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ABSTRACT
Software developers are more and more eager to understand their
code’s energy performance. However, even with such knowledge
it is difficult to know how to improve the code. Indeed, little tool
support exists to understand the energy consumption profile of a
software system and to eventually (automatically) improve its code.

In this paper we present a tool termed jStanley which automat-
ically finds collections in Java programs that can be replaced by
others with a positive impact on the energy consumption as well as
on the execution time. In seconds, developers obtain information
about energy-eager collection usage. jStanley will further suggest
alternative collections to improve the code, making it use less time,
energy, or a combination of both. The preliminary evaluation we
ran using jStanley shows energy gains between 2% and 17%, and a
reduction in execution time between 2% and 13%.

A video can be seen at https://greensoftwarelab.github.io/jStanley.
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1 INTRODUCTION
Originally, computer performance was the principal concern for
software developers and manufacturers alike. Now, while yet not a
dramatic change, there has been a major shift in focus. Increasing
energy costs related to ICT in organizations [11], data centers [9],
and society’s environmental concerns, are starting to change the
way both computer manufacturers and software engineers are re-
sponding and looking at the issue of software energy efficiency.

While there aremany energy estimation andmeasurement tools [2,
5–7, 15], these do not supply developers with the counseling needed
for energy-aware development. In fact, recent findings [16, 19, 23]
have shown that programmers are aware of the energy consump-
tion problem, many times seeking help in resolving this. There
are many misconceptions within the programming community
as to what causes high energy consumption, how to solve these
issues, and expressed heavy lack of support and knowledge for
energy-aware development.

Pinto and Castor [22] argue that there are two main problems
in regards to energy efficient software development: the lack of
knowledge the lack of tools. They also mention several key points
on energy-related solutions to software engineering, three of these
being: static analysis tools, refactoring, and data structures.

In this paper, in Section 2, we detail our jStanley tool, which
touches on the prior three points. jStanley is a static analysis tool
which suggests a more energy efficient (and/or performance effi-
cient) Java collection, by statically detecting collections used in
a Java project, and which methods are used for each collection.
Using this information, it not only suggests a better alternative,
but can automatically change the code with the new collections if
the programmer chooses so. However, it is not possible to always
guarantee the change to best collection is a refactoring as some
collections for instance change the order of the elements.

More specifically, this tool is based on previous work on the in-
fluence of the Java Collection Framework (JCF) in regards to energy
consumption [21], where energy consumption and performance
profile tables were attributed to each of the JCF’s collections (Lists,
Sets, and Maps), down to a method level.

We have ran an initial evaluation with 7 publicly available Java
projects used in other research works and, using jStanley, improved
the energy consumption between 2% and 17%. The execution time
has also decreased between 2% and 13% (Section 3).

We conclude our paper with Section 4 describing related work,
and Section 5, summarizing our paper and looking at future work.
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2 JSTANLEY
jStanley1 is a static analyzer developed as an Eclipse plugin since
this is the most used IDE for Java. The tool we propose is capable of
statically detecting the usage of energy-inefficient collections and
suggest better alternatives. It can do the same, but considering the
execution time or both energy and time at the same time. To this
end, it uses information on the energy consumption and execution
time for Java collections [21]. This information can be provided to
the tool through a set of CSV files, one per type of collection (map,
list and set). Each file must contain information about the energy
and time usage for each method of the collection.

jStanley constructs the abstract syntax tree (AST) of the program
being analyzed, traversing it to compute the number of method
calls of a given collection variable. As a result, the tool knows how
many method calls for each variable of a collection the program
has. For instance, for a given program, the tool can tell variable
a of type ArrayList has 3 calls to the method add and 9 to get,
and variable b of type HashMap has 20 calls to put, throughout the
whole program.

Figure 1: jStanley
Eclipse menu

Our tool provides a drop down menu
within Eclipse, as shown in Figure 1, al-
lowing programmers to select their pref-
erences. This menu displays options to
choose if theywish to focus on energy, ex-
ecution time, or both, by choosing Joules,
Milliseconds, or both, respectively. Ad-
ditionally, as we have seen in our previ-
ous study [21], different population sizes
bring about different energy profiles for
collections. Thus, there is also an option
to allow the programmer to choose which of the three options are
closest to what they believe would best represent the program.

Before analyzing a program, the tool loads the data tables (from
CSV files) corresponding to the settings chosen by the programmer.
This information is first normalized by sorting each method from
each collection and attributing a value of 1 to the lowest. After-
wards, each other value is divided by the lowest, obtaining a value
greater than 1 indirectly encoding the percentage of how worse
that collection’s method is to the lowest one. This is done for both
energy and time values, allowing the tool to combine these values
to obtain an overall ranking if both options are chosen to optimize.

The calculated suggestions can be shown visually through source
code flagging, as shown in Figure 2. Here a small flag appears next to
an identified collection which may be changed to a more optimized
one, and shows the programmer the best two alternatives. If the
programmer wishes, they may select the option to change the
collections to the suggested one. It is to note that pure refactoring
properties may not be guaranteed when changing collections, for
example natural sorting in Tree collections, or the non-acceptance
of null values in HashTable collections.

2.1 Implementation
Four tasks divide the tool’s analysis. The first task, Source Code
Analysis, detects existing collections within the program, and all

1jStanley, and other resources for this paper, can be found at: https://github.com/
greensoftwarelab/jStanley

Figure 2: Suggestion flagging and quick-fix

the invocations on these collections. Using the constructed AST,
and the ASTVisitor offered by the Eclipse JDT API, we can easily
visit each variable and method invocation. Using the ASTVisitor,
we collect all the AST nodes which are FieldDeclarations, Vari-
ableDeclarationStatements, and Assignments. These nodes allow us
to determine the data type of a variable and focus on those which
are collections.

Afterwards, we analyze all the MethodDeclaration nodes. Often
times, collections are passed to methods as parameters. Thus, we
also collect all these method references along with the type of
collections passed through, allowing us to match declarations and
method invocations.

Finally, all MethodInvocation nodes are analyzed to determine
which are JCF API methods which may be invoked during the
program’s execution. In these cases, we divide them in two types:
direct and indirect invocations. Direct invocations would be for
example a line of code with students.add();. An indirect invo-
cation represents methods declared throughout the program, in
which a direct invocation may occur. For example, method m1 con-
tains a line with students.add(); students.add(); (two direct
invocations), thus m1 would be an indirect invocation.

The result of this analysis is a list of all the existing collections
within the program, all direct invocations of each collection (and
their source code location), all indirect invocations, and the collec-
tions which are passed as parameters of these indirect invocations.

In the second task,Resolve Invocations, using the information
we now have on all the direct and indirect invocations, we calcu-
late the amount of times each method may be used. For example,
LinkedList.add(); is within method m1. So we know the add()
method on LinkedList will be executed once. But method m1 is
invoked twice within another method, so we may assume the add()
method may be invoked atleast twice, and not only once. Addition-
ally, during an indirect invocation where a collection is passed as a
parameter, a match is also made with our existing list of collections.
This way, we may trace every possible path a collection may go
through and all possible method invocations upon the collection.

Afterwards in the Calculate Cost task, the cost of each collec-
tion, considering all the existing invocations and data tables, is
calculated. jStanley calculates a matrix with all the invocation costs
of each collection and method by multiplying the total number of
invocations of each method by its normalized value.

Finally, in Calculate Suggestions, the sum of all the method
costs are calculated for each collection (representing either the total
cost of energy, time, or both depending on the selected options).
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Table 1: Metrics of the projects evaluated. These metrics were calculated using OpenClover [1]

Project Branches Statements Methods Classes Files Packages LOC
Barbecue (for bar codes) 536 2,536 369 59 59 13 8,838
Battlecry (game) 534 1,800 125 12 11 1 3,343
Jodatime (time library) 5,162 13,318 3,909 242 166 7 70,872
Lagoon (web site maintenance) 1,746 4,211 646 96 81 10 16,922
Templateit (template file generator) 408 1,067 177 22 19 3 3,317
Twfbplayer (game) 684 3,307 777 135 104 12 14,682
Xisemele (XML library) 76 522 250 57 56 3 5,770

Table 2: Evaluation data for the projects

Test Suite Analysis Improvement
Project #Tests %Coverage Analysis (ms) #Changes %PKG (J) %CPU (J) %ms
Barbecue 152 62 2735 14 5.10 5.81 1.70
Battlecry 1* 69.4 514 4 16.79 11.49 12.76
Jodatime 4221 88.5 10490 5 7.21 7.29 7.75
Lagoon 18 4 1513 7 1.55 1.77 2.05
Templateit 3 14 1019 14 6.07 6.05 3.14
Twfbplayer 57 91 3437 51 6.04 6.30 4.36
Xisemele 167 20 588 1 4.25 4.38 3.18

* Instead of unit tests, this project has a simulated execution example

3 VALIDATION
To evaluate our tool regarding the energy savings it promotes, we
selected 7 Java projects which use JCF collections and have either
a test suite or simulated example of the program’s execution. We
obtained these projects from SourceForge [18], a repository for
open-source applications, and from the SF110 corpus of classes [8],
a statistically representative sample of 110 Java projects.

The selected projects and some of their metrics are listed in
Table 1. The projects vary from games to time libraries. The size
and complexity also varies between 3.000 and 70.000 lines of code
(LOC) or between 76 and 5.000 branches in the flow graph control.

We ran jStanley, according to a 25k population size (since we
are using only unit tests which tend to not stress collections as
much), on each project and obtained the list of suggested energy
optimizations, which were automatically applied. For each new
project version, we re-ran the test suite, obtaining exactly the same
results as the original ones. This means that, considering the avail-
able tests, the changes acted as refactorings. The amount of time
spent by our tool to analyze, and the number of suggested changes
are found in Table 2 under the Analysis (ms) and #Changes column.

To measure the energy consumed by each project, before and
after the changes, we used Intel’s Runtime Average Power Limit
(RAPL) [6]. RAPL is an interface provided by (modern) Intel pro-
cessors to allow the access to energy and power readings. RAPL
is capable of providing very fine-grained level measurements as it
has already proven [10, 25]. For our study, we measured 2 RAPL
domains: PKG energy consumed by an entire socket (including the
core and uncore domains); PP0 energy consumed by the CPU core.

This study was executed on a laptop with Ubuntu 14.04.5 LTS,
6GB of RAM, and Intel(R) Core(TM) i5-2430 CPU @ 2.40GHz. Both
the Java compiler and interpreter were versions 1.8.0_101.

We ran each project’s test suite 25 times [13], and for each ex-
ecution, we extracted the energy consumed in Joules (J) for both
RAPL domains, and the execution time in milliseconds (ms). The
number of tests and test coverage percentage are listed in Table 2
under the #Tests and %Coverage column respectively.

The energy consumption improvements are shown in Table 2.
Column %PKG (J) and %CPU (J) show the energy improvement
percentage relative to the original project measured by the package
and CPU respectively. Column %ms shows the time improvement
percentage. Each value is calculated as the average of the 25 ex-
ecutions, excluding outliers, that is, values outside of the range
[Q1− 1.5× IQ,Q3+ 1.5× IQ], where Q1 and Q3 are the first and the
third quartiles, respectively, and IQ = Q3−Q1 [27]. Indeed it is com-
mon to remove outliers for energy measurements [4]. For instance,
we know, from experience, that the first few runs of Java programs
tend to spent more energy than the remaining runs [3, 20, 21].

Using jStanley, we were able to achieve between 2%-17% with
an average of 6.7% energy savings for PKG, and between 2%-11%
with an average of 6.2% energy savings for CPU. Additionally, the
performance was also improved upon with an average of 5%. jStan-
ley spent on average 3 seconds to analyze our projects, with the
fastest and slowest spending 0.5 and 10 seconds respectively.

These values are positive, especially when compared to the little
work required by the developer. Moreover, in some cases the tests’
coverage was small, maybe too small to actually stress the collec-
tions enough to make the gains more evident. Also, the fact that
we used unit tests instead of actual software runs may impact the
results, but most likely in a negative way. A real usage of the appli-
cations would make more use of the collections thus most likely
making the gains higher. In any case, building on these positive
results, we will run an in depth evaluation to fully understand the
potential of jStanley.
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4 RELATEDWORK
There are several recent works showing the impact data structures
have on energy consumption. Pinto et al. [24] specifically studied
the energy efficiency on Java’s thread-safe collections, andwere able
to improve up to 17% energy savings by switching out collections.
Others have focused on map data structures in Android [26], and
offered guidelines for choosing the most appropriate choice if one
is worried about energy consumption. Lima et al. [14] analyzed the
energy behavior of various Haskell sequential and concurrent data
structures. They too were able to show how making changes on
which data structures are used can have large impacts, saving up to
60% of energy in one of their settings. Finally, they argue that tools
to support developers in quickly refactoring a program to switch
between such primitives can be of great help if energy is a concern.

Two very similar studies looked at the influence of the Java Col-
lection framework on energy consumption [12, 21]. While looking
at the problem in two different perspectives, the studies are very
complementary and yet again show how each collection has a dif-
ferent energy footprint depending on what operations and methods
are invoked. The tool we present in this paper is based off of the
methodology presented in the latter work.

Finally, themost similar work to ours is the SEEDS framework [17].
This was the first automated support for optimizing the energy us-
age of applications by making code-level changes. A specific instan-
tiation of this framework was presented by the authors to improve
the energy consumption of projects using Java’s Collections API,
producing good results. While our approach is static and based
off data tables, SEEDS is a dynamic approach which follows a trial
and error method, testing each possible alternative, until the most
energy efficient one is found. While this approach may find the
best alternative collection, it is a time consuming analysis. Both our
studies looked at Jodatime, and while both were able to improve the
energy efficiency by 8%, our static code analysis took 10 seconds
while their approach took 3 hours. For a second common project,
Barbecue, our approach improved it by 6%, taking 3 seconds, while
SEEDS improved it by 17%, but taking again 3 hours. As expected,
a static approach will be faster but not generate as good fits as a
dynamic analysis.

5 CONCLUSIONS AND FUTUREWORK
In this paper we presented jStanley, a tool capable of quickly dis-
covering the usage of energy-inefficient Java collections. It can also
suggest and automatically evolve the code with better alternatives.
The initial evaluation we performed shows promising results with
savings between 2% and 17%.

As future work, we will extend the available collections, consider
their memory usage, and make suggestions of collections of differ-
ent kinds (e.g. list to map), performing the corresponding evolution,
leading to even greater savings.
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