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Well logs are records of petro-physical data acquired along a borehole, providing direct information about what is
in the subsurface. The data collected by logging wells can have significant economic consequences in oil and gas
exploration, not only because it has a direct impact on the following decisions, but also due to the subsequent
costs inherent to drilling wells, and the potential return of oil deposits. These logs frequently present gaps of
varied sizes in the sensor recordings, that happen for diverse reasons. These gaps result in less information used by
the interpreter to build the stratigraphic models, and consequently larger uncertainty regarding what will be
encountered when the next well is drilled.

The main goal of this work is to compare Gradient Tree Boosting, Random Forests, Artificial Neural Networks,
and three algorithms of Linear Regression on the prediction of the gaps in well log data. Given the logs from a
specific well, we use the intervals with complete information as the training data to learn a regression model of
one of the sensors for that well. The algorithms are compared with each other using a few individual example
wells with complete information, on which we build artificial gaps to cross validate the results. We show that the
ensemble algorithms tend to perform significantly better, and that the results hold when addressing the different
examples individually. Moreover, we performed a grid search over the ensembles parameters space, but did not
find a statistically significant difference in any situation.
1. Introduction

The goal of the exploration activities is to identify commercially
viable reserves of oil and gas (McNamara and McKenzie-Brown, 2013).
For such reserves to have accumulated, a set of complex conditions is
necessary that is largely dependent on past geological history, and pre-
sent geological formations and structures. Particular combinations of
potential source and reservoir rocks, together with migration pathways
and trap structures, are needed for the hydrocarbon deposits to occur.
Finding these reservoirs and estimating the likelihood of finding oil and
gas is a technically complex process requiring the use of different tech-
niques, including seismic surveys, drilling, coring, aero-magnetic/gravity
surveys, and exploration and appraisal drilling.

Typically several logs are collected in each well, that complement
each other's information. The data readings are usually acquired through
sensing tools that are lowered into the hole by cable. The data acquired
by each sensor is logged (recorded) at the surface as the tool is pulled up
the hole. During the well drilling it is also possible to acquire data using
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instruments at the bottom of the driller/hole. The term ”well log data” is
then used to refer to data collected in or descriptive of the rock(s) and
fluid(s) surrounding the hole.

These detailed and indirect measurements of rock and fluid properties
in the subsurface typically include i) gamma ray intensity (related to the
types of minerals present); ii) electrical resistance (related to the quantity
and types of fluids); iii) density and iv) porosity (related to the pore-
volume fraction); and v) sonic velocity, also referred to as transit time
which relates to both rock and fluid properties. These are common ex-
amples found in the composite well logs of the North Sea, and merely
illustrate the hundreds of well logs that may be collected.

The collected data frequently present gaps in the sensor recordings.
Well log gaps result in less information on which to base the geoscientific
models, and consequently larger uncertainty regarding what will be
encountered when the next well is drilled. These gaps happen for
different reasons, from tools that fail or malfunction, to operator errors
(for instance, an operator may turn off recording equipment at the wrong
time, or it may be discovered later that the wrong interval was logged). It
7
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Table 1
Data set sample with five records. Each record includes the well Name, Latitude, and
Longitude, as well as the normalised values for the Depth (m) of the readings, the bulk
density (RHOB, g=c3), the sonic log (DT, μs=ft), the gamma-ray (GR, gAPI), and the neutron
porosity (NPHI, v=v).

Well Depth RHOB DT GR NPHI Latitude Longitude

F04-02-A 0.57 0.39 0.19 0.09 0.19 0.804 0.512
F16-03 0.72 0.18 0.18 0.09 0.43 0.801 0.511
F12-01 0.33 0.36 0.32 0.12 0.42 0.803 0.513
F02-05 0.20 0.28 0.29 0.047 0.25 0.805 0.513
F09-03 0.63 0.44 0.19 0.067 0.24 0.804 0.513

Table 2
Descriptive statistics of the gaps identified in all the well logs for each sensor, respectively
the sonic log (DT), the gamma-ray (GR), the neutron porosity (NPHI), and the bulk density
(RHOB). The values (except the count) represent depth (or gap size) in meters.

Sensor DT GR NPHI RHOB

count 1651.00 951.00 337.00 746.00
mean size (m) 59.14 26.86 144.76 97.31
std (m) 204.16 133.43 369.86 301.11
min size (m) 0.30 0.30 0.30 0.30
25% (m) 2.40 1.25 2.70 1.90
50% (m) 7.20 2.00 8.50 5.60
75% (m) 17.70 6.30 61.50 21.90
max size (m) 2228.60 1765.40 3361.50 3356.00
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is the main objective of this article to provide a methodology for
completing the gaps in well log data, and compare the performance of
different models on this prediction task.

Completing gaps in well logs can be interpreted either as an impu-
tation or a prediction task. The former would be the case for logs where
the gaps are frequent and small (low number of contiguous missing data
points). The latter is found when the gaps consist of a large number of
contiguous data points. In order to understand the characteristics of the
problem in hands, the gaps present in the logs of the sensors of each of the
1026 wells in the North Sea are first identified. The frequency and size of
the holes across the data are analysed, providing a descriptive and
exploratory analysis of the gaps previously identified. The goal of this
analysis is to enable the generation of artificial gaps that reflect the
statistics collected before and thus constitute a relevant synthetic prob-
lem on which to train and test the predictors.

The typical approach to the forecast of log values uses data from a
single well (or a few wells from the same block), typically surrounding a
particular gap (see the next Section for particular examples). Here a
similar strategy is adopted, by using all the data available from a single
well (excluding the gap). Different techniques can be employed to predict
the missing data. In this work Ordinary Least Squares (OLS), Bayesian
Regression (BRR), RANdom SAmple Consensus (RANSAC), Artificial
Neural Networks (ANN), Random Forests (RF), and Gradient Tree
Boosting (GB) are compared on the prediction of missing gaps, on a well-
by-well basis. In particular, a single complete well is used to generate
realistic artificial gaps, and the models are trained to predict those values
from the remaining sensor data. Therefore, the main contributions of this
work are i) a methodology to build models for sensors based on a com-
plete case analysis, using all the information from the well; ii) a cross-
validated study of the predictors performance along a complete well;
and iii) a comparison of the baseline linear models and ANNs (a popular
non-linear tool in the area) with recent non-linear ensemble models (RF
Fig. 1. Distribution of the
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and GB). To the best of the authors’ knowledge the performance of the
ensemble methods has not been assessed or compared before on a similar
task of predicting gaps in well log data.

Our experimental work shows that the ensemble models outperform
the remaining approaches with statistical significance, and that these
results can be replicated across different individual wells. Further more
we have not found a significant difference between the ensemble models,
even after fine-tuning both methods using a grid search over the pa-
rameters space.

The next section provides the motivation for addressing this problem,
and presents and summarises the recent related work.

2. Related work

Different techniques have been used to build models that predict and
estimate various geophysical properties, by means of either regression or
classification tasks including, but not limited to: deterministic petro-
physical modelling, using shale, matrix, and fluid properties; stochastic
modelling, where an approximate curve is used as input, and the
reconstructed curve is the output; and different soft-computing algo-
rithms (Aminzadeh and De Groot, 2006; Holdaway, 2014).

The typical approach to prediction tasks based on well logs uses data
from a single well (or a few wells from the same block) as input, in order
to extrapolate to a neighbouring well, or to a specific depth range in the
same well (Holmes et al., 2003; Ayoub and Mohamed, 2014; Ahmadi
et al., 2014). The prediction tasks may target for instance the estimation
of the rock permeability and porosity (Aifa et al., 2014; Zerrouki et al.,
2014) avoiding further core sampling, or the identification of the lith-
ofacies types (Mohseni et al., 2015) to improve the strati-
graphical analysis.
gap sizes by sensor.



Fig. 2. Gap count for the transit time (DT). Left: Gap count by size for all the gaps, using the logarithmic scale; Right: Zoom over the first three quartiles, using the original scale.

Fig. 3. Gap count for the gamma-ray (GR). Left: Gap count by size for all the gaps, using the logarithmic scale; Right: Zoom over the first three quartiles, using the original scale.
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The existence of recent patents on how to predict some pre-
determined well log based on the information collected by the remain-
ing sensors strongly motivates our approach (Yu et al., 2011). Never-
theless, the need for solutions to these types of tasks is well documented
by other researchers targeting a variety of well logs and using different
algorithms and models to capture the correlations between the logs. As
an example, in the following paragraphs we present some recent works
that target the comparison of different algorithms on the estimation of
well log data and/or log-derived data.

Cranganu and colleagues (Cranganu and Bautu, 2010; Cranganu and
Breaban, 2013) addressed the estimation of sonic log distributions in a
field of the Anadarko basin, in Oklahoma. Their approach uses as input
the gamma-ray and deep resistivity logs. Two different methods were
applied to the same problem, first using Gene Expression Programming to
evolve predictors, while in the most recent publication the authors used
Support Vector Regression.

Singh et al. (2016) used artificial neural networks to predict the
effective porosity in a gas field at Garden City, Kansas. The ANN was
trained with the back-propagation algorithm, using the sonic, density,
and resistivity log data as input. The authors argue that the ANN does not
need prior knowledge of petrophysical properties (pore fluid type, matrix
3

material type). However, the density used as input is actually the porosity
density which indirectly includes information about the rock matrix and
the pore fluid density.

Rafik and Kamel (2016) partitioned the well logs using an elec-
trofacies classifier, based on principal component analysis, clustering,
and discriminant analysis. Then, the authors used non-parametric
regression techniques to predict permeability within each electrofacies.
Three approaches were compared: generalised additive models, alter-
nating conditional expectations, and neural networks. They show that the
electrofacies characterization results in models that are more robust than
the alternatives.

Other approaches (Soubotcheva and Stewart, 2004; Mojeddifar et al.,
2014) employ and correlate seismic attributes with well log data in order
to improve the prediction of the natural porosity. Amongst the most
important attributes for log prediction the authors include the energy,
envelope, spectral decomposition, similarity, AVO intercept, and seismic
velocity. The methods compared include different clustering algorithms,
neural networks, neuro-fuzzy systems, and pseudo-forward equations.

As one can see, typically the input data is gathered from a small
number of sensors, which choice varies with each study-case. The cases
where there are more attributes (features) being used as input are those



Fig. 4. Gap count for the neutron porosity (NPHI). Left: Gap count by size for all the gaps, using the logarithmic scale; Right: Zoom over the first three quartiles, using the original scale.

Fig. 5. Gap count for the bulk density (RHOB). Left: Gap count by size for all the gaps, using the logarithmic scale; Right: Zoom over the first three quartiles, using the original scale.

1 The data and meta-data for each well can be consulted at http://www.nlog.nl/en/
listing-boreholes.
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that integrate seismic information as well. Concerning the goals, it is
more frequent to address the estimation of derived properties (natural
porosity, permeability, etc) than the logs themselves. The former auto-
mates part of the interpretation work-flows, by correlating well log data
with core samples, and human expert knowledge. The latter focus on
estimating the values for the continuous gaps in the logs, providing better
information for the following steps in the interpretative work-flows.

These works are examples that motivate our effort to address the
prediction of well log data, and illustrate the relevance of the problem for
the practitioners. Moreover, they show the variety of techniques that
have been applied to the problem, as well as the opportunity to apply
recent learning algorithms such as the ensemble methods presented in
Section 4.

3. Data description

In order to gain a better understanding of the problem of filling-in log
gaps, an exploratory analysis of the gaps contained in the logs of dozens
or hundreds of wells is necessary before the forecast of sensor values
is conducted.

The data collected from the various sensors at some particular well is
4

typically subject to some corrections and merged into a composite log.
This log includes the meta-data for the well, and the readings for each
sensor aligned by depth (using hard-coded out-of-range values for the
detected missing values and erroneous readings). The data is typically
reported in a graphical format with the sensor readings side by side for
easy visual inspection. In order to have a realistic descriptive analysis of
the typical well log gap, we collected the composite logs from the off-
shore Dutch wells in the North Sea, summing up to a total of 1033
wells.1 These logs are furnished by the Dutch government and are freely
available at the NLOG site, which is managed by TNO, Geological Survey
of the Netherlands.

The most common logs found in these records were: i) bulk density,
which relates to the seismic velocity of waves travelling through the
medium; ii) sonic logs, which give a measure of the formations capacity to
transmit seismic waves, i.e., the formations interval transit time; iii)
gamma ray, which is based on the correlation between the radioactive
isotope content andmineralogy; and iv) neutron porosity, which tracks the

http://www.nlog.nl/en/listing-boreholes
http://www.nlog.nl/en/listing-boreholes


Fig. 6. Mean absolute error for each algorithm by gap size, over all folds. The values in the y-axis indicate percentages in the interval ½0;1�. The labels on the x-axis indicate the algorithm
used, respectively Ordinary Least Squares, Bayesian Ridge Regression, Random Sample Consensus, Artificial Neural Network, Random Forest, Gradient Boosting.

Fig. 7. Example for a fold of the second quartile where the models performed well. Top: Comparison of the predictions for each algorithm with the real values. Bottom: Scatter plot of the
predictions for each algorithm with the real values (NPHI). The legend indicates the algorithm and the mean absolute error/R, respectively Ordinary Least Squares, Bayesian Ridge
Regression, Random Sample Consensus, Artificial Neural Network, Random Forest, and Gradient Boosting.
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average hydrogen density of the volume under investigation.
Each record has also the depth besides the sensor readings. For the
5

training data set the records where any of these sensors are missing were
not considered. Consequently, every well in the data set has at least one



Fig. 8. Example for a fold of the second quartile where the models had a median performance. Top: Comparison of the predictions for each algorithm with the real values. Bottom: Scatter
plot of the predictions for each algorithm with the real values (NPHI). The legend indicates the algorithm and the mean absolute error/R, respectively Ordinary Least Squares, Bayesian
Ridge Regression, Random Sample Consensus, Artificial Neural Network, Random Forest, and Gradient Boosting.
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complete record with data from all the sensors acquired. All the variables
were normalised to the range ½0; 1�, with exception of the neutron
porosity for which the valid records are originally provided inside the
specified range. Table 1 provides a few sample records from different
wells that illustrate this description.

For the exploratory and descriptive analysis of the gaps, using the
original (not normalised) depth we considered to exist a gap in a well if
the distance between two consecutive records is larger than three times
the depth step.2 This excludes punctual small gaps which can be
addressed using techniques other than prediction. Given these settings,
approximately four and a half thousand gaps were identified across all
sensors, in a total of 826 wells (the remaining wells do not exhibit gaps).
Figure. 1 illustrates the descriptive statistics for the gaps in the data set,
using the logarithmic scale. The values (except the count) represent the
gap size (depth) in meters. For most of the wells each meter corresponds
to ten data-points, since the typical depth step is 0:1m. The detailed
statistics are presented in Table 2.

The mean and standard deviation are biased by the rare, and very large
gaps. Nevertheless, as can be observed by the quartiles data, most of the
gaps are rather small for all sensors with exception of the neutron porosity
(NPHI). Although the gap count is smaller in this case, the gap size is as
2 For most of the wells the depth step is 0:1m, but in a few cases it is 0:2m.
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much as three times larger than the remaining sensors’ gap sizes. The
neutron porosity was then used as the target sensor (to be predicted), since
it poses a challenge with increased difficulty. Figures 2-5 detail further the
distribution of the gap count by size for each sensor, presenting the full
histogram in the logarithmic scale, and zooming over the first three
quartiles using the original scale.

The following section describes the learning methodologies and
models used, and details the experimental settings used for the com-
parison of the predictors.

4. Problem and methodologies

The problem of forecasting missing well log data has been addressed
using different techniques, from linear models to artificial neural net-
works (see Section 2). With the exception of a few works where ”lengthy
gaps” or complete logs are predicted, usually the size of the gaps that are
found in the records is not explicitly reported and/or studied. Even
though it is dependent on the total depth that was drilled, we have found
that the typical sensor gap size goes from a few hundred to a few thou-
sand points (also dependent on the sensor type, see the previous section),
whereas a complete log has typically dozens of thousands of data points
(the typical depth for a well goes from 3 km to more than 5 km, using 10
samples per meter).

In the next section we compare the results of using generalised linear



Fig. 9. Example for a fold of the second quartile where the models performed badly. Top: Comparison of the predictions for each algorithm with the real values. Bottom: Scatter plot of the
predictions for each algorithm with the real values (NPHI). The legend indicates the algorithm and the mean absolute error/R, respectively Ordinary Least Squares, Bayesian Ridge
Regression, Random Sample Consensus, Artificial Neural Network, Random Forest, and Gradient Boosting.

Fig. 10. Histograms of the mean absolute error (binsize ¼ 1%) for each algorithm in the first quartile data (smallest gap size). The titles of the subplots indicate the algorithm used:
Ordinary Least Squares (OLS), Bayesian Ridge Regression (BRR), Random Sample Consensus (RANSAC), Random Forest (RF), and Gradient Boosting (GB).
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models - Ordinary Least Squares (OLS), Bayesian Ridge Regression
(BRR), and RANdom SAmple Consensus (RANSAC) (Rifkin and Lippert,
2007; Choi et al., 2009) - and non-linear models - Artificial Neural Net-
works (ANN), Random Forests (RF), and Gradient Tree Boosting (GB)
7

(Breiman, 1999; Friedman, 2001) -, on the prediction of missing gaps in
the neutron porosity log of a single well.

The generalised linear models provide a consistent baseline for
comparison with non-linear methods. The chosen models are well-



Fig. 11. Histograms of the mean absolute error (binsize ¼ 1%) for each algorithm in the second quartile data (median gap size). The titles of the subplots indicate the algorithm used:
Ordinary Least Squares (OLS), Bayesian Ridge Regression (BRR), Random Sample Consensus (RANSAC), Random Forest (RF), and Gradient Boosting (GB).

Fig. 12. Histograms of the mean absolute error (binsize ¼ 1%) for each algorithm in the third quartile data (largest gap size). The titles of the subplots indicate the algorithm used:
Ordinary Least Squares (OLS), Bayesian Ridge Regression (BRR), Random Sample Consensus (RANSAC), Random Forest (RF), and Gradient Boosting (GB).
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known: i) OLS infers a vector of coefficients that minimize the residual
sum of squares between the observed responses in the dataset, and the
responses predicted by the linear approximation; ii) BRR includes regu-
larization parameters in the estimation procedure, i.e., the regularization
parameter is not hard-coded but tuned to the data at hand; and iii)
RANSAC is a non-deterministic algorithm that fits a model from random
subsets of inliers from the complete data set, producing a reasonable
result with a certain probability, which is dependent on the number of
iterations (i.e., the probability increases with the number of iterations).

The non-linear models target the performance improvement over the
typical generalised linear models. In this case ANNs, and two ensemble
methods based on decision trees (RF and GB) were used. ANNs are
computational models inspired by the biological neural networks that
constitute animal brains. These models learn to do tasks by considering
examples (supervised learning), generally without domain-specific
programming.

In particular, a Multi-Layer Perceptron (MLP) was used in this work. It
is composed of a collection of inter-connected artificial neurons (simi-
larly to the neurons and synapses in biological brains). Each connection
between neurons transmits a signal that varies with the strength of the
connection. If the combined input signal is strong enough, the receiving
neuron activates and propagates a signal to the downstream neurons
8

connected to it. For the experimental work we used a single hidden layer
composed of one hundred rectified linear units. The neurons are typically
organized in fully-connected layers, with the signals travelling from the
first (input), to the last (output), possibly with recurring connections. The
weights associated to each connection are adaptable, with different ap-
proaches to the learning algorithm proposed over the years. The most
common approach is the back-propagation of errors, typically combined
with the stochastic gradient descent (SGD) algorithm.

The ensemble methods combine the predictions of several base esti-
mators built with a given learning algorithm in order to improve
generalization/robustness over a single estimator. In RF each tree in the
ensemble is built from a sample drawnwith replacement (i.e., a bootstrap
sample) from the training set. In addition, when splitting a node during
the construction of the tree, the split that is picked is the best split among
a random subset of the features. Given this randomness, the bias of the
forest usually slightly increases (with respect to the bias of a single tree)
but its variance also decreases due to averaging. Typically this effect
more than compensates for the increase in bias, hence yielding an overall
better model. GB combines decision tress of fixed size (the weak
learners/models) into a single strong learner, in a stage-wise fashion.
Each step a new weak learner is added to the model and the residuals of
the previous weak learners are used to improve the fit of the model. As in



Table 3
Results of the statistical significance tests for the pairwise comparisons. For each quartile
fifteen results are presented ordered by the test statistic. The methods indicate the algo-
rithm used: Ordinary Least Squares (OLS), Bayesian Ridge Regression (BRR), Random
Sample Consensus (RANSAC), Artificial Neural Network (ANN), Random Forest (RF), and
Gradient Boosting (GB).

Quartile Method1 Method2 statistic p-value adj. p-value

0 Q1 RF OLS 4.39 0.0000 0.0002
1 RF BRR 4.38 0.0000 0.0002
2 GB OLS 4.05 0.0001 0.0008
3 GB BRR 4.04 0.0001 0.0008
4 RF RANSAC 3.63 0.0003 0.0042
5 GB RANSAC 3.29 0.0010 0.0150
6 ANN OLS 2.85 0.0044 0.0657
7 ANN BRR 2.84 0.0045 0.0678
8 ANN RANSAC 2.09 0.0365 0.5477
9 RF ANN 1.54 0.1233 1.0000
10 GB ANN 1.20 0.2305 1.0000
11 RANSAC OLS 0.76 0.4484 1.0000
12 RANSAC BRR 0.75 0.4543 1.0000
13 GB RF 0.34 0.7324 1.0000
14 BRR OLS 0.01 0.9921 1.0000

15 Q2 GB BRR 5.39 0.0000 0.0000
16 GB OLS 5.39 0.0000 0.0000
17 GB RANSAC 5.36 0.0000 0.0000
18 RF BRR 5.22 0.0000 0.0000
19 RF OLS 5.22 0.0000 0.0000
20 RF RANSAC 5.19 0.0000 0.0000
21 ANN BRR 3.97 0.0001 0.0011
22 ANN OLS 3.97 0.0001 0.0011
23 ANN RANSAC 3.94 0.0001 0.0012
24 GB ANN 1.42 0.1557 1.0000
25 RF ANN 1.25 0.2118 1.0000
26 GB RF 0.17 0.8643 1.0000
27 RANSAC BRR 0.04 0.9704 1.0000
28 RANSAC OLS 0.04 0.9704 1.0000
29 BRR OLS 0.00 1.0000 1.0000

30 Q3 GB RANSAC 5.30 0.0000 0.0000
31 GB BRR 4.97 0.0000 0.0000
32 GB OLS 4.95 0.0000 0.0000
33 RF RANSAC 4.36 0.0000 0.0002
34 RF BRR 4.03 0.0001 0.0008
35 RF OLS 4.01 0.0001 0.0009
36 ANN RANSAC 3.31 0.0009 0.0141
37 ANN BRR 2.98 0.0028 0.0426
38 ANN OLS 2.96 0.0031 0.0460
39 GB ANN 1.99 0.0467 0.7007
40 RF ANN 1.05 0.2947 1.0000
41 GB RF 0.94 0.3467 1.0000
42 RANSAC OLS 0.35 0.7288 1.0000
43 RANSAC BRR 0.32 0.7465 1.0000
44 BRR OLS 0.02 0.9813 1.0000

Table 4
Parameters used in the grid search for random forests and gradient boosting.

Algorithm Random forests Gradient boosting

Learning Rate N.A. f0:01;0:05;0:1;0:2; 0:3g
Max. Tree Depth fNone;10;50; 100g f2;3;5;10;50g
Number of estimators f3;5; 10;100;200g f100;200;300;400;500g
Max. number of features f1;2; 3;4g
Min. samples per split f5;10;50; 100;200g
Min. samples per leaf f5;10;50; 100;200g

Table 5
Parameters used in the best model found with the grid search for random forests and
gradient boosting.

Algorithm Random forests Gradient boosting

Learning Rate N.A. 0.1
Max. Tree Depth None 2
Number of estimators 5 400
Max. number of features 2 3
Min. samples per split 100 10
Min. samples per leaf 2 200
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RFs the output of the model is a consensus between the weak learners,
usually a weighted contribution from each sub-model.

5. Experiments and discussion

Three different sets of experiments were conducted to compare the
algorithms’ performances. First, a detailed study-case over a specific well
is presented which compares the performance of the different algorithms
using the default parametrisations. Second, using the same study-case a
9

grid-search is performed on the parameter space for the ensemble algo-
rithms. Finally, three different wells are addressed individually in order
to confirm the trends identified in the detailed study-case.

5.1. Performance comparison

For the performance comparison of the different models, a single well
with complete logs (without gaps) was selected, in particular the well
identified by “L01-06”. These well logs are composed of eighteen thou-
sand samples with valid values for every sensor. This data set was split
into k ¼ number samples==gap size folds with non-overlapping test sets
composed of contiguous points, where gap size ¼ f27; 85;615g samples.
In the case of the largest gap size the split results in a 29-fold cross-
validation. In the remaining gap sizes the number of folds is prohibi-
tive (667 folds for the smaller gap size), hence thirty folds were randomly
selected without replacement from the complete fold set. These will be
used to average the models’ performance, that depends not only on the
size of the gap but also on the values of the gap itself. The comparison of
the different models for each gap size was performed using the library
defaults for every algorithm. The most promising algorithms identified in
this analysis were then selected in order to be fine-tuned through a grid
search over the model parameters.

The comparison results are summarised in Fig. 6, where the mean
absolute error (MAE) is presented for each algorithm in each quartile of
the gap size. Even if there are very few outliers for each algorithms'
performance measurements, it is clear that it depends on the gap size and
on the values of the gap itself since there is a large variance in the
folds’ results.

Given the high overlap between the interquartile ranges of the scores
of the generalised linear models (OLS, BRR, and RANSAC), it is clear that
over the complete set of folds the difference between them is not statis-
tically significant. A similar overlap is observed when comparing the non-
linear methods (RF and GB) with each other. Nevertheless, it is inter-
esting to note that RF performs slightly better for the smallest gap size,
and gradient boosting for the largest size, while in the case of the median
gap the performance is identical. The ANN always performs worse than
the ensemble methods. While the median error increases with the gap
size for every algorithm, the difference between the linear and the non-
linear models is smaller as the gap size grows. The question remains if
the difference is significant for any of the gap size quartiles.

Figs. 7–9 are examples for folds of the second quartile where the
models had from good to bad performance, respectively. The top chart
shows the predictions of each algorithm and the real values along the
well depth, while the bottom scatter plot shows the predicted values
against the real values.

For the fold presented in Fig. 7, even though the mean absolute error
(MAE) is lower for the non-linear methods, the linear models show a
slightly better fit. The scatter plot shows more dispersion for the non-
linear methods, and one can see the differences in the predictions
specially in the right part of the gap. In the median case presented in
Fig. 8 the MAE is much lower for the non-linear methods, particularly the
ensemble methods (RF and GB). However, as observable by the larger
dispersion on the scatter plot for every model, in this case the fit is not as
good. This plot also shows a tendency of the non-linear methods to
overestimate low porosities and underestimate higher porosities. Finally,



Fig. 13. Descriptive statistics for the testing scores of the best random forest (RF) and gradient boosting (GB) model, over the 10 folds of cross-validation. The t-test statistic and p-value are
also included.
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Fig. 9 shows the case where the fit is poor, as shown by the cloud of points
in the scatter plot, even though the MAE is not far from the median.

In order to assess the statistical significance of the differing perfor-
mances the score distributions were subject to non-parametric tests.
These are more appropriate when the distributions are not normal (see
Figs. 10–12). Even though the number of samples (30) is enough to
ignore the normality of the distributions, it is preferable to be conser-
vative in the analysis.

An analysis of variance by ranks was performed using the Friedman
Aligned Ranks (Hodges et al., 1962) (appropriate for a small number of
groups), followed by the Nemenyi post-hoc tests for multiple pairwise
comparisons (Dunn, 1961). The results are detailed in Table 3, where the
fifteen comparisons are presented for each quartile, ordered by the test
statistic. Three trends are visible: i) the differences amongst the gener-
alised linear models are never statistically significant
(adj: p� value ¼ 1:0); ii) the differences between the non-linear methods
are also not statistically significant in any quartile; and iii) the differences
between the ensemble methods and the linear models are statistically
significant for every quartile (adj: p� value≪0:05). In the case of the
ANN it can only be confidently considered better than the linear models
in the second quartile, since the differences are not statistically signifi-
cant in the first quartile (adj: p� value>0:05) and are very close to the
confidence limit in the third quartile (adj: p� value≃0:05).
5.2. Fine-tuning the ensemble models

It is not clear which of the two ensemble methods is more appropriate
for the task. Since these were the best models, this deserves further
exploration by fine-tuning each algorithm through a grid search on the
parameter space. The values used for each parameter were adjusted by
trial and error (detailed in Table 4), in order to find value ranges that do
not restrict each other. Note that when None is used as the maximum tree
depth for the random forests it means that the trees are fully expanded
until no further splits are possible. A 10-fold cross validation strategy was
applied to evaluate the methods using the mean absolute error (non-
overlapping folds of contiguous points).

Despite some tradeoffs amongst parameters, typically both methods
should perform better the more estimators are used (with diminishing
returns). Moreover, considering the amount of variance in the data, it
should be expected better results with shallower decision trees. As one
can see in Table 5 these expectations were met in the case of the gradient
boosting ensemble. The best model was obtained using the maximum
number of estimators provided and very shallow trees (2). However, for
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the random forests the best strategy was to use a large maximum depth,
and a relatively small number of trees (5). Accordingly, GB used a large
number of samples per leaf (200) with a small number of samples per
split (10), while for RF the best used a large number of samples per split
(100) with a small number of samples per leaf (2). The details of the
performance of the best estimator over the cross-validation folds are
presented in Fig. 13. Overall, both the mean and median absolute errors
of the best configuration are lower for the gradient boosting algorithm
(by 0:2%). However, the difference is not statistically significant as
indicated by the results of the t-test, included on the figure's title.
5.3. Other study-cases

A pertinent question arising from the previous experiments is
whether these results hold for wells of different exploration blocks. While
a definitive answer cannot be provided, the analysis above was repeated
for three more wells, each from a different block. The wells “F12-03”,
“K05-02”, and “M04-03” were chosen from the subset of wells without
gaps. After cleaning these have approximately fifteen thousand samples
each, thus the resulting number of folds for the largest gap size is not
much lower compared to the original well analysed in this article. The
algorithms’ performance shows the same trend identified before. The
ensemble methods (RF and GB) perform better than the remaining, as
shown by the distribution of the scores over the sets of folds for each gap
size in Fig. 14. The statistical analysis of the results confirms these dif-
ferences, as displayed in Table 7 at the end of this article. The ensemble
methods are always better than the linear regressors
(adj: p� value≪0:05), and in some cases better than the ANN. Similarly
to well “L01-06” the differences between the ANN and the linear methods
are typically not statistically significant (adj: p� value ¼ 1:0).

Given these results it is relevant to inspect if there is a trend on the
configuration of the ensemble algorithms as well, or if the best para-
metrisation depends on the logs of the well that is being addressed. For
that purpose a grid search over the ensembles’ parameters was run for
each of the three wells, using the same ranges as described in Table 4. The
results for the three wells are summarised in Table 6, where one can see
that the gradient boosting performed slightly better for two out of the
three wells. The trend on the number of estimators is also visible for most
wells, with a low number of estimators preferred for the random forests,
and high for gradient boosting. However, there is no consistency over all
the wells for any of the parameters. Similarly to the results presented
before the differences between the mean absolute errors of the two al-
gorithms is minimal (always inferior to 0:2%) and not statistically



Fig. 14. Mean absolute error for each algorithm by gap size, over all folds in each well. The values in the y-axis indicate percentages in the interval ½0;1�. The labels on the x-axis indicate
the algorithm used, respectively Ordinary Least Squares, Bayesian Ridge Regression, Random Sample Consensus, Artificial Neural Network, Random Forest, and Gradient Boosting.
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Table 6
Parameters used in the best model for each well, found with the grid search for random
forests and gradient boosting.

Algorithm Random forests Gradient boosting

Well F12-03 K05-02 M04-03 F12-03 K05-02 M04-03

Learning rate – – – 0.1 0.2 0.3
Max. tree depth None 5 None 10 5 5
Num. estimators 10 10 200 100 200 300
Max. features 2 4 2 4 3 2
Samples p/split 50 10 10 50 50 200
Samples p/leaf 3 5 3 200 5 100

MAE 0.0233 0.0235 0.0287 0.0247 0.0225 0.0285

Table 7
Results of the statistical significance tests for the pairwise comparisons for wells “F12-03”,
“K05-02”, and “M04-03” respectively. For each quartile fifteen results are presented or-
dered by the test statistic, numbered independently for each well. The methods indicate the
algorithm used: Ordinary Least Squares (OLS), Bayesian Ridge Regression (BRR), Random
Sample Consensus (RANSAC), Artificial Neural Network (ANN), Random Forest (RF), and
Gradient Boosting (GB).

Well Quartile Method1 Method2 statistic p-value adj. p-value

F12-03 Q1 RF BRR 5.15 0.0000 0.0000
RF OLS 5.14 0.0000 0.0000
GB BRR 3.59 0.0003 0.0049
GB OLS 3.58 0.0003 0.0052
RF ANN 3.33 0.0009 0.0129
RF RANSAC 2.94 0.0033 0.0499
RANSAC BRR 2.22 0.0266 0.3988
RANSAC OLS 2.20 0.0276 0.4143
ANN BRR 1.82 0.0686 1.0000
ANN OLS 1.81 0.0709 1.0000
GB ANN 1.77 0.0765 1.0000
GB RF 1.56 0.1185 1.0000
GB RANSAC 1.38 0.1691 1.0000
ANN RANSAC 0.40 0.6918 1.0000
BRR OLS 0.01 0.9881 1.0000

Q2 RF BRR 5.96 0.0000 0.0000
RF OLS 5.95 0.0000 0.0000
GB BRR 5.26 0.0000 0.0000
GB OLS 5.25 0.0000 0.0000
RF RANSAC 4.48 0.0000 0.0001
GB RANSAC 3.78 0.0002 0.0023
ANN BRR 3.48 0.0005 0.0075
ANN OLS 3.47 0.0005 0.0078
RF ANN 2.48 0.0133 0.1998
ANN RANSAC 2.01 0.0445 0.6675
GB ANN 1.77 0.0761 1.0000
RANSAC BRR 1.47 0.1411 1.0000
RANSAC OLS 1.46 0.1438 1.0000
GB RF 0.70 0.4832 1.0000
BRR OLS 0.01 0.9921 1.0000
RF BRR 6.30 0.0000 0.0000
RF OLS 6.29 0.0000 0.0000
GB BRR 6.17 0.0000 0.0000

Q3 GB OLS 6.16 0.0000 0.0000
RF RANSAC 4.69 0.0000 0.0000
GB RANSAC 4.56 0.0000 0.0001
RF ANN 3.55 0.0004 0.0057
GB ANN 3.42 0.0006 0.0094
ANN BRR 2.75 0.0060 0.0893
ANN OLS 2.74 0.0062 0.0927
RANSAC BRR 1.61 0.1064 1.0000
RANSAC OLS 1.60 0.1091 1.0000
ANN RANSAC 1.14 0.2561 1.0000
GB RF 0.14 0.8926 1.0000
BRR OLS 0.01 0.9902 1.0000

K05-02 Q1 RF BRR 5.83 0.0000 0.0000
RF OLS 5.80 0.0000 0.0000
GB BRR 5.66 0.0000 0.0000
GB OLS 5.62 0.0000 0.0000
RF ANN 4.42 0.0000 0.0002
GB ANN 4.24 0.0000 0.0003
RF RANSAC 3.28 0.0011 0.0158
GB RANSAC 3.10 0.0020 0.0293
RANSAC BRR 2.56 0.0105 0.1573
RANSAC OLS 2.52 0.0116 0.1737
ANN BRR 1.42 0.1557 1.0000
ANN OLS 1.39 0.1661 1.0000
ANN RANSAC 1.14 0.2544 1.0000
GB RF 0.18 0.8584 1.0000
BRR OLS 0.03 0.9723 1.0000

Q2 GB RANSAC 5.85 0.0000 0.0000
GB BRR 5.77 0.0000 0.0000
GB OLS 5.74 0.0000 0.0000
RF RANSAC 5.50 0.0000 0.0000
RF BRR 5.43 0.0000 0.0000
RF OLS 5.40 0.0000 0.0000

(continued on next page)
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significant.
The experiments described above were implemented using Pythons

scientific environment (Oliphant, 2007), using the models available in
the Scikit-Learn (Pedregosa et al., 2011) machine learning library. For
the statistical tests the Stac library was used (Rodrguez-Fdez et al., 2015).

6. Conclusion and future work

The main goal of this work was to evaluate different methods for the
regression of missing well log data. The first step consisted of a
descriptive and exploratory analysis in order to gain a better under-
standing of the gaps’ size and frequency across a large set of wells. Then,
different data-driven models were trained for filling-in gaps in sensor
data from a specific well log, using the remaining sensors as features, at
any depth of that well. Finally, the study was extended to three wells on
different exploration blocks to check whether the results hold for
different data sets.

The analysis of the gap sizes has shown that in most cases the gaps are
rather small when compared to the complete depth of the wells. Never-
theless, for every sensor the typical gap size goes up until a few hundreds
of contiguous points. The neutron porosity stands out from the remaining
sensors, the gap count is larger and the typical gap size is around three
times larger than the remaining gaps. Since this is apparently the most
unreliable sensor it was chosen as the prediction target.

The results of the experiments show that the larger the gap the higher
the average error. This could be expected for different reasons, in
particular because with larger gaps less data remains for the training, and
there is typically more variance in the target values. Moreover, the results
for each algorithm present a large variation amongst the folds, showing
that the performance depends on the gap itself, not only on the gap size.

The ensemble methods (random forests and gradient boosting) per-
formed better than the linear approaches for every gap size quartile, with
statistical significance. One can see that as the gap size increases the
difference between the two types of methods decreases. Nevertheless,
those differences remain statistically significant. In the case of the arti-
ficial neural network its performance was not significantly different of
either the linear or the ensemble methods. Given the similarity between
the results of both the ensemble methods, a grid search was performed
over the parameter space. The grid results indicate that the strategy for
each algorithm could not be more opposite. In the case of the random
forests the preference was for a small number of estimators and high
maximum tree depth, while for gradient boosting the best result used a
large number of estimators and shallow decision trees. Despite these
differences and gradient boosting presenting lower mean absolute error,
the overall performance difference is not statistically significant over the
complete set of folds.

Applying the same methodology to different data sets confirmed the
results concerning the superior performance of the ensemble algorithms.
It also confirmed that the differences between the ensemble methods are
not statistically significant even after fine-tuning. However, it has shown
that the appropriate parametrisation is dependant on the data set (well)
being addressed and cannot be prescribed based on the choice of
12



Table 7 (continued )

Well Quartile Method1 Method2 statistic p-value adj. p-value

GB ANN 3.33 0.0009 0.0131
RF ANN 2.98 0.0029 0.0428
ANN RANSAC 2.52 0.0117 0.1761
ANN BRR 2.45 0.0145 0.2170
ANN OLS 2.42 0.0157 0.2356
GB RF 0.34 0.7306 1.0000
RANSAC OLS 0.10 0.9171 1.0000
RANSAC BRR 0.07 0.9407 1.0000
BRR OLS 0.03 0.9763 1.0000

Q3 GB BRR 4.71 0.0000 0.0000
GB OLS 4.66 0.0000 0.0000
GB RANSAC 4.44 0.0000 0.0001
GB ANN 3.67 0.0002 0.0036
RF BRR 3.53 0.0004 0.0063
RF OLS 3.48 0.0005 0.0075
RF RANSAC 3.26 0.0011 0.0165
RF ANN 2.49 0.0127 0.1900
GB RF 1.18 0.2380 1.0000
ANN BRR 1.03 0.3018 1.0000
ANN OLS 0.99 0.3230 1.0000
ANN RANSAC 0.77 0.4409 1.0000
RANSAC BRR 0.26 0.7935 1.0000
RANSAC OLS 0.22 0.8278 1.0000
BRR OLS 0.04 0.9647 1.0000

M04-03 Q1 RF OLS 6.12 0.0000 0.0000
RF BRR 6.10 0.0000 0.0000
GB OLS 6.01 0.0000 0.0000
GB BRR 6.00 0.0000 0.0000
RF RANSAC 4.58 0.0000 0.0001
GB RANSAC 4.48 0.0000 0.0001
ANN OLS 3.21 0.0013 0.0200
ANN BRR 3.19 0.0014 0.0211
RF ANN 2.91 0.0036 0.0544
GB ANN 2.80 0.0050 0.0755
ANN RANSAC 1.67 0.0940 1.0000
RANSAC OLS 1.53 0.1251 1.0000
RANSAC BRR 1.52 0.1288 1.0000
GB RF 0.10 0.9171 1.0000
BRR OLS 0.01 0.9881 1.0000

Q2 RF OLS 7.11 0.0000 0.0000
RF BRR 7.11 0.0000 0.0000
GB OLS 7.09 0.0000 0.0000
GB BRR 7.08 0.0000 0.0000
RF RANSAC 5.89 0.0000 0.0000
GB RANSAC 5.87 0.0000 0.0000
ANN OLS 4.10 0.0000 0.0006
ANN BRR 4.09 0.0000 0.0006
RF ANN 3.01 0.0026 0.0388
GB ANN 2.99 0.0028 0.0418
ANN RANSAC 2.88 0.0040 0.0594
RANSAC OLS 1.22 0.2238 1.0000
RANSAC BRR 1.21 0.2257 1.0000
GB RF 0.02 0.9822 1.0000
BRR OLS 0.00 0.9960 1.0000

Q3 RF BRR 5.90 0.0000 0.0000
RF OLS 5.89 0.0000 0.0000
GB BRR 5.87 0.0000 0.0000
GB OLS 5.86 0.0000 0.0000
RF RANSAC 5.21 0.0000 0.0000
GB RANSAC 5.18 0.0000 0.0000
RF ANN 2.95 0.0032 0.0473
ANN BRR 2.95 0.0032 0.0483
ANN OLS 2.94 0.0033 0.0493
GB ANN 2.92 0.0035 0.0525
ANN RANSAC 2.26 0.0237 0.3552
RANSAC BRR 0.68 0.4942 1.0000
RANSAC OLS 0.68 0.4984 1.0000
GB RF 0.03 0.9740 1.0000
BRR OLS 0.01 0.9948 1.0000
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the algorithm.
Future work may address the improvement of the results through the

integration with seismic data at the target well location, if available.
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Another possible approach is to cluster samples by log similarity and
develop models for the different log characteristics. A common trait
amongst this and the related work is the small amount of features used as
input. Feature engineering (extracting new attributes from the records,
combining attributes, and selecting the most discriminative) are also
appropriate avenues of research in order to improve upon these results.
Finally, this work could be extended to a multi-well scenario, where the
model is inferred from several wells in a given region, and used for
prediction in a different well of the same region.
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