are fulfilled by the specific properties of the device. The formalisation must
not be biased towards a particular make of device.

6.1 R1: Clearing the pump settings and resetting of the pump shall
require confirmation.

This requirement aims to prevent users changing infusion settings inadvertently.
The state in which the particular pump variable is ready to clear is described by
the predicate: pumpvariable ready to clear. The clear setting action for
the device does not update the value until a confirm action has taken place.
Any other action (no confirm), permitted by the device when clear setting
has occurred, has no e↵ect on the pump variable if taken. Each pump setting is
dealt with individually and, for pump variable vtbi, can be expressed as follows:

vtbi_ready_to_clear(st, x) AND x /= 0 =>
(clear_setting_vtbi(st)‘vtbi = x AND
confirm_action(clear_setting(st))‘vtbi = 0 AND
no_confirm(clear_setting(st))‘vtbi = x)

where: st is the current state of the device; vtbi is the state attribute that
correspond to the considered pump variable; and x is the value of the considered
pump variable before resetting.

medical devices satisfy user related safety requirements 9

6.2 R2: The pump shall issue an alert if paused for more than t
minutes.

R2 requires that the user is alerted if the device is left unattended during data
entry, as might occur if the clinician is interrupted. This requirement can be
formulated as:

user_input_strictly_overdue(st) => alert(st)

where user input strictly overdue is true if the device has been paused with-
out activity for a specified period. This predicate can be expressed in more detail
as:

user_input_strictly_overdue(st) = paused(st) AND
elapsed(st) > timeout

paused and elapsed will have specific meanings for the particular infusion
pumps. alert(st) describes an appropriate alert produced by the device.

6.3 R4: The flow rate for the pump shall be programmable.

This safety requirement ensures that any value for the flow rate can be pro-
grammed. The formalisation of the requirement indicates an inductive argument
that proves there is always a sequence of actions to reach a particular value of
the infusion rate. If the device is ready to enter the rate then there is always an
action that will take the flow rate closer to the expected rate, and eventually
the intended rate will be reached. For the illustrative purposes of the paper a
simpler version of the requirement is adopted that demonstrates only that the
flow rate gets closer to the expected rate (e) expressed as

FORALL (st: State, e: infusion_rate):
rate_entry_ready(st) =>
EXISTS (a: State -> State): (current_display_rate(st) > e =>
(current_display_rate(st) - e > current_display_rate(a(st)) - e))
AND (current_display_rate(st) < e =>
(current_display_rate(st) - e < current_display_rate(a(st)) - e))

The attribute current display rate is a visible representation of the current
infusion rate.

6.4 R9: Any data entry can be reversed

It seems desirable that for any number entry action there is an action that will
reverse the action. This can be expressed as:

ready_to_enter_pump_variable =>
FORALL (act1: State -> State): EXISTS (act2: State -> State):
act2(act1(st))‘pump_variable = st‘pump_variable

This formulation reveals interesting features of many of the number entry schemes
for infusion pumps, because, as discussed below, in general this simple notion of
reversability is not possible.

10 Harrison, Masci, Campos and Curzon

7 Proving Requirements

Theorem proving uses natural deduction to do proof. Induction can be used to
prove general properties over very large numbers of states. For this reason prop-
erties can be proved that are beyond the capacity of readily available computers
using model checking. Setting up the induction and guiding the proof requires
skill. When a proof fails it can be di�cult to see why it has gone wrong and
what must be done to remedy it — a process that is relatively straightforward
using a model checker through available counter-examples.

Proof by model checking provides clear counter-examples that aid diagnosis
and reformulation of models and properties. Proof by theorem proving is faster
but failure requires more skill to interpret. In the present case the two safety
requirements (R4 and R9), that require precise modelling of the number entry
system of the device, could not be proved using model checking. R1 and R2
could be proved using both model checking and theorem proving. Model checking
required approximately 90 minutes using an Intel 2.4 GHz i5 with 8GB of RAM
(1333 MHz DDR3) when the properties are taken individually.

The first stage in proving a requirement is to take the formalisations discussed
in Section 6 and to further refine them as properties of the particular device.

7.1 Proving R1: Clearing the pump settings and resetting of the
pump shall require confirmation

The Alaris device is ready to clear vtbi when the device is powered on and in the
holding state. The pump variable needs clearing so should be non-zero. Relevant
state attributes for expressing whether the pump is infusing and switched on are
infusing? and powered on. The vtbi ready to clear predicate is therefore:

vtbi_ready_to_clear(st: alaris, x: ivols): bool =
NOT device(st)‘infusing? AND device(st)‘powered_on? AND
device(st)‘vtbi=x AND x \= 0

clear setting(st: alaris): alaris = on(on(st)) because on switches the
device o↵ if switched on and vice versa. clear user confirm(st: alaris):
alaris = key1(st). That key3 is the only other available action is checked by
the predicate no confirm expressed as:

no_confirm(st: alaris): alaris =
NOT (per_sup(st) OR per_fup(st) OR per_sdown(st) OR per_fdown(st) OR
per_key2(st) OR per_query(st) OR per_run(st) OR per_pause(st))

Here per action is true if action is permitted to have an e↵ect. The theorem
combines these elements:

R1vtbi: THEOREM
FORALL (st: alaris, x: ivols):
LET stprime=clear_setting(st) IN (vtbi_ready_to_clear(st,x) =>

medical devices satisfy user related safety requirements 11

(topline(stprime) = clearsetup AND device(stprime)‘vtbi=x
AND no_confirm(stprime) AND device(key1(stprime))‘vtbi=0
AND device(key3(stprime))‘vtbi=x))

The assertion captured in the theorem is required to be proved of all states
and is easy to prove in PVS. The general purpose proof command grind proves
the theorem. In most other theorems it is necessary to restrict the proof to
reachable states. This must be done explicitly when theorem proving but is
checked automatically by the model checker.

7.2 Proving R2: The pump shall issue an alert if paused for more
than t minutes

The user input strictly overdue predicate is defined as:

user_input_strictly_overdue(st: alaris): bool =
device(st)‘powered_on? AND NOT device(st)‘infusing? AND

(device(st)‘elapse > timeout)

The attribute elapse specifies the time since the user last used the device when
in holding mode. elapse is incremented when the device is paused each time the
tick action is invoked. The alert is specified as: alert(st: alaris): boolean
= topline(st) = attention. The assumption is that the alert is only indicated
by an appropriate top line on the display. In reality there is also an audible alarm.
These additional features are easily modelled. The assertion that is to be proved
refines the property of Section 6.2 as follows.

R2assertionwithouttick(st: alaris): boolean =
user_input_strictly_overdue(st) => alert(st)

The theorem is formulated as a structural induction. It requires that, over all
states that can be reached from the initial state by an Alaris action, the assertion
is true. The predicate alaris transitions expresses this reachability property:

alaris_transitions

(pre, post: alaris): boolean =

(per_sup(pre) & post = sup(pre)) OR (per_fup(pre) & post = fup(pre)) OR

(per_sdown(pre) & post = sdown(pre)) OR

(per_fdown(pre) & post = fdown(pre)) OR

(per_tick(pre) & post = tick(pre)) OR (per_key1(pre) & post = key1(pre)) OR

(per_key2(pre) & post = key2(pre)) OR (per_key3(pre) & post = key3(pre)) OR

(per_query(pre) & post = query(pre)) OR post = on(pre) OR

(per_run(pre) & post = run(pre)) OR (per_pause(pre) & post = pause(pre))

The state pre is associated with the state post by an action that is permitted by
the device. The appropriate permission predicate is omitted when the action is
always permitted. The theorem that uses the structural induction is as follows.

12 Harrison, Masci, Campos and Curzon

R2withouttick: THEOREM
FORALL (pre, post: alaris):
(init?(pre) => R2assertionwithouttick(pre)) AND
((R2assertionwithouttick(pre) AND
alaris_transitions(pre, post)) => R2assertionwithouttick(post))

7.3 Proving R4: The flow rate for the pump shall be programmable

The components required in the formalisation are as follows.

rate_entry_ready(st: alaris): boolean =
switchedon?(st) AND NOT rlock(st) AND
(((entrymode(st) = rmode) AND (topline(st) = holding)) OR
((entrymode(st) = infusemode) AND (topline(st) = infusing)))

The device is ready to accept a rate value when: the device is switched on;
infusion rate is not locked; and the top line shows holding or infusing. Further
redundant constraints are included relating to entry mode to focus the states
under consideration in the proof.

Two possible actions are dealt with in the theorem. If the expected rate
exceeds the current display rate then the single chevron up key moves the current
display rate closer to the expected rate. On the other hand if the current display
rate exceeds the expected rate the single chevron down will get the current
display rate closer. This theorem could be extended by using the size of the
di↵erence to use double or single chevron keys. However a simpler version of the
requirement is adopted that nevertheless fulfils the requirement. The current
display rate is defined for the Alaris as: current display rate(st: alaris):
irates = device(st)‘infusionrate The theorem is based on the formulation
of Section 6.3.

R4: THEOREM
FORALL (st: alaris, expected_rate: irates):
(rate_entry_ready(st) =>
(((expected_rate > current_display_rate(st)
AND per_sup(st) =>
(expected_rate - current_display_rate(sup(st))) <
(expected_rate - current_display_rate(st)))) AND
((expected_rate < current_display_rate(st)
AND per_sdown(st) =>
(current_display_rate(sdown(st)) - expected_rate) <
(current_display_rate(st) - expected_rate)))))

An element of the theorem, not expressed in the formulation of Section 6.3,
checks that the action is available to the user before applying it.

medical devices satisfy user related safety requirements 13

7.4 Proving R9: Any data entry action can be reversed.

Reversability of number entry actions is only true in limited situations. For
example:

– Applying double chevron up to 99 and then applying double chevron down
produces 90.

– Applying double chevron down to 100 and then applying double chevron up
produces 91.

– Applying single chevron up to 99.9 and then applying single chevron down
produces 99.

– Applying single chevron down to 100 and then applying single chevron up
produces 99.9.

These anomalies arise because there are thresholds in which the e↵ect of the
chevron action changes. The e↵ect of the action depends on the current value
within that threshold. Hence because 99.9 is less than 100 single chevron up
increments by 0.1. But now it is greater than or equal to 100, so single chevron
down decrements by 1. These anomalies were “discovered” through a process
of trial and error, successively reformulating the theorem until it was proved
true. One of the several theorems proved in this category, which elaborates the
formulation of Section 6.4, is:

R9ratesdownsupqpt1: THEOREM
FORALL (st: alaris):
(rate_entry_ready(st) AND
per_sup(st) AND per_sdown(release_sup(sup(st))) AND
(device(st)‘infusionrate >= 0) AND
((device(st)‘infusionrate + small_step/10) <100) AND
(floor(device(st)‘infusionrate*10) =
device(st)‘infusionrate*10) AND
(ceil_rate(device(st)‘infusionrate*10) =
device(st)‘infusionrate*10))
=> device(release_sdown(sdown(
release_sup(sup(st)))))‘infusionrate =
device(st)‘infusionrate)

rate entry ready is as specified in the case of R4 and small step is defined to
be 1. Further clauses in the theorem are concerned with (1) a�rming that the
appropriate number entry action is available to the user; (2) specifying that the
number is expressed with no greater precision than one decimal place and (3)
including the release action that is required after pressing any chevron button
to indicate that the button has been released (note that any chevron button
can be held down, thereby increasing the size of the increment or decrement
achieved by the button). This theorem is true for all states without the need for
induction. However constraint of the numbers to one decimal place is required
in the proof. This is a property of the number entry system on the Alaris that

14 Harrison, Masci, Campos and Curzon

should be proved and would require a structural induction to prove it. Similar
parts of the theorem have been proved for the ranges 100 to 1000 and greater
than 1000.

Proof of the last requirement, with all its qualifications, is of little value as
an assurance that number entry actions are easily reversible by users. The qual-
ifications that were developed in attempting to prove the theorem were however
valuable in understanding the characteristics of the number entry system. Indeed
formulating and proving the theorem raises questions as to whether the device is
acceptable or whether it is likely to lead to interaction error. It should be noted
that the latest release of Alaris firmware has fixed these inconsistencies.

8 Discussion and Conclusions

Demonstrating that the design of a medical device has been constructed to re-
duce the probability of interaction error to “as low as reasonably practicable”
is a serious issue. It is estimated that there were 56,000 adverse event reports
relating to infusion pumps between 2005 to 2009 in the United States includ-
ing at least 500 deaths. This has resulted in 87 infusion pump recalls to address
identified safety concerns, according to FDA data. Of these adverse event reports
interaction error has been a significant factor. The documentation provided by
manufacturers to regulators as part of a safety argument is usually substantial.
However, the scale of the argument inevitably makes it di�cult for regulators to
comprehend them and to be confident that the evidence provided is of satisfac-
tory quality. The use of formal techniques has a number of potential advantages.
(1) It is precise and concise. (2) Tools like model checkers and theorem provers
provided to support them enable mechanical and exhaustive verification. (3)
The use of simulation techniques combined with the specification can clearly
demonstrate how potential problems are addressed.

There are however obstacles to the immediate take-up of these facilities.
They are not currently part of a typical developer’s suite of tools. They are not
currently used in product development. However there are signs of interest in
these techniques. For example the FDA has developed generic PCA models [17]
using simulink. A number of universities have demonstrated the role of a variety
of formal verification techniques in relation to medical devices.

This paper has described one experience using formal verification technolo-
gies to verify draft FDA safety requirements for a commercial medical device.
Examples were illustrated in detail to explore three key verification challenges:
how to validate a model and show that it is a faithful representation of the de-
vice; the benefits of formalising requirements given in natural language; how to
prove requirements on realistic models of devices. Our main contribution is to
demonstrate how to achieve the FDA’s agenda of using formal methods that can
support the approval process for real medical devices. In particular requirements
related to interaction issues have been formalised and verified.

An important issue that has not been fully resolved is how to check that a
model is a faithful representation of the device. In this case model checking of

medical devices satisfy user related safety requirements 15

properties combined with simulation was used to support this process by gener-
ating traces to be validated on the device. However, manufacturers have access
to source code and therefore they can create faithful models systematically. An
important issue not addressed here is how to validate that the considered set
of safety requirements correctly address the usability and safety of the device
for the context in which the device is to be used. This problem is orthogonal
to the techniques presented in this paper. Safety aspects can be addressed with
a human factors emphasis using a hazard analysis such as the one presented in
[14].

Formalising the requirements provides benefits in addition to the ability to
prove them. It led to much more detailed thinking about the precise nature of
the requirements, both in general and for a specific device under test, than was
possible in the informal natural language version. The pragmatic and informal
combination of model checking and theorem proving provided powerful tools
for analysis. By using each flexibly for requirements they were suited to, rather
than ideologically favouring one for all requirements, or trying to combine them
into a single tool applying both, it was possible to prove the requirements with
minimum e↵ort. One potential drawback of this approach is the need to master
the two verification techniques. Indeed, both verification methods currently re-
quire significant skills for analysis. However, we have observed recurrent patterns
in the structure of the formal models of devices from di↵erent manufacturers,
and in the strategies needed to complete verification of several types of safety
requirements. Therefore there are clear opportunities to create a reference tem-
plate that can be used to automate the approach and thus reduce the analysis
e↵ort.

Acknowledgements This work has been funded by the EPSRC research grant
EP/G059063/1: CHI+MED (Computer–Human Interaction for Medical Devices).
J. C. Campos was funded by project NORTE-07-0124-FEDER-000062.

References

1. J-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

2. David Arney, Raoul Jetley, Paul Jones, Insup Lee, Oleg Sokolsky, Arnab Ray,
and Yi Zhang. Generic infusion pump hazard analysis and safety requirements.
Technical Report MS-CIS-08-31, University of Pennsylvania, February 2009.

3. J. C. Campos and M. D. Harrison. Interaction engineering using the IVY tool.
In G. Calvary, T.C.N. Graham, and P. Gray, editors, Proceedings of the ACM
SIGCHI Symposium on Engineering Interactive Computing Systems, pages 35–44.
ACM Press, 2009.

4. Cardinal Health Inc. Alaris GP volumetric pump: directions for use. Technical
report, Cardinal Health, 1180 Rolle, Switzerland, 2006.

5. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. NuSMV 2: An Open Source Tool for Symbolic Model
Checking. In K. G. Larsen and E. Brinksma, editors, Computer-Aided Verification

16 Harrison, Masci, Campos and Curzon

(CAV ’02), volume 2404 of Lecture Notes in Computer Science. Springer-Verlag,
2002.

6. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
7. G.E. Gelman, K.M. Feigh, and J. Rushby. Example of a complementary use of

model checking and agent-based simulation. In Systems, Man, and Cybernetics
(SMC), 2013 IEEE International Conference on, pages 900–905, Oct 2013.

8. M.D. Harrison, J.C. Campos, and P. Masci. Reusing models and properties in
the analysis of similar interactive devices. Innovations in Systems and Software
Engineering, pages 1–17, April 2013.

9. Heitmeyer, J. C., Kirby, and B. Labaw. Applying the SRC requirements method
to a weapons control panel: an experience report. In Proceedings of the Second
Workshop on Formal Methods in Software Practice (FMSP ’98), pages 92–102,
1998.

10. G. J. Holzmann. Trends in software verification. In Keijiro Araki, Stefania Gnesi,
and Dino Mandrioli, editors, FME 2003: Formal Methods, volume 2805 of Lecture
Notes in Computer Science, pages 40–50. Springer Berlin Heidelberg, 2003.

11. R. Jetley, S. Purushothaman Iyer, and P.L. Jones. A formal methods approach to
medical device review. Computer, 39(4):61–67, 2006.

12. N. G. Leveson. Engineering a Safer World: Systems Thinking Applied to Safety
(Engineering Systems). MIT Press, 2011.

13. P. Masci, A. Ayoub, P. Curzon, M.D. Harrison, I. Lee, O. Sokolsky, and H. Thim-
bleby. Verification of interactive software for medical devices: PCA infusion pumps
and FDA regulation as an example. In Proceedings ACM Symposium Engineering
Interactive Systems (EICS 2013), pages 81–90. ACM Press, 2013.

14. P. Masci, A. Ayoub, P. Curzon, I. Lee, O. Sokolsky, and H. Thimbleby. Model-based
development of the generic PCA infusion pump user interface prototype in PVS.
In F. Bitsch, J. Guiochet, and M. Kaniche, editors, Computer Safety, Reliability,
and Security, volume 8153 of Lecture Notes in Computer Science, pages 228–240.
Springer Berlin Heidelberg, 2013.

15. P. Masci, Y. Zhang, P. Jones, P. Curzon, and H. W. Thimbleby. Formal verification
of medical device user interfaces using PVS. In ETAPS/FASE2014, 17th Inter-
national Conference on Fundamental Approaches to Software Engineering, Berlin,
Heidelberg, 2014. Springer-Verlag.

16. Paolo Masci, Yi Zhang, Paul Jones, Harold Thimbleby, and Paul Curzon. A Generic
User Interface Architecture for Analyzing Use Hazards in Infusion Pump Software.
In Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer,
editors, 5th Workshop on Medical Cyber-Physical Systems, volume 36 of OpenAc-
cess Series in Informatics (OASIcs), pages 1–14, Dagstuhl, Germany, 2014. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

17. A. Murugesan, M. W. Whalen, S. Rayadurgam, and M. P. E. Heimdahl. Composi-
tional verification of a medical device system. In Proceedings ACM High Integrity
Language Technologies HILT’13. ACM Press, 2013.

18. N. Shankar, S. Owre, J. M. Rushby, and D. Stringer-Calvert. PVS System
Guide, PVS Language Reference, PVS Prover Guide, PVS Prelude Library, Ab-
stract Datatypes in PVS, and Theory Interpretations in PVS. Computer Sci-
ence Laboratory, SRI International, Menlo Park, CA, 1999. Available at http:

//pvs.csl.sri.com/documentation.shtml.
19. US Food and Drug Administration. General principles of software validation; final

guidance for industry and FDA sta↵. Technical report, Center for Devices and
Radiological Health, January 2002. Available at http://http://www.fda.gov/

medicaldevices/deviceregulationandguidance.

