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Abstract9

This paper gives a comprehensive and coherent view on permutability in the intuitionistic sequent10

calculus with cuts. Specifically we show that, once permutability is packaged into appropriate11

global reduction procedures, it organizes the internal structure of the system and determines12

fragments with computational interest, both for the computation-as-proof-normalization and the13

computation-as-proof-search paradigms. The vehicle of the study is a λ-calculus of multiary14

proof terms with generalized application, previously developed by the authors (the paper argues15

this system represents the simplest fragment of ordinary sequent calculus that does not fall into16

mere natural deduction). We start by adapting to our setting the concept of normal proof,17

developed by Mints, Dyckhoff, and Pinto, and by defining natural proofs, so that a proof is18

normal iff it is natural and cut-free. Natural proofs form a subsystem with a transparent Curry-19

Howard interpretation (a kind of formal vector notation for λ-terms with vectors consisting of20

lists of lists of arguments), while searching for normal proofs corresponds to a slight relaxation21

of focusing (in the sense of LJT). Next, we define a process of permutative conversion to natural22

form, and show that its combination with cut elimination gives a concept of normalization for23

the sequent calculus. We derive a systematic picture of the full system comprehending a rich24

set of reduction procedures (cut elimination, flattening, permutative conversion, normalization,25

focalization), organizing the relevant subsystems and the important subclasses of cut-free, normal,26

and focused proofs.27
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1 Introduction34

Traditionally, the sequent calculus is associated with the computation-as-proof-search35

paradigm [16], but progress in the understanding of the Curry-Howard correspondence36

showed that sequent calculus has a lot to offer to the computation-as-proof-normalization37

paradigm as well, from alternative λ-term representations which are useful for machine hand-38

ling [12, 2] to logical foundations for evaluation strategies [3, 24]. Nevertheless, the mentioned39

progress has been slow: even if we are not anymore in the situation where textbooks had40

almost nothing to report about Curry-Howard for sequent calculus [11, 22, 18], it seems basic41

discoveries are still being made after decades of investigation [1, 5].42
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10:2 Permutability in proof terms for intuitionistic sequent calculus with cuts

Figure 1 The cut-free setting
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One source of difficulties in completing the Curry-Howard interpretation of sequent43

calculus and cut-elimination is the phenomenon of permutability of inferences [14], which44

sometimes is dubbed “bureaucracy”. Permutability can be faced with several attitudes:45

either by decreeing Curry-Howard for sequent calculus an outright impossibility [11]; or by46

regarding the sequent calculus as meta-notation for alternative, supposedly permutation-free47

formalisms, like natural deduction [19] or proof nets [10]; or by restricting one’s attention to48

permutability-free fragments of sequent calculus - cf. the flourishing area of focusing [15, 21].49

In this paper we face permutability squarely, in the context of intuitionistic propositional50

logic, for a simple and standard sequent calculus including cut, the latter system presented51

as a typed λ-calculus, and we show that the (perhaps dull) complexity engendered by52

permutability can be tamed and organized appropriately and meaningfully, in a way that53

enlightens the internal structure and the computational interpretation of the entire sequent54

calculus.55

Our starting point is the familiar situation in the cut-free setting, depicted in Fig. 1:56

there is a set of permutation-free proofs, named normal by Mints [17], which are in 1-157

correspondence with normal natural deductions; in addition [4]: (i) normal derivations are58

normal (i.e. irreducible) w.r.t. a rewriting system of permutative conversions; (ii) normal59

derivations are in 1-1 correspondence with cut-free LJT -proofs (that is, cut-free λ-terms60

[12]). So permutation-freeness has a privileged relationship with natural deduction (as we61

already knew since Zucker [25]); and, in this setting, permutation-freeness is indistinguishable62

from focusedness (in the sense of LJT ).63

What is the high-level lesson of this situation? Permutability can be organized into a64

reduction procedure determining a class of normal forms which are meaningful both for65

functional computation and for proof-search. Shorter: if permutability of inferences is66

packaged into a global reduction procedure, it becomes an organizing tool at the macro level67

that brings out meaning.68

In this paper, guided by this heuristic, we move to the cut-full setting. Needless to say,69

the situation becomes rather more complex, as cut-elimination is present and potentially70

interacts with permutability, we have to deal with (sub)systems of the full rewriting system71

rather than classes of normal forms, and desirably the familiar cut-free situation falls out as72

a corollary of the cut-full picture.73

In a nutshell, these are our results: we adapt to our setting the notion of normal proof74

[17, 4] and pin down the bottom-up proof-search procedure it determines, which is a slight75

relaxation of focusing; we introduce a permutation-free notion of natural proof so that a proof76

is normal iff it is natural and cut-free; we prove natural proofs are closed for cut-elimination,77

constituting a subsystem with a transparent Curry-Howard interpretation; we prove natural78

proofs are the normal forms w.r.t. a certain permutative conversion γ; we give a systematic79

description of the internal structure of the sequent calculus we consider in terms of the two80
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“bureaucratic” conversions: the conversion γ, and another conversion named µ, which, among81

other things, is the bridge between natural proofs and focused proofs; we investigate the82

commutation between the (macro level) reduction procedures and this allows us to identify a83

normalization procedure on the set of all sequent calculus proofs, for which the normal proofs84

are the irreducible forms, and which is a combination of cut-elimination and permutative85

conversion.86

87

Technical overview. In order to isolate the syntactic difficulties caused by permutability,88

we reduce the logical apparatus to a minimum: intuitionistic implication is the single89

connective studied, and the sequent calculus analyzed is designed to be the simplest one that90

goes beyond natural deduction with general elimination rules [23] (i.e. beyond the λ-calculus91

with generalized application ΛJ [13]). Quite conveniently, the resulting system is precisely92

the λJm-calculus introduced by two of the authors [8, 9] and further studied in [6] - a system93

which may be seen as the “multiary” [20] version of ΛJ . Multiarity just means that the94

generalized application constructor handles a non-empty list of arguments, thus ΛJ may be95

recast as the unary fragment λJ, where the list of arguments is singular [9]; but multiarity96

engenders the mentioned conversion µ, firstly introduced in [20] as a technical tool in a97

termination argument, which turns out to play a crucial role in the description of the internal98

structure of λJm and its subtle connection with natural deduction [8, 6].99

In extending the situation in Fig. 1 to the cut-full setting, we have to avoid an immediate100

pitfall: to consider an excessively narrow class of derivations possibly containing cuts.101

Ordinary cut-free derivations may be seen as fully-normal natural deductions with general102

application [23]. So, if we merely “close under substitution” such derivations, we end up with103

natural deduction, or the ΛJ-calculus [13]. Similarly, if we merely add appropriate cut-rules104

to LJT , we end up with some variant of the λ-calculus [12]. We do something different:105

we recast in λJm (a system designed to not fall in mere natural deduction) the situation106

in Fig. 1, and the result is illustrated in Fig. 2. In λJm, natural deduction and LJT are107

captured internally1, and the normal derivations of [17, 4] are just the unary case of a more108

general concept of normal derivation, which is studied here for the first time, as it escaped109

the catalogue of normal forms in [6].110

In fact, we will rather develop Fig. 3, concerning the cut-full setting, and extract Fig. 2 as111

a corollary, given that cut-elimination links each system in Fig. 3 to a corresponding class in112

Fig. 2. Specifically: Section 3 defines and studies natural derivations and how they define a113

subsystem λnm with clear computational interpretation. This includes studying the cut-free114

natural (=normal) derivations, in particular in their relation to focused proofs. Section 4115

goes beyond the permutation-free fragment λnm, and studies permutative conversion γ, for116

which the natural proofs are the irreducible forms. This includes studying the interaction117

of γ with cut-elimination, which leads to the definition of normalization in λJm. Section 2118

recapitulates λJm, while Section 5 concludes.119

1 This is in contrast with [4], where natural deduction, LJT and sequent calculus are three different
systems - this is why in Fig. 1 we see the curved borders, while in Fig. 2 these borders disappear, their
location being memorized with dotted lines. Beware that there are several inclusion that hold in Fig. 2,
since all classes live in the same system: the class of unary cut-free (resp. unary normal) derivations
is included in the class of cut-free (resp. normal) derivations; and normal natural deductions are a
subclass of unary cut-free derivations (∼= fully normal natural deductions with general eliminations).
Such inclusions are not depicted to avoid clutter and because they are not witnessed by reduction rules
of λJm. The map denoted with a dashed line is not a mere inclusion, but is not studied in this paper.
Similar remarks apply as well to Fig. 3.
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Figure 2 The cut-free setting in the multiary calculus λJm (classes and maps)
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Figure 3 The cut-full setting in the multiary calculus λJm (calculi and morphisms)
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2 The sequent calculus λJm120

In the first subsection we recall λJm, while in the second we argue why λJm is a simple121

and standard presentation of the intuitionistic sequent calculus.122

2.1 A recapitulation of λJm123

Proof expressions and typing. Expressions E are generated by the following grammar:124

(proof terms) t, u, v ::= x | λx.t | ta
(gm-arguments) a ::= (u, l, c)

(lists) l ::= u :: l | []
(continuations) c ::= (x)v

125

We will just say “term” instead of “proof term”. A value V is a term of the form x or λx.t.126

The word “continuation” is chosen for its intuitive appeal, with no connection with technical127

meanings of the word intended.2128

2 In the previous publications on λJm, the system was presented with two syntactic classes only: terms
and lists. In fact, since continuations are generated by a single constructor and used only once in the
grammar (in the formation of gm-arguments), they could easily be dispensed with; and the very same
holds of gm-arguments. However, the separation into finer classes gives more flexibility. This flexibility
is a convenience, as quite often we can avoid writing the entire expression t(u, l, (x)v) - see e.g. the
simpler definition of reduction rules π and µ; but such flexibility is also a necessity - see the particular
form of continuations (called pseudo-lists) extensively studied in the next section.
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Figure 4 Typing rules for λJm

x :A,Γ`x :A Axiom
x :A,Γ` t :B

Γ`λx.t :A ⊃ B Right

Γ` t :A ⊃ B Γ;A ⊃ B`a :C
Γ` ta :C Cut

Γ`u :A Γ;B` l :C Γ|C`c :D
Γ;A ⊃ B`(u, l, c) :D

Leftm

Γ;C` [] :C Ax
Γ`u :A Γ;B` l :C
Γ;A ⊃ B`u :: l :C Lft

x : C,Γ`v :D
Γ|C`(x)v :D Select

We identify simple types with formulas of intuitionistic, propositional, implicational logic.129

They are ranged over by A, B, C, D. If B = B1 ⊃ · · · ⊃ Bn (n ≥ 1) then we say C is a suffix130

of B if C = Bj ⊃ · · · ⊃ Bn, for some 1 ≤ j ≤ n. Contexts Γ are sets of variable declarations131

x : A, with at most one declaration per variable. The typing rules are in Fig. 4. They handle132

four kinds of sequents, one per syntactic class:133

(i) Γ` t :A (ii) Γ;A ⊃ B`a :D (iii) Γ;B` l :C (iv) Γ|C`c :D . (1)134

In the sequents of kinds (ii) and (iii), the distinguished formula on the left hand side (the135

formula separated by ;) is main in the last inference, whereas in the sequents of kind (iv)136

the distinguished formula C is merely selected from the context. In addition, in a derivable137

sequent of kind (iii), C is a suffix of B.138

Inference rule Lft is a special left-introduction rule, because its right premiss is a sequent139

of kind (iii): this implies that B = B1 ⊃ · · · ⊃ Bm ⊃ C, for some m ≥ 0, and the referred140

premiss is the conclusion of a chain of m other Lft inferences. There is another primitive left141

introduction rule, Leftm, the single rule for typing gm-arguments. Since its middle premiss142

is a sequent of kind (iii), the main formula of Leftm has the form A ⊃ B1 ⊃ · · · ⊃ Bm ⊃ C,143

for some m ≥ 0, and is obtained after a sequence of m+ 1 left introductions. We call Leftm144

a multiary left-introduciton rule, while its particular case where the middle premiss is the145

conclusion of Ax, m = 0, l = [], and B = C may be called a unary left introduction.146

In Γ;A ⊃ B ` a : D, with a = (u, l, c), and Γ;A ⊃ B ` l′ : C, the formula A ⊃ B is
introduced linearly, i.e without contraction, in the last inference; the difference between the
two sequents is that C is a suffix of B, whereas the same is not true of D, unless c = (x)x.
The trivial cut xa gives name x to the formula A ⊃ B: we have the admissible rules

Γ;A ⊃ B`a :D
Γ`xa :D Unselect

Γ`u :A Γ;B` l :C Γ|C`c :D
Γ`x(u, l, c) :D

where (x : A ⊃ B) ∈ Γ. So xa represents simultaneously an inference that “unselects” an147

antecedent formula, and a form of left introduction without linearity constraint.148

If x /∈ a and t = xa we say x is main and linear in the application t (abbreviation149

mla(x, t)). In that case, c = (x)xa represents an argument a coerced to a continuation. The150

admissible typing rule is151

Γ;A ⊃ B`a :D
Γ|A ⊃ B`(x)xa :D due to

Γ;A ⊃ B`a :D
x : A ⊃ B,Γ;A ⊃ B`a :D Weak

x : A ⊃ B,Γ`xa :C Unselect

Γ|A ⊃ B`(x)xa :D Select (2)152

TYPES 2016



10:6 Permutability in proof terms for intuitionistic sequent calculus with cuts

where (x : A ⊃ B) /∈ Γ. In the first figure we see that the distinguished position in the153

l.h.s. is changed, losing the information about linearity. In general, there is no coercion of a154

continuation to an argument or list. As hinted above, a non-empty list u :: l can be coerced155

to an argument (u, l, (x)x) (and then to a continuation). A direct “coercion” of a list to a156

continuation is given by []\ = (x)x and (u :: l)\ = (x)x(u, [], l\), with x /∈ u, l. The admissible157

typing rule is158

Γ;B` l :C
Γ|B` l\ :C (3)159

Derived syntax. In order to formulate the reduction rules, we have to introduce some160

derived syntactic operations. A familiar one is ordinary substitution of variables by terms,161

denoted s(t, x, E). It is becoming increasingly clear [12, 5] (and this paper just confirms162

this) that mechanisms of vectorization of arguments for functional applications are at the163

heart of the computational interpretation of sequent calculus. Here is a careful definition of164

dixappend operations in λJm:165

I Definition 1 (Append operations).166

1. The term t@a is defined by V@a = V a if V is a value; and by (ta′)@a = t(a′@a).167

2. The argument a′@a is defined by (u, l, c)@a = (u, l, c@a).168

3. The continuation c@a is defined by ((x)v)@a = (x)(v@xa).169

4. The term v@xa is defined by (xa′)@xa = x(a′@a) if x /∈ a′; and by v@xa = va, otherwise.170

5. The continuation c@c′ is defined by: ((x)x)@c′ = c′; ((x)x(u, l, c))@c′ = (x)x(u, l, c@c′),171

if x /∈ u, l, c; and ((x)v)@c′ = (x)(v@c′), otherwise.172

6. The term t@c is defined by t@(x)v = s(t, x, v).173

7. The list l@l′ is defined by []@l′ = l′ and (u :: l)@l′ = u :: (l@l′).174

Some immediate comments about these append operators: t@a will be used in the175

definition of a special substitution operator (Def. 39 in Section 4); v@xa is used in the176

definition of c@a, and the idea goes back to [8]; a@a′ allows a very short definition of the177

reduction rule π; c@a is used in the definition of a@a′; c@c′ will allow the definition of L@L′178

in Section 3; l@l′ is necessary for the definition of reduction rule µ.179

Recall that an argument a can be “coerced” to a continuation (z)za, if z /∈ a. The next180

lemma shows c@a could have been defined via c@c′.181

I Lemma 2 (Coherence of append). 1. c@a = c@(z)za, if z /∈ a.182

2. (x)(v@xa) = ((x)v)@(z)za, if x, z /∈ a.183

Proof. By simultaneous induction on c and v. It is interesting to see how the various184

definitions in Def. 1 cooperate to produce the result.185

J186

I Lemma 3 (Admissible typing rules). The typing rules in Fig. 5 are admissible.187

Proof. Rule (i) follows immediately from rule (ii). Rules (ii), (iii) and (iv) are proved by188

simultaneous induction on a′, c and v. Rule (vi) follows immediately from rule (vii). Rule189

(vii) is proved together with similar statements for a, l and c by simultaneous induction. Rule190

(v) follows by induction on c with the help of rule (vi). Rule (viii) is proved by induction on191

l′. J192

Maria João Frade�


Maria João Frade�
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Figure 5 Typing rules for derived syntactic operators

Γ` t :A ⊃ B Γ;A ⊃ B`a :C
Γ` t@a :C (i)

Γ;A ⊃ B`a′ :C1 ⊃ C2 Γ;C1 ⊃ C2`a :D
Γ;A ⊃ B`a′@a :D

(ii)

Γ|A`c :B1 ⊃ B2 Γ;B1 ⊃ B2`a :C
Γ|A`c@a :C

(iii) x : D,Γ`v :A ⊃ B Γ;A ⊃ B`a :C
x : D,Γ`v@xa :C (iv)

Γ|C`c :D Γ|D`c′ :E
Γ|C`c@c′ :E

(v) Γ` t :A Γ|A`c :B
Γ` t@c :B (vi)

Γ` t :A Γ, x : A`v :B
Γ`s(t, x, v) :B

(vii)

Γ;A` l :B Γ;B` l′ :C
Γ;A` l@l′ :C

(viii)

Figure 6 Reduction rules of λJm

(β1) (λx.t)(u, [], (y)v) → s(s(u, x, t), y, v)
(β2) (λx.t)(u, u′ :: l, c) → (s(u, x, t))(u′, l, c)
(π) (ta)a′ → t(a@a′)
(µ) (u, l, (x)x(u′, l′, c′)) → (u, l@(u′ :: l′), c′), if x 6∈ u′, l′, c′

So, every derived syntactic operator is typed with a corresponding variant of the cut rule,193

and each such operator is the term representation of the operation on derivations produced194

by the elimination of the corresponding cut. Such operations on derivations may be extracted195

from the proof of the previous lemma. All of them, except for the cuts (v), (vi) and (vii),196

consist in permuting the cut to the left, as long as this is made possible by the repetition197

of the cut formula; for cuts (vi) and (vii) the corresponding operation performs a similar198

permutation to the right; for cut (v) the operation is an hybrid of permutation to the left199

and to the right.200

Reduction rules. The reduction rules of λJm are given in Fig. 6. All rules but µ are201

relations on terms, while µ is a relation on arguments. We let β := β1 ∪ β2. Rule µ is the202

“abbreviation” conversion due to [20]. Rule π of this paper is not the “lazy” variant of [8, 9],203

where argument a′ is appended to argument a in a stepwise fashion, but rather corresponds204

to the rule π′ of the cited papers. This is due to the definition of v@xa, which is not merely205

va, but instead triggers a new appending process in some cases.3 See some remarks about206

the computational interpretation of these rules after Lemma 4.207

The compatible closure→R of a reduction rule R is obtained by closing R under the rules208

in Fig.74. We use the notations →=
R, →

+
R, and →∗R to denote the reflexive, the transitive,209

and the reflexive-transitive closure of →R, respectively. If R = R1 ∪R2, →R can be denoted210

→R1R2 (e.g. →βπ). A R-normal form (or R-nf, for short) is an expression E such that211

E →R E′ for no E′. When existing, we write ↓R (E) to denote the unique R-nf of an212

3 In ΛJ [13] rule π is also of the “lazy” kind.
4 This detailed naming of the closure rules will be intensively used in Section 3, where we will consider

alternative notions of compatible closure.

TYPES 2016
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Figure 7 Compatible closure

t→ t′

λx.t→ λx.t′
(I) t→ t′

ta→ t′a
(II) a→ a′

ta→ ta′
(III)

u→ u′

(u, l, c)→ (u′, l, c)
(IV ) l→ l′

(u, l, c)→ (u, l′, c)
(V ) c→ c′

(u, l, c)→ (u, l, c′)
(V I)

u→ u′

u :: l→ u′ :: l
(V II) l→ l′

u :: l→ u :: l′
(V III) v → v′

(x)v → (x)v′
(IX)

expression E.213

The following result will be important later, and closes the discussion of derived syntax.214

I Lemma 4 (Associativity of append).215

1. (t@a)@a′ →=
π t@(a@a′) and (t@xa)@xa

′ →=
π t@x(a@a′).216

2. (a@a′)@a′′ →=
π a@(a′@a′′).217

3. (c@a)@a′ →=
π c@(a@a′).218

Proof. By simultaneous induction in t, a and c. Everything follows from definitions and IHs,219

except in the single case where π-steps are generated, which is this: suppose t is neither x220

nor xa with x /∈ a. Then (t@xa)@xa
′ = (ta)a′ →π t(a@a′) = t@x(a@a′). J221

Cut-elimination and computational interpretation. Rules β and π define a cut-222

elimination procedure in λJm, whose purpose is not to eliminate all cuts ta, but rather to223

reduce them to the form xa: as seen above, xa represents a left introduction, not a cut to224

be eliminated. Still, we refer to βπ-nfs as cut-free. A cut ta is necessarily principal on the225

right premiss, so its elimination starts by analyzing the left premiss t. If t is not a variable,226

then either it is another cut (in which case the original cut ta is permutable to the left, and227

a π-redex), or it is a λ-abstraction (in which case the cut is principal in both premisses,228

and a β-redex). Rule π performs left permutation, while rule β performs the key step of229

cut-elimination, breaking the cut into two cuts with simpler cut-formulas. If any of these230

two cuts is permutable to the right, it is not formed, but rather eliminated immediately, and231

represented by a substitution.232

In a µ-redex we find a continuation c = (x)xa′ with x /∈ a′, which represents a derivation233

of the form found in the right figure of (2), where a formula is selected immediately after234

being “unselected”. The redex itself is a sequence of two Leftm inferences, with the first,235

represented by a′, being coerced to a continuation c, before being used in the second Leftm236

inference (u, l, c). In addition, xa′ represents a left introduction with the principal formula237

being introduced linearly, due to the proviso x /∈ a′. The construction u′ :: l′ found in the238

contractum of rule µ represents a linear left introduction by alternative and more primitive239

means, dispensing with the temporary name x, and eliminating the described sequence of240

inferences.241

We also refer to ta as a generalised, multiary application (or gm-application for short), and242

think of λJm as a λ-calculus with themultiarity and generality features. In ta, t is the function243

expression, a is its gm-argument. A gm-argument consists of a first ordinary argument u,244

a list l of further ordinary arguments l (the multiarity feature), and a “continuation” c,245

indicating where to substitute the result of passing the last argument (the generality feature).246

This interpretation follows from the reduction rules β1 and β2. A π-redex is an iterated247
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gm-application. Contrary to ordinary arguments in, say, the λ-calculus, gm-arguments can248

be appended and the function expression simplified - this is the effect of the π-reduction.249

In a µ-redex, the generality feature is being used just to “link” two lists of arguments. The250

effect of the µ-reduction is to append these two lists. In the sequel, these interpretation of251

π and µ will be specialized to a fragment of λJm; there, it will become appropriate to call252

µ-nfs flat expressions, and to call µ-normalization flattening. We adopt such terminology for253

the entire λJm. For instance, µ-nfs constitute a subsystem of λJm [8]; we call it the flat254

subsystem.255

Properties. The meta-theory of λJm is well developed, we just recall the results we256

need below. Some proofs have to be adapted to cover the variant of π we employ here.257

I Theorem 5 (Confluence and SN). In λJm, βπ- and βπµ-reductions are confluent, and258

βπµ-reduction is SN on typable expressions.259

Proof. The existing proofs are easily adapted. J260

In isolation, µ-reduction is easily seen to be confluent and terminating [8, 9]. The µ-nf of261

an expression E, µ(E), is defined by recursion on E, with all clauses given homomorphicaly,262

except in the following case: if µv = x(u′, l′, (y)v′) and x /∈ u′, l′, v′, then µ(t(u, l, (x)v)) =263

µt(µu, µl@(u′ :: l′), (y)v′).264

I Lemma 6 (Preservation of cut-freeness by µ-reduction). In λJm, if t is a βπ-nf and t→µ t
′,265

then t′ is a βπ-nf.266

Proof. Easy induction on t→µ t
′. J267

This lemma says µ-reduction preserves cut-freeness. Conversely, neither β-reduction nor268

π-reduction preserve µ-normality. Given a reduction rule R, by R′-reduction we will mean269

R-reduction followed by reduction to µ-nf.270

I Theorem 7 (Preservation of reduction by µ). In λJm:271

1. If t→β t
′ then there exists t′′ s.t. µ(t)→β t

′′ →∗µ µ(t′).272

2. If t→π t
′ then there exists t′′ s.t. µ(t)→π t

′′ →∗µ µ(t′).273

Proof. Statement 1 of the previous theorem is already used in [8] (Lemma 5), while statement274

2 is also present in [8] (Lemma 7), but only for the terms in the λJ-subsystem. J275

Subsystems. A λm-expression is a λJm-expression where all gm-applications have the276

form t(u, l, (x)x), a form which we abbreviate as t(u, l) and call multiary application. Based277

on such expressions one defines a subsystem λm of λJm: the expressions are µ-nfs; they are278

closed for β; they are not closed for π, but we return to the subsystem by post-composition279

with µ-normalization. The reduction rules of λm are given in Fig. 8. The λm-calculus is a280

variant of the λ-calculus, called the multiary λ-calculus, or λm-calculus, where functions are281

applied to non-empty lists of arguments. The rules βi pass to the function the first argument,282

adjusting the remainder of the list, while rule π′ appends lists of arguments. The λm is also283

a variant of the λ-calculus [12]. The normal forms of λm are either x, λx.t or x(u, l), which284

are a variant of the cut-free λ-terms, and represent the cut-free LJT derivations. For this285

reason λm is also the focused subsystem of λJm.286

A λJ-expression is a λJm-expression where all gm-applications have the form t(u, [], (x)v)287

(hence, just one argument u), a form which we abbreviate as t(u, (x)v) and call generalized288

application. Such expressions define the unary subsystem λJ of λJm, as they are closed289

for β1 and π. This is a copy of natural deduction with general elimination rules [23], or290
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Figure 8 The reduction rules of the multiary λ-calculus λm

(β1) (λx.t)(u, []) → s(u, x, t)
(β2) (λx.t)(u, u′ :: l) → s(u, x, t)(u′, l)
(π′) t(u, l)(u′, l′) → t(u, l@(u′ :: l′))

rather its presentation as the typed λ-calculus ΛJ [13], inside λJm [9]. Conversely, λJm is291

a generalization of λJ obtained by allowing the left-introduction rule Lft, or constructor292

u :: l. This is a small difference with numerous consequences: reduction rules β and π of ΛJ293

have to be taken in a multiary form, and two new reduction rules, β2 and µ, appear; lists294

are not restricted to [], so the syntactic class of lists, as well as the third form of sequents295

Γ;B` l :C, are not degenerate. So λJm is a system that goes slightly but decisively beyond296

natural deduction.297

2.2 Why λJm?298

We choose to base on λJm our study of permutability in the sequent calculus. Before we299

proceed, we would like to justify our choice. The justification has two parts. First, we give a300

fresh explanation of the place of λJm among possible formulations of the sequent calculus,301

trying to dissipate some misunderstandings. Second, we explain our methodology in the302

study of permutability, and why λJm is an adequate tool for that methodology.303

Understanding λJm. Given that λJm captures several known systems as subsystems,304

one might have the impression that λJm is some ad hoc gluing. Of course we think otherwise,305

and would like to argue that λJm is rather a standard and important fragment of sequent306

calculus. Actually, this has been argued technically before [7], but the sceptical reader may307

object against the formulations of the sequent calculus with which λJm is compared in op.308

cit. So, here we formulate ordinary sequent calculus as a λ-calculus named λLJ, and show309

what fragment of this calculus λJm corresponds to.310

The proof expressions of λLJ are given by the following grammar:

(LJ-proof terms) t, u, v ::= x | λx.t | x̂ (u; c) | tc
(LJ-continuations) c ::= (x)v

The various term forms represent, respectively, the inference rules axiom, right introduction,
left introduction, and cut; the continuation (x)v represents a selection. Separating the class of
continuations is convenient, as they are used twice in the grammar of terms. The formulation
of the system as a typing system is quite obvious, here are most of the rules:

Γ`u :A Γ|B`c :C
Γ` x̂ (u; c) :C

((x : A ⊃ B) ∈ Γ) Γ` t :A Γ|A`c :B
Γ` tc :B

x : B,Γ`v :C
Γ|B`(x)v :C

We will specify a subset of the set of LJ-terms, whose elements are called Jm-terms,311

by imposing two restrictions. The first restriction is that no Jm-term has the third form,312

corresponding to a left introduction. One reason for this is that we want a term to be313

either a value (variable or abstraction) or a single other form: having to sacrifice either left314

introduction or cut, there is no doubt the first form is the chosen to be sacrificed, since cuts315

represent computation, and can mimic left introductions.316

This first restriction on terms determines three subsets of the set of LJ-continuations: (i)317

Jm-continuations (x)v, where v is a Jm-term; (ii) LJ-continuations of the form (x)x̂ (u; c′),318
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to be called Jm-arguments, where x /∈ u, c′, and u is a Jm-term, and c′ is to be specified319

soon; (iii) the union of these two subsets, to be ranged over by k, whose elements are to be320

called Jm-contexts. Notice a Jm-argument (x)x̂ (u; c′) is not a Jm-continuation, because321

x̂ (u; c′) is not a Jm-term.322

We have to specify which class c′ in Jm-arguments belongs to; and the same is true of323

Jm-cuts, terms of the form tc′′ with t a Jm-term and c′′ to be specified now. We impose324

(and this is the second restriction on terms) c′′ to be a Jm-argument: this implies that a325

Jm-cut is right-principal and a generalized form of function application, the cut-formula is326

an implication; this also justifies the terminology “Jm-argument”. As to c′: (i) imposing it327

to be a Jm-argument is not an option, otherwise the inductive definition of Jm-arguments328

would not have a base case; (ii) imposing it to be a Jm-continuation is not an option329

either, as otherwise Jm-terms would be isomorphic to ΛJ-terms, and the fragment would be330

equivalent to natural deduction; (iii) so we have to choose c′ to be a Jm-context. Therefore,331

a Jm-argument is a LJ-continuation of the form (x)x̂ (u; k), where x /∈ u, k, and u is a332

Jm-term and k is a Jm-context. A Jm-argument (x)x̂ (u; k) is abbreviated (u, k).333

Summing up: the sets of Jm-terms, arguments, contexts, and continuations are given by334

t, u, v ::= x | λx.t | ta a ::= (u, k) k ::= a | c c ::= (x)v (4)335

We now see this syntax is a formulation of λJm, let us call it the first formulation.336

In fact, the syntax of λJm has many equivalent formulations. From (4) we can dispense337

with the class of arguments: cuts become t(u, k) and contexts are given by k ::= (u, k) | c.338

This second formulation was used in [7]. Alternatively, from (4) we can dispense with339

the class of contexts: in this third formulation, which has never been used, arguments are340

given by a ::= (u, a) | (u, c). In this paper we are using a fourth formulation: in (4), it is341

equivalent to take contexts as given by k ::= (u, k) | c; then arguments have the general form342

(u1, (u2, (· · · (um, c) · · · ))) for some m ≥ 1; finally, we bring c to the surface of arguments,343

rearranging them as: (u1, (u2 :: · · · :: (um :: []) · · · ), c). To have c at the surface of arguments344

will be important precisely for the formulation of the process of permutative conversion5.345

So, λJm has several formulations, we are using one that suits better the purpose of this346

paper; but, independently of the several formulations, λJm has a special status, as it is a347

syntax that follows necessarily from λLJ by imposing proof terms to be either values or cuts,348

and cuts to be restricted to a form of function application.349

Methodology. Our methodology in the study of permutability in the sequent calculus is350

modular: we want to isolate and highlight the syntactic intricacies of permutability, avoiding351

to mix them with other issues that a wrong choice of system could bring. So, we need in352

the background a system as simple and as close to the ordinary λ-calculus as possible - but353

without falling into mere natural deduction or ΛJ (which would be undesirable in a study354

about the sequent calculus).355

The system λJm has a number of characteristics appropriate to this aim (some of which356

were stressed by the reconstruction of λJm inside λLJ given above). First, the logic we357

consider is the simplest one (intuitionistic implication as sole connective). Second, the358

cut=redex paradigm [12, 3] is not followed, so that variables in proof terms can be treated359

as ordinary term variables, and substitution can be treated as ordinary term substitution360

[5]. Third, the primitive cut of the system is right-principal, hence a cut-formula is always361

an implication, hence the cut can be interpreted as some sort of function application;362

5 See equation (7) below.
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10:12 Permutability in proof terms for intuitionistic sequent calculus with cuts

concomitantly, substitution is treated as a meta-operation (no explicit substitution), with363

the corresponding cut-rule treated as an admissible typing rule. Fourth, the immediate call364

of substitution(s) in the β-rules induces the call-by-name character of cut-elimination [3],365

which is the approach closest to the ordinary λ-calculus.366

3 Permutation-freeness in the sequent calculus λJm367

In this section we study natural proofs, which are a generalization of normal proofs to the368

cut-full setting. They are introduced in the second subsection, after a technical subsection369

which develops the concept of pseudo-list. After natural proofs are proved to be closed for370

typing and reduction, they are given a computational interpretation in the third subsection,371

through the calculus λnm, which we prove to be isomorphic to the natural subsystem. In the372

final subsection we investigate the relationship between natural and focused proofs, paying373

particular attention to the search for normal proofs.374

3.1 Pseudo-lists375

The notion of x-normality goes back to [4] and was used in the context of λJm in [6]. Here376

we rename the notion as x-naturality, since we are not restricted to the cut-free setting. The377

concept of pseudo-list arises from the particular syntactic organization of λJm we employ in378

this paper, which includes the syntactic class of continuations c. In the remainder of the379

paper, pseudo-lists will be crucial in the study of naturality. In this subsection we see some380

of their basic properties, and their use in the analysis of continuations and gm-applications.381

I Definition 8 (Pseudo-lists). x-natural terms and arguments and pseudo-lists are defined382

simultaneously as follows:383

v is x-natural if v = x or v = xa and a is x-natural.384

a is x-natural if a = (u, l, c) and x /∈ u, l, c and c is a pseudo-list.385

c is a pseudo-list if c = (x)v with v x-natural.386

Pseudo-lists are ranged over by L. We introduce the following abbreviations for pseudo-lists:387

388

L ::= nil | (u+l +L) (5)389

nil abbreviates (x)x390

(u+l +L) abbreviates (x)x(u, l, c) if L abbreviates c and x /∈ u, l, c.391

I Lemma 9 (Typing of pseudo-lists). 1. In λJm a typing derivation of Γ|C`L :D ends with392

an application of the Select inference rule which has one of two forms:393

either the inference selects the left-principal formula of an Axiom inference (with the394

whole derivation consisting of the two mentioned inferences);395

or the inference ends a derivation of the form of the right figure in (2) - which entails396

that the Select inference selects a formula which had just been unselected, and the397

latter, being the distinguished formula in the l.h.s. of a sequent of kind (ii), is the398

principal formula of a Leftm inference.399

2. The typing rules for pseudo-lists in Fig. 9 are admissible typing rules of λJm.400

Proof. 1. is by case analysis on L. The case Axm of 2. uses 1. and the case multi− Lft of401

2. uses admissibility of weakening for pseudo-lists. J402
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Figure 9 Typing rules for pseudo-lists

Γ|A`nil :A Axm
Γ`u :A Γ;B` l :C Γ|C`L :D

Γ|A ⊃ B`(u+l +L) :D
multi− Lft

Figure 10 Closure rules for pseudo-lists

u→ u′

(u+l +L)→ (u′+l +L)
(a) l→ l′

(u+l +L)→ (u+l′ +L)
(b) L→ L′

(u+l +L)→ (u+l +L′)
(c)

I Lemma 10 (Derived substitution rules). s(u, x, L) is a pseudo-list and satisfies s(u, x,nil) =403

nil and s(u, x, (v+l +L)) = (s(u, x, v)+s(u, x, l) +s(u, x, L)).404

Proof. First one proves s(u, x, v) z-natural, for v z-natural, z 6= x and z /∈ u. Then, the405

statement of the lemma is proved by case analysis of L. J406

I Lemma 11 (Derived append rules). 1. L@a is a continuation and satisfies: nil@a =407

(z)za, if z /∈ a; and (u+l +L)@a = (z)z(u, l, L@a), if z /∈ u, l, L, a.408

2. L@c is a continuation and satisfies: nil@c = c; and (u+l +L)@c = (z)z(u, l, L@c), if409

z /∈ u, l, L, c.410

3. L@L′ is a pseudo-list and satisfies: nil@L′ = L′ and (u+l +L)@L′ = (u+l +(L@L′)).411

Proof. 1. (resp. 2.) Immediate by definition of c@a (resp. c@c) 3. Particular case of 2. J412

Notice that L@c is the continuation obtained by replacing nil by c in L.413

I Lemma 12 (Derived closure rules). The closure rules for pseudo-lists in Fig. 10 are derived414

closure rules of →R, for any R.415

Proof. The derivations are easy. J416

Pseudo-lists allow a useful representation of continuations:417

I Lemma 13 (Unique decomposition). Every continuation c can be written in a unique way418

as L@(x)v with ¬mla(x, v).419

Proof. Existence of decomposition: we prove that, for all t ∈ λJm, there are L and v420

such that ¬mla(x, v) and (x)t = L@(x)v. The proof is by induction on t. Uniqueness of421

decomposition: we prove that, for all t ∈ λJm, if (z)t = L@(x)v = L′@(y)v′, with ¬mla(x, v)422

and ¬mla(y, v′), then L = L′ and (x)v = (y)v′. The proof is by induction on t. J423

I Definition 14. When we write 〈u, l, L, (x)v〉 we mean (u, l, L@(x)v) with ¬mla(x, v).424

In the argument 〈u, l, L, (x)v〉 the continuation is analyzed into its unique decomposition425

as given by Lemma 13. Of course we can write a gm-application as t〈u, l, L, (x)v〉.426

I Corollary 15 (Pseudo-lists). A continuation c is a pseudo-list iff c = L@(x)x.427

Proof. L@(x)x = L is a pseudo-list. Conversely, suppose c is a pseudo-list and c = L@(x)v428

with ¬mla(x, v). The only case of v where the replacement of nil by (x)v in L yields a429

pseudo-list is v = x. J430

I Lemma 16 (Associativity of append). 1. (L@c)@c′ = L@(c@c′).431
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2. (L@c)@a = L@(c@a).432

3. (L@a)@a′ = L@(a@a′). (Compare with the third statement in Lemma 4.)433

Proof. Each by easy induction on L. Alternatively, the second (resp. third) statement434

follows from Lemma 2 and the first (resp. second) statement. J435

Pseudo-lists can be used to give an handy alternative presentation of reduction rule π:436

t〈u, l, L, (x)v〉a→ t(u, l, L@(x)va).437

Pseudo-lists also allow an alternative characterisation of the mapping µ for generalised438

multiary applications. For that, we need a flattening operation on pseudo-lists, denoted by439

L[, and defined by: (i) nil[ := []; (ii) (u+l +L)[ := (u :: l)@L[. We also need µ extended to440

pseudo-lists homomorphically, that is: (i) µ(nil) := nil; (ii) µ((u+l+L)) := (µ(u)+µ(l)+µ(L)).441

I Lemma 17. µ(t〈u, l, L, (x)v〉) = µt(µu, µl@(µL)[, (x)µv).442

Proof. By induction on L. The base case requires the fact that if ¬mla(x, v), then also443

¬mla(x, µ(v)). The inductive case follows from the IH and uses associativity of the append444

operation on lists. J445

3.2 Naturality446

In this subsection we will introduce the concept of natural expression, and observe that this447

class of expressions is closed both for the reduction and the typing relations of λJm, thus448

constituting the natural subsystem of λJm.449

I Definition 18 (Natural and normal expressions). An expression of λJm is natural if all450

continuations occurring in it are pseudo-lists. An expression of λJm is normal if it is both451

natural and cut-free.6452

A normal expression corresponds to a typing derivation where the inference rule Select is453

constrained to be of the two forms described in item 1 of Lemma 9.454

Natural expressions are generated by the following grammar:455

(natural proof terms) t, u, v ::= x | λx.t | ta
(natural gm-arguments) a ::= (u, l, L)

(natural lists) l ::= u :: l | []
(natural continuations) L ::= (x)v, with v x-natural

(6)456

Notice that a natural continuation is a pseudo-list, but not conversely: in a natural continu-457

ation (x)v, v is not only x-natural, but also natural. A natural continuation is a natural458

pseudo-list.459

When one coerces a natural argument a = (u, l, L) to the natural continuation (z)za,460

with z /∈ a, one obtains the natural pseudo-list (u+l +L).461

In view of Corollary 15, a natural application ta has the form t〈u, l, L, (x)x〉; the last462

component is nil and so this representation does not give more information than t(u, l, L).463

The natural expressions of λJm are closed for typing in the following sense: in a typing464

derivation of a natural expression, every expression occurring in the derivation is natural itself.465

This is easily seen: the axioms of the typing system of λJm type natural expressions; in466

every other typing rule, the expressions in the premisses are subexpressions of the expression467

in the conclusion; and every subexpression of a natural expression is natural.468

6 Natural proofs were called “normal proofs” in [6].
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Figure 11 Some rules for the restricted closure

L→ L′

L@c→ L′@c
(d)

v → v′ ¬mla(x, v)
L@(x)v → L@(x)v′

(e)

We now see the natural expressions of λJm are also closed for reduction. This is harder.469

The following lemma establishes that natural expressions are closed for the operations of470

substitution and append of gm-arguments.471

I Lemma 19. 1. If u,E are natural expressions, then s(u, x,E) is a natural expression.472

2. If a, a′ are natural gm-arguments, then a@a′ is also a natural gm-argument.473

3. If l, l′ are natural lists, then l@l′ is also a natural list.474

4. If L,L′ are natural continuations, then L@L′ is also a natural continuation.475

Proof. Part 1 is proved by simultaneous induction on E = v, a, l, c. Part 2 follows from the476

fact that, given a natural continuation L and a natural gm-argument a′, L@a′ is a natural477

continuation - and this is easily proved by induction on L. Parts 3 and 4 are proved by478

straightforward induction on l and L respectively. J479

I Definition 20. A relation ρ on expressions of λJm preserves naturality if EρE′ and E480

natural implies E′ natural.481

We will see that →R preserves naturality. For the reduction rules R this is done directly.482

I Lemma 21. For each R ∈ {β1, β2, π, µ}, R preserves naturality.483

Proof. The cases R = β1 and R = β2 (resp. R = π, R = µ) follow from Part 1 (resp. Part 2,484

Part 3) of Lemma 19. J485

For the compatible closure →R, preservation of naturality is proved in an easier way with486

the help of a restricted notion of closure.487

I Definition 22 (Restricted closure). The restricted closure of a relation on expressions of488

λJm is defined by replacing closure rule (IX) in Fig. 7 by the rules (a), (b) and (c) in Fig. 10,489

and the rules (d) and (e) in Fig. 11. If R is a reduction rule, the closure of R under the490

restricted closure is denoted  R.491

I Lemma 23. If R preserves naturality, so does  R.492

Proof. Suppose R preserves naturality. We prove by simultaneous induction four statements.493

The first three are: if E  R E
′ and E natural then E′ natural, for terms, arguments and494

lists. The last is: if L R L
′ and L@c natural then L′@c natural. J495

We now must relate →R and  R. We will see that the two closures coincide for496

R ∈ {β1, β2, π}, but there are small differences for R = µ, which, nonetheless, allow to497

conclude preservation of naturality by →µ from preservation of naturality by  µ.498

I Lemma 24 (Admissible closure rules of →R). Let R ∈ {β1, β2, π, µ}. Closure rules (d) and499

(e) in Fig. 11 are admissible closure rules of →R.500

Proof. Case closure rule (d). One proves:501

(i) if t→R t
′, with t and t′ x-natural, then ((x)t)@c→R ((x)t′)@c.502
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(ii) if a→R a
′, with a and a′ x-natural, then ((x)xa)@c→R ((x)xa′)@c.503

(iii) if c1 →R c
′
1, with c1 and c′1 pseudo-lists, then c1@c2 →R c

′
1@c2.504

Case closure rule (e). In fact, one proves that the following are admissible closure rules of
→R:

c→ c′

t@c→ t@c′
(i)

c2 → c′2
c1@c2 → c1@c′2

(ii) v → v′

L@(x)v → L@(x)v′
(iii)

J505

Putting together the previous lemma and Lemma 10, we conclude  R⊆→R for the506

reduction rules of λJm. For the converse inclusion, to address the case R = µ we will need507

the followig new µ-rule on pseudo-lists:508

(µ2) (u+l +(u′+l′ +L))→ (u+(l@(u′ :: l′)) +L) .

I Lemma 25 (Admissible closure rules of  R). 1. For any reduction rule R, the following
are admissible closure rules of  R:

L1  L′1
L1@L2  L′1@L2

(i)
L2  L′2

L1@L2  L1@L′2
(ii) c c′

L@c L@c′
(iii)

2. Let R ∈ {β1, β2, π}. Closure rule (IX) of Fig. 7 is an admissible closure rule of  R.509

3. Let R = µ ∪ µ2. Closure rule (IX) of Fig. 7 is an admissible closure rule of  R.510

Proof. The closure rule (iii) of part 1 is used in the proof of part 2. The new rule (µ2) is511

needed to fix the base case of the inductive proof of part 3. J512

I Corollary 26. For each R ∈ {β1, β2, π, µ}, →R and  R′ are the same relation, where513

R′ = R if R 6= µ, and R′ = µ ∪ µ2 otherwise.514

Proof. We had seen that R⊆→R. For R 6= µ, part 2 of Lemma 25 completes the proof that515

→R and  R are the same relation. In the case of µ, part 3 of Lemma 25 gives →µ⊆ R′ ,516

with R′ = µ ∪ µ2. One still has to argue for  R′⊆→µ. Observe that µ2 is a subset of the517

closure of  µ under (IX). Hence  R′ is a subset of the same closure. But such closure is a518

subset of →µ, since  µ⊆→µ and →µ is closed under (IX). J519

With this characterization of →R in terms of the restricted closure, we can now show520

that the natural expressions of λJm are closed for reduction.521

I Theorem 27 (Preservation of naturality). →R preserves naturality, for each R ∈ {β1, β2, π, µ}.522

Proof. By the previous corollary →R= R′ , where R′ = R if R 6= µ, and R′ = µ ∪ µ2523

otherwise. By Lemma 21, each R preserves naturality. It is clear that also µ2 preserves524

naturality. So, in each case, the reduction rule R′ preserves naturality; by Lemma 23, so525

does  R′ . J526

Given that the natural expressions are closed for typing and reduction, we define:527

I Definition 28 (Natural subsystem). The natural subsystem of λJm is obtained by restriction528

to the natural expressions of the typing and reduction relations of λJm. That is:529

given a natural term t, Γ` t :A in the natural subsystem if Γ` t :A in λJm; and similarly530

for gm-arguments, lists, and continuations.531

given natural terms t, t′, t→R t
′ in the natural subsystem if t→R t

′ in λJm; and similarly532

for gm-arguments, lists, and continuations.533
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I Corollary 29 (Confluence, SN, and uniqueness of normal form). In the natural subsystem,534

βπ- and βπµ-reductions are confluent, and βπµ-reduction is SN on typable expressions. In535

particular, every typable natural expression has a unique βπ-nf, which is a normal expression.536

Proof. By the same properties of λJm (Theorem 5). J537

3.3 Computational interpretation538

The natural subsystem was defined by restricting the typing and reduction relations of λJm.539

We now give a direct, self-contained, equivalent definition of the natural subsystem. The540

advantage is that the alternative definition has a transparent computational interpretation.541

The key idea is to handle the abbreviations for pseudo-lists as if they were first-class542

expressions. In the resulting system, named λnm, pseudo-lists L behave properly as lists543

of non-empty lists of ordinary arguments; and arguments (u, l, L) may be seen as (and544

coerced to) non-empty pseudo-lists (u+ l +L). If we call lists of lists multi-lists, λnm is545

then a multi-multiary λ-calculus, in the sense of a λ-calculus where functions are applied to546

multi-lists of arguments. The reduction rules of λnm will confirm this interpretation.547

Definition of λnm. The expressions of λnm are the natural expressions, given by548

grammar (6). It is easy to prove that the same expressions are generated if, in the grammar,549

the class L is generated by L ::= nil | (u+ l +L). These are the abbreviations (in the550

meta-language) we adopted to denote pseudo-lists - recall (5). Now we define typing and551

reduction rules for the natural expressions, alternative to those of Def. 28. The idea is to552

treat these abbreviations as if they were object syntax, and handle them with the derived553

rules contained in Lemmas 9, 10, 11, and 12, together with reduction rules that can be554

proved to be derived rules as well. Since the new system λnm is built with derived rules of555

the natural subsystem given by Def. 28, the former will be immediately “contained” in the556

latter. We will check that the two systems are actually isomorphic.557

I Definition 30 (Typing system of λnm). The typing rules of λnm are all the typing558

rules in Fig. 4 except Select, plus the typing rules in Fig. 9 (of course, in both cases with559

meta-variables t, a, u, l, c ranging over expressions of λnm).560

Recall the four kinds of sequent of λJm, displayed in (1). Observing the typing rules in561

Fig. 9 we conclude that, in λnm, sequents Γ|C`c :D of kind (iv) are such that D is a suffix562

of C; and sequents Γ;A ⊃ B`a :D of kind (ii) are such that D is a suffix of B.563

The reduction rules of λnm are given in Fig. 12. We let β1 := β11 ∪ β12 and µ := µ1 ∪µ2.564

Observe that reduction rule β12 can be derived as µ1 followed by β2. However, if we would565

omit β12, the wanted 1-1 correspondence of reduction steps with the natural subsystem would566

be lost. The meta-operations used in the reduction rules of λnm are as follows:567

s(u, x,E) denotes ordinary substitution on λnm expression E, with E = t, a, l, L. In the568

case E = L, the operation is defined by the equations in Lemma 10.569

L@L′ denotes the append of two pseudo-lists of λnm and is defined by the same equations570

as those in Lemma 11.571

l@l′ denotes the append of two lists of λnm and is defined by the same equations as572

those in Definition 1.573

I Definition 31 (Compatible closure for λnm-expressions). A compatible relation on λnm-574

expressions is one closed for the closure rules in Fig. 7 except (IX), plus the closure rules in575

Fig. 10 (with meta-variables ranging over expressions of λnm). The compatible closure of a576

rule R of λnm, denoted →R, is the smallest compatible relation containing R.577
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Figure 12 The reduction rules of the multi-multiary λ-calculus λnm

(β11) (λx.t)(u, [],nil) → s(u, x, t)
(β12) (λx.t)(u, [], (u′+l +L)) → s(u, x, t)(u′, l, L)
(β2) (λx.t)(u, u′ :: l, L) → s(u, x, t)(u′, l, L)
(π) t(u, l, L)(u′, l′, L′) → t(u, l, L@(u′+l′ +L′))

(µ1) (u, l, (u′+l′ +L)) → (u, l@(u′ :: l′), L)
(µ2) (u+l +(u′+l′ +L)) → (u+l@(u′ :: l′) +L)

Having completed the definition of the system λnm, we pause to observe its computa-578

tional interpretation: λnm is a lambda-calculus where functions are applied to non-empty579

multi-lists, where a multi-list is a list of non-empty lists of arguments. The reduction rules580

have a transparent meaning in terms of these multi-lists: β-rules pass to the applied function581

the first element of the first list of arguments in the multi-list, while π and µ append and582

flatten multi-lists of arguments, respectively.583

I Proposition 32 (Natural subsystem ∼= λnm). 1. Γ ` t : A in the natural subsystem iff584

Γ` t :A in λnm. Similarly for gm-arguments, lists and continuations.585

2. Let R ∈ {β1, β2, π, µ}. t →R t′ in the natural subsystem iff t →R t′ in λnm. Similarly586

for gm-arguments, lists and continuations.587

Proof. 1. There are four “if” statements (one for each E = t, a, l, L) proved by simultaneous588

induction. The only interesting point is that the typing rules in Fig. 9 are derived typing589

rules of the natural subsystem. Similarly, there are four “only if” statements, proved by590

simultaneous induction.591

2. The “if” statement for E = t is proved together with similar statements for E = a, l, L,592

by simultaneous induction on E →R E
′ in λnm. The “only if” statement for E = t is proved593

together with similar statements for E = a, l, L, by simultaneous induction on E →R E
′ in594

the natural subsystem.595

J596

The natural subsystem of λJm benefits largely from this isomorphism. The presentation597

of its typing and reduction rules as in Def. 30 and Fig. 12 is much more perspicuous than598

through Def. 28: think of the sequent invariants noted after Def. 30, or the computational599

interpretation of λnm, that the natural subsystem inherits. The isomorphism lets us see600

that the natural subsystem corresponds to a multi-multiary λ-calculus, where the generality601

feature is reduced to a mechanism to form lists of lists of arguments for functional application.602

3.4 Naturality and focusedness603

Natural proofs are a generalization of focused proofs (in the sense of LJT ). We will show604

this both for the computation-as-cut-elimination and computation-as-proof-search paradigms.605

In the former case, we show the relationship between the calculi λnm and λm; in the latter,606

we explain how normal(=natural and cut-free) proofs can be searched by a procedure that is607

a relaxed form of focusing.608

Recall that the map µ calculates the unique µ-nf of a λJm expression. Its restriction to609

λnm has a recursive description in which the single interesting clause is given by µ(t(u, l, L)) =610

µt(µu, µl@(µL)[), thanks to Lemma 17. So we see µ maps natural proofs to focused proofs;611
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Figure 13 Proof system for normal proofs (in the atomized system, D is atomic)

I x :D,Γ`x :D Axiom
x :A,Γ` t :B

Γ`λx.t :A ⊃ B Right

II
Γ;A ⊃ B`a :D

Γ`xa :D Unselect ((x :A⊃B) ∈ Γ)

III
Γ`u :A Γ;B` l :C Γ|C`L :D

Γ;A ⊃ B`(u, l, L) :D
Outer-multi-Lft

Γ|D`nil :D Axm
Γ`u :A Γ;B` l :C Γ|C`L :D

Γ|A ⊃ B`(u+l +L) :D
Inner-multi-Lft

IV Γ;C` [] :C Ax
Γ`u :A Γ;B` l :C
Γ;A ⊃ B`u :: l :C Lft

the case t = x also gives that µ maps normal proofs to cut-free, focused proofs7. The latter612

is also a consequence of the fact that µ-reduction in λnm preserves cut-freeness, a particular613

case of Lemma 6.614

I Theorem 33 (Preservation of reduction on natural proofs by µ).615

1. If t→β t
′ in λnm then µ(t)→β µ(t′) in λm.616

2. If t→π t
′ in λnm then µ(t)→π′ µ(t′) in λm..617

Proof. By Theorem 7 and the following two facts: (i) λm is closed for β-reduction; (ii) →π′618

in λm is the same as →π followed by µ-reduction to µ-nf in λnm. J619

This theorem says µ is a morphism between the natural and the focused subsystems of λJm.620

In Fig. 13 we recapitulate the typing system for normal expressions8. The rule Leftm has621

been renamed to outer −multi− Lft to reflect its resemblance with multi− Lft, which in622

turn has been renamed to inner−multi−Lft. Cut inferences are restricted to the Unselect623

form, which behaves as a focusing inference.624

We will now see in detail how the good properties enjoyed by focused proof systems625

(invertibility, completeness w.r.t. provability, disciplined proof search) apply to the proof626

system for normal proofs.627

One observation used several times below is that weakening is an admissible rule for628

the various forms of sequents in the proof system for normal proofs. Let us look first into629

invertibility of rules multi− Lft, which is not immediate because of the foreign formula C.630

7 Note that mapping µ restricted to the class of unary normal expressions is a 1-1 correspondence with
cut-free, focused proofs (which are the cut-free LJT proofs, or the cut-free λ-terms, as already shown in
[4] - but there the name used for the mapping is ϕ).

8 The division into groups of rules will be useful later.
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10:20 Permutability in proof terms for intuitionistic sequent calculus with cuts

I Proposition 34 (Invertibility of multi-Lft rules). If Γ;A ⊃ B`a :D or Γ|A ⊃ B`L :D and631

D is an atomic formula, then there exists u0 s.t. Γ`u0 :A, and for all C suffix of B, there632

exist l0, L0 s.t. Γ;B` l0 :C, and Γ|C`L0 :D.633

Proof. Case Γ;A ⊃ B`a :D with a = (u0, l0, L0), we must have Γ`u0 :A, and, for some C0,634

Γ;B` l0 :C0, and Γ|C0`L0 :D. The result follows then with the help of the following suffix635

lemma: for D the atomic suffix of B, if, for some C0, l0, L0, Γ;B ` l0 :C0 and Γ|C0 `L0 :D,636

then, for all C suffix of B there exist l, L s.t. Γ;B` l :C and Γ|C`L :D. (This lemma follows637

by induction on B.) Case Γ|A ⊃ B`L :D, as D is atomic, the derivation cannot be solely an638

axiom Axm. So, we must have L = (u0+l0 +L0), and proceed as in the previous case. J639

Invertibility of the multi-Lft rules is guaranteed only if the RHS formula of the conclusion640

is atomic, but this is in line with LJT , where typically proof search imposes atomic RHS in641

the conclusion of Lft inferences (see e.g. [2] for a system corresponding to LJT with this642

atomic restriction). Next, we consider a restriction of the proof system for normal proofs, for643

which invertibility of the multi-Lft rules holds and a focused proof search discipline can be644

followed.645

I Definition 35 (Atomized normal system). The atomized system for normal proofs is the646

system obtained from the proof system for normal proofs in Fig. 13 by imposing that at the647

rules Axiom and Unselect the RHS formula is atomic. We denote these restricted versions648

of the rules by Axiomatom and Unselectatom. We write `atom, instead of `, to mean that a649

sequent has a derivation in the atomized system.650

Before we describe proof search in the atomized system, we will show that nothing is lost651

in the atomized system regarding provability of sequents Γ` t :A.652

I Definition 36 (η-expansion). The η-expansion rules for normal expressions are

y → λx.y(x, [],nil) y(u, l, L)→ λx.y(u, l, ηexpxL)

where x 6= y and x /∈ u, l, L, and ηexpxL is defined by: ηexpxnil = (x+[] +nil) and653

ηexpx(u+l +L) = (u+l +ηexpxL). The compatible closure of these rules is denoted →ηexp.654

I Lemma 37 (Admissibility of Axiom and Unselect). For any A:655

1. There exists t s.t. x→∗ηexp t and x : A,Γ`atom t :A.656

2. If Γ;B ⊃ C`atom a :A and x : B ⊃ C ∈ Γ, there exists t s.t. xa→∗ηexp t and Γ`atom t :A.657

3. If Γ|C`atomL :A ⊃ B, there exists L′ s.t. ηexpyL→∗ηexp L′ and y : A,Γ|C`atomL′ :B.658

Proof. Proved simultaneously by induction on A. J659

I Theorem 38 (Completeness of the atomized system). If Γ` t :A, then there exists t′ s.t.660

t→∗ηexp t′ and Γ`atom t′ :A. Similarly for gm-arguments, lists, and continuations.661

Proof. The proof of the four statements is done by simultaneous induction. All cases follow662

routinely, except for the cases t = x and t = xa. The case t = x follows by 1. of the lemma663

before, whereas the case t = xa is by IH and 2. of the lemma before. J664

Proof search in the atomized system. Proof search in the atomized system will find665

a derivation of Γ` t :A, if one exists, following a disciplined alternation between asynchronous666

and synchronous phases which we now explain. In this explanation, bottom-up application of667

inference rules is meant; we also refer to the groups of rules in Fig. 13.668

The asynchronous phase searches for proofs of sequents Γ` t :A by applying rules of group669

I. Rule Right decomposes implications until an atomic formula is reached. If this atom is in670

Maria João Frade�


Maria João Frade�


Maria João Frade�




J. Espírito Santo and M. J. Frade and L. Pinto 10:21

the l.h.s. of the sequent, rule Axiomatom ends the search with success. Otherwise, the only671

rule in group II picks a formula from the context, and a synchronous phase starts.672

The synchronous phase searches for proofs of sequents Γ;A ⊃ B ` a :D or Γ|C `L :D,673

by applying rules of group III. This phase consists of a chain of multi − Lft inferences,674

starting with an Outer−multi−Lft inference, continuing with n ≥ 0 Inner−multi−Lft675

inferences, and ending with an application of Axm when successful.676

Each application of a multi− Lft inference (either an outer or an inner one) transforms677

the distinguished formula A ⊃ B in the l.h.s. of the sequent to be proved into a formula C,678

which is not necessarily the immediate positive subformula B, but rather some suffix of B679

which has to be chosen (provability is not affected by this choice - recall Proposition 34),680

triggering a subprocess of proof search for Γ`u :A, and a subsidiary search for Γ;B` l :C.681

The search for Γ;B` l :C is done by focusing on B, through application of rules in group IV.682

So focusing is a subsidiary process of the synchronous phase. In fact, we may say the683

chain of n+ 1 multi− Lft inferences that constitutes the synchronous phase that started684

with sequent Γ;A ⊃ B`a :D breaks into a succession of n+ 1 focusing proofs (that can be685

conducted independently and in parallel) what in a focused system like LJT or λm would686

rather be a single focusing proof leading from A ⊃ B to D.9687

4 Permutability in the sequent calculus λJm688

In this section we study permutative conversions in λJm such that the proofs irreducible by689

such conversions are the natural proofs studied in the previous section. This justifies our690

description of natural proofs as “permutation-free”. Our approach to permutative conversions691

is the simplest one: we introduce a map γ that translates any λJm proof into a natural692

one (and leaves natural proofs invariant); in addition, it maps cut-free proofs to normal693

ones, as required [4]. Map γ, studied in the second subsection, is defined in terms of a694

special substitution operator over natural proofs, which is introduced in the first subsection.695

Such an operator is an essential ingredient of the computational process involved in γ. In696

the third subsection, we prove that permutative conversion to natural form commutes with697

cut-elimination. Hence, the two immediate senses for the concept of normalization, either698

permutative conversion of cut-free proofs to normal form, or cut-elimination in the natural699

subsystem, are coherent and have a common generalization to λJm. In the final fourth700

subsection we systematize the internal structure of λJm with the help of γ.701

4.1 Special substitution702

The special substitution operation on λnm that we will introduce now is the key element in703

the permutative conversion of λJm expressions to natural form.704

I Definition 39 (Special substitution of λnm). Given t ∈ λnm, we define S(t, x, u), S(t, x, a),
S(t, x, l) and S(t, x, L) (for u, a, l, L ∈ λnm) by simultaneous recursion:

S(t, x, x) = t S(t, x, (u, l, L)) = (S(t, x, u),S(t, x, l),S(t, x, L))
S(t, x, y) = y if x 6= y S(t, x, []) = []
S(t, x, λy.v) = λy.S(t, x, v) S(t, x, (u :: l)) = S(t, x, u) ::S(t, x, l)
S(t, x, xa) = t@S(t, x, a) S(t, x,nil) = nil
S(t, x, t′a) = S(t, x, t′)S(t, x, a) if t′ 6= x S(t, x, (u+l +L)) = (S(t, x, u)+S(t, x, l) +S(t, x, L))

9 This has nothing to do with multifocusing, where the focus contains simultaneously several formulas.
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10:22 Permutability in proof terms for intuitionistic sequent calculus with cuts

The difference to ordinary substitution is seen in the fourth clause, with t@S(t, x, a) instead705

of tS(t, x, a). The precise relation between ordinary and special substitution is:706

I Lemma 40 (Subst. vs special subst.). s(u, x,E)→∗π S(u, x,E), for all E ∈ λnm.707

Proof. By simultaneous induction on E = v, a, l, L. J708

I Lemma 41 (Typing of special substitution). The following rules are admissible in λnm.709

Γ` t :A x : A,Γ`u :B
Γ`S(t, x, u) :B

Γ` t :A x : A,Γ;B ⊃ C`a :D
Γ;B ⊃ C`S(t, x, a) :D

Γ` t :A x : A,Γ;B ⊃ C` l :D
Γ;B ⊃ C`S(t, x, l) :D

Γ` t :A x : A,Γ|B ⊃ C`L :D
Γ|B ⊃ C`S(t, x, L) :D

710

Proof. By simultaneous induction on u, a, l, L. The case u = xa uses first the IH to type711

S(t, x, a), and then uses admissibility of the first rule of Fig. 5 to type t@S(t, x, a). J712

From this proof we extract the operation on typing/logical derivation of λnm whose term713

representation is S(t, x, u), performing the elimination of the cut which types this substitution.714

In general, such operation performs the permutation to the right as long as the repetition715

of the cut formula permits, supplemented in the exceptional case u = xa by the operation716

associated with the operation t@a′ (recall discussion after Lemma 3).717

I Lemma 42 (Substitution Lemma). Let t, u ∈ λnm, x 6= y, and y /∈ u. For all E ∈ λnm:718

1. s(u, x,S(t, y, E))→∗π S(s(u, x, t), y, s(u, x,E));719

2. S(u, x,S(t, y, E)) = S(S(u, x, t), y, S(u, x,E));720

3. s(S(u, x, t), y,S(u, x,E))→∗π S(u, x, s(t, y, E)).721

Proof. By simultaneous induction on E = v, a, l, L. J722

4.2 Permutative conversion to natural form723

Now we introduce the map that realises conversion to natural form, and, in particular, show724

that it preserves typing, leaves invariant natural expressions, and preserves reduction.725

I Definition 43 (Conversion to natural form map). For t, a, c, l ∈ λJm and t′ ∈ λnm, we
define γ(t), γ(t′, a), γ(t′, c), and γ(l), by simultaneous recursion on t, a, c, and l:

γ(x) = x γ(t′, (u, l, c)) = γ(t′(γu, γl,nil), c)
γ(λx.t) = λx.γ(t) γ(t′, (x)v) = S(t′, x, γv)
γ(ta) = γ(γt, a) γ([]) = []

γ(u :: l) = γ(u) ::γ(l)

This is summarized in the following equation:726

γ(t(u, l, (x)v)) = S(γt(γu, γl,nil), x, γv) (7)727

I Proposition 44 (Preservation of typing by γ). The following typing rules are admissible728

(where ` and `′ denote derivability in λJm and λnm resp., and so t, a, l, c ∈ λJm and729

t′ ∈ λnm).730

Γ` t :A
Γ`′ γt :A

Γ`′ t′ :A ⊃ B Γ;A ⊃ B`a :C
Γ`′ γ(t′, a) :C

Γ;A` l :B
Γ;A`′ γl :B

Γ`′ t′ :A Γ|A`c :B
Γ`′ γ(t′, c) :B731
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Proof. By simultaneous induction on t, a, l, c. The case a = (u′, l′, c′) needs to first show732

γ(t′)(γ(u′), γ(l′),nil) is typable, using the IH relative to u′ and l′, and then use the IH733

relative to c′. The case c = (x)v needs the typing rule of the special substitution on terms734

(Lemma 41). The other cases are routine. J735

From this proof we extract the operation on typing/logical derivation of λJm associated736

with γ: it is an innermost-outermost application of the operation associated with transform-737

ation (7), and the latter, in turn, is the operation on derivations of λnm associated with738

special substitution (see discussion after Lemma 41), applied after the transformation of the739

given sub-derivations (represented by t, u, l, v).740

γ is extended to pseudo-lists:741

γ(nil) := nil γ((u+l +L)) := (γ(u)+γ(l) +γ(L)) , (8)742

I Proposition 45 (Invariance of natural expressions under γ). For E = t, l, L ∈ λnm, γE = E.743

Proof. By simultaneous induction on t, l, L. The interesting case is where t = t′(u′, l′, L′),744

which follows by IH and the fact γ(t0(u, l0, L0@(x)v)) = S(γt0(γu, γl0, γL0), x, γv), for any745

t0, u, l0, L0, v ∈ λJm, which, in turn, uses the following auxiliary result: given t′, u′, l′, L′ ∈746

λnm, γ(t′(u′, l′, L′), L@(x)v) = S(t′(u′, l′, L′@γL), x, γv) (proved by induction on L). J747

This means that, if we want to see γ as defining the naive, long-step reduction rule E → γ(E),748

we have to require the redex E not to be normal, and so the normal expressions are the749

irreducible expressions for this rule.750

The following result says γ sends cut-free proofs to normal proofs.751

I Lemma 46 (γ preserves cut-freeness). If t is a βπ-nf of λJm, γ(t) is a βπ-nf of λnm.752

Proof. Proved together with analogue statements for gm-arguments, lists and pseudo-lists.753

The case t = xa requires an auxiliary result about preservation of βπ-nfs by substitutions of754

the form S(x(u, l, L), y, t). J755

I Theorem 47 (Preservation of reduction by conversion to natural form).756

1. If t→β t
′ in λJm then γ(t) =βπ γ(t′) in λnm.757

2. If t→R t
′ in λJm then γ(t)→∗R γ(t′) in λnm, for R ∈ {π, µ}.758

Proof. We use the inductive characterisation of reduction in λJm given by Corollary 26.759

Notice =βπ in statement 1. J760

4.3 Normalisation761

We have so far two processes of obtaining a normal(=natural and cut-free) proof: either by762

cut-elimination on a natural proof (as natural proofs are closed for cut-elimination, recall763

Theorem 27), or by permutative conversion of a cut-free proof (as γ preserves cut-freeness,764

recall Lemma 46). We may call such processes normalization processes. The question is765

whether there is a normalization procedure defined on arbitrary λJm proofs which generalizes766

both these two processes. The answer is positive, due to the following result.767

I Theorem 48 (Commutation between cut-elim. and conversion to natural form). For all768

typable t ∈ λJm, γ(↓βπ (t)) = ↓βπ (γ(t)).769

Proof. Firstly observe that all the required nfs exist since the starting terms are typable and770

the map γ preserves typing. By Theorem 47, γ(t) =βπ γ(↓βπ (t)). By Lemma 46, γ(↓βπ (t))771

is a βπ-nf. Hence, by confluence of →βπ in λnm, γ(t)→∗βπ γ(↓βπ (t)). J772
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I Definition 49 (Normalisation map). ρ(E) := γ(↓βπ (E)), for all typed λJm expression E.773

If E is cut-free, then ρ(E) = γ(E), which is the permutative conversion of E; if E is natural,774

then ρ(E) =↓βπ (γ(E)) =↓βπ (E), which is the result of cut elimination from E in λnm.775

4.4 The taming of “bureaucracy”776

The permutative conversion γ and the reduction process µ are the “bureaucratic” processes of777

λJm, as opposed to βπ-reduction, which represents cut-elimination. We are now in position778

to converge to a systematic picture of the internal organization of λJm, fulfilling the promise779

made in the introduction of linking Figs. 3 and 2. The final result we want to achieve is in780

Fig. 14.781

Recall µ preserves “γ-normality”, as the range of γ is λnm, which is closed for µ.782

I Theorem 50 (Commutation between µ and γ). γ(t)→∗µ γ(µt)→∗µ µ(γt).783

Proof. First observe that part 3 of Theorem 47 gives: if t→∗µ t′ in λJm, then γ(t)→∗µ γ(t′)784

in λnm. From this, together with t→∗µ µt, we get γ(t)→∗µ γ(µt). From this, together with785

γt→∗µ µ(γt), we conclude that µ(γt) is the µ-nf of γ(µt). J786

In general, γ(µt) = µ(γt) does not hold, as γ does not preserve µ-normality. By the theorem,787

we only have µ(γ(µt)) = µ(γt). Therefore, we define the combination of γ and µ to be µ ◦ γ,788

denoted γ′. This defines a map from λJm to λm, sending an arbitrary proof to a focused789

one. In this sense, this map may be called a focalization process.790

I Theorem 51 (Commutation). Every face of the two cubes in Fig. 14 commutes.791

Proof. The equality µ(γ(µt)) = µ(γt) is the commutativity of face NL in Fig. 14. We now792

argue the commutativity of every other face, with faces named according to the explanation793

given below the figure. Face SL: particular case of face NL, as γ and µ preserve cut-freeness.794

Face BW: Theorem 48. Face BE: µ(↓βπ (t)) and ↓β′π′ (µt) are βπµ-nfs of t, hence are the795

same term by confluence of βπµ-reduction. Face B: by the isomorphism between λJ and the796

flat subsystem [8], which links β, π with β′, π′, respectively. Face F: by the isomorphism797

between λn and λm [6]. Face N: the unary particular case of face NL. This may be seen as798

extending to γ, γ′ the isomorphism between λJ and the flat subsystem. Face S: the unary799

particular case of face SL, or particular case of face N, as γ′ and µ preserve cut-freeness.800

Face E: the unary particular case of face BW. Face FE: by the isomorphism between λJ and801

the flat subsystem, which means that face E is isomorphic to face FE. That the “diagonal”802

map of face FE is ρ′ (i.e. µ ◦ ρ) follows from the commutativity of faces SL and BE. J803

To conclude, Fig. 14 says that λJm consists of two levels linked by cut-elimination, each804

level organized by the “bureaucratic” conversions γ and µ - and we see that the organization805

is quite tidy. Above the line (a) the maps are “morphisms” of λ-calculi: in addition to the806

isomorphisms that cross the line (b), recall the properties of µ and γ, namely Theorems807

7, 33, and 47. The permutation-free fragment λnm and its sub-fragment λm have clear808

computational meaning: (multi-)multiary λ-calculi whose normal forms can be found by a809

(relaxed) focusing proof-search strategy.810

5 Final remarks811

This paper is a study of the computational interpretation of the sequent calculus that812

deals with the permutability phenomenon, hence distinguished either from the approaches813
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that avoid permutability altogether by staying in some permutation-free fragment, or from814

approaches that simplify the problem by staying in the cut-free fragment or in some fragment815

that is indistinguishable from natural deduction. Our contribution is two-staged: first we816

studied the permutation-free fragment, then we mediated the full and the permutation-free817

systems by means of permutative conversions. In the permutation-free level, the novelty818

is in the computational interpretation: the “multi-multiary” λ-calculus is the transparent819

Curry-Howard interpretation of natural proofs, and normal proofs can be searched by a new,820

relaxed form of focusing. Beyond the permutation-free level, the novelty is in the permutative821

conversion γ and how, with its help, a complete picture of the internal structure of the822

sequent calculus λJm is achieved, as seen in Fig. 14: two halves mediated by cut-elimination823

and organized by the “bureaucracy” conversions γ and µ. To measure the progress achieved,824

this picture should be compared with the wisdom established long ago [4] for the cut-free825

setting and depicted in Fig. 1.826

On the way to such a complete picture, numerous side contributions were made, including:827

the technicalities involving append operators and pseudo-lists that permitted a smooth828

handling of natural proofs; the always surprising richness of “abbreviation” conversion µ,829

this time promoted to a morphism between the natural and the focused fragments; the830

concept of special substitution on natural proofs, which is the computational process behind831

permutative conversion γ; and the indirect contributions to ΛJ qua unary fragment λJ.832

Among the previous papers on λJm [8, 6, 9], the present is closer to [6] in its attempt833

to refine the naive view that λJm is obtained from the λ-calculus by the addition of the834

multiarity and generality dimensions. But the purpose of [6] was to catalogue classes of835

normal forms (and rewriting systems giving rise to them). Curiously, the class of normal836

proofs studied here escaped that catalogue; and even if we find there the statement that837

natural proofs form a subsystem, no computational interpretation was developed. In addition,838

a conversion γ was proposed in [6], but it employed ordinary substitution, which does not839

preserve cut-freeness, hence does not preserve normality. In the present paper, we backtrack,840

employ special substitution in the definition of γ, and start afresh.841

It is important to notice that the purpose of this paper is just to identify computational842

meaning: to assess whether that meaning is useful in practice is out of scope. For instance, we843

are happy to pin down the relaxation of focusing that constitutes the proof-search procedure844

for normal proofs. Such variation on focusing seems to be new, and seems useful in practice,845

allowing some parallelism in the synchronous phase - but we do not say more. Also the846

Curry-Howard interpretation of the natural subsystem (a λ-calculus where functions are847

applied to a vector of vectors of arguments) is perhaps not exciting, but is transparent and848

illuminating: it means that, in the natural fragment, the generality feature is reduced to a849

second-level vectorization mechanism.850

Only space limitation prevented us from developing the study of other reduction procedures851

inside λJm like focalization (captured by the combination of γ and µ) and its combination852

with cut-elimination or normalization. On the other hand, further work is needed if one is853

interested in rewriting systems of permutative conversions, like those in [4, 20]. The present854

concept of special substitution gives a hint of what global operation the local rewrite steps855

should be calculating; but a generalization of that operation from natural proofs to arbitrary856

proofs is required, and this is on-going work.857
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Figure 14 The internal structure of the sequent calculus λJm
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