
Received July 13, 2020, accepted August 17, 2020, date of publication September 4, 2020, date of current version September 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3021858

Local Observability and Controllability Analysis
and Enforcement in Distributed Testing With
Time Constraints
BRUNO LIMA 1,2, (Student Member, IEEE), JOÃO PASCOAL FARIA 1,2, (Member, IEEE),
AND ROBERT HIERONS 3, (Senior Member, IEEE)
1Department of Informatics Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
2INESC TEC, FEUP, 4200-465 Porto, Portugal
3Department of Computer Science, The University of Sheffield, Sheffield S10 2TN, U.K.

Corresponding author: Bruno Lima (bruno.lima@fe.up.pt)

This work was financed by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, under
research grant SFRH/BD/115358/2016 and within the project UIDB/50014/2020.

ABSTRACT Evermore end-to-end digital services depend on the proper interoperation of multiple products,
forming a distributed system, often subject to timing requirements. To ensure interoperability and the timely
behavior of such systems, it is important to conduct integration tests that verify the interactions with the
environment and between the system components in key scenarios. The automation of such integration
tests requires that test components are also distributed, with local testers deployed close to the system
components, coordinated by a central tester. Test coordination in such a test architecture is a big challenge.
To address it, in this article we propose an approach based on the pre-processing of the test scenarios.
We first analyze the test scenarios in order to check if conformance errors can be detected locally (local
observability) and test inputs can be decided locally (local controllability) by the local testers for the test
scenario under consideration, without the need for exchanging coordination messages between the test
components during test execution. If such properties do not hold, we next try to determine a minimum
set of coordination messages or time constraints to be attached to the given test scenario to enforce those
properties and effectively solve the test coordination problem with minimal overhead. The analysis and
enforcement procedures were implemented in the DCO Analyzer tool for test scenarios described by means
of UML sequence diagrams. Since many local observability and controllability problems may be caused
by design flaws or incomplete specifications, and multiple ways may exist to enforce local observability
and controllability, the tool was designed as a static analysis assistant to be used before test execution.
DCO Analyzer was able to correctly identify local observability and controllability problems in real-world
scenarios and help the users fix the detected problems.

INDEX TERMS Test scenarios, observability, controllability, distributed systems, time constraints.

I. INTRODUCTION
Due to the increasing ubiquity, complexity and need for assur-
ance of software-based systems [1], testing is a fundamen-
tal but challenging lifecycle activity, with a huge economic
impact if not performed adequately [2]. This is particularly
true for the end-to-end services that are being proposed in
several domains (e-health, smart cities, etc.), taking advan-
tage of recent advances in cloud, mobile computing, and
Internet of Things (IoT) [3]–[5]. Such services depend on
the proper interoperation of multiple devices and applications

The associate editor coordinating the review of this manuscript and

approving it for publication was Jianquan Lu .

from different vendors, forming a distributed and heteroge-
neous system or system of systems, often subject to tim-
ing requirements. To ensure interoperability and the correct,
secure and timely behavior of such systems, it is important to
conduct integration tests that verify not only the interactions
with the environment but also between the system compo-
nents in key scenarios. However, test automation in this type
of systems is a huge challenge [6].

Integration test scenarios may be conveniently specified by
means of UML Sequence Diagrams [7] (SDs), because they
are an industry-standard well suited for describing and visu-
alizing the interactions that occur between the components
and actors of a distributed system, and may be enriched with

167172 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-2572-047X
https://orcid.org/0000-0003-3825-3954
https://orcid.org/0000-0002-4771-1446
https://orcid.org/0000-0003-4423-6034

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

control flow variants and time constraints, as illustrated by
the example of Fig. 1.

FIGURE 1. Example of a fall detection scenario (simplified) from an
ambient assisted living ecosystem (AAL4ALL).

In this scenario, a care receiver has a smartphone that
has installed a fall detection application. When this person
falls, the application detects the fall and provides the user
with a message which indicates that it has detected a drop
giving the possibility for the user to confirm whether he/she
needs help. If the user responds that he/she does not need
help, the application does not perform any action; however,
if the user confirms that he/she needs help or does not
respond within 10 seconds, the application sends an alert to
a web application called AAL4ALL Portal. In addition to
the maximum duration constraint of 10 seconds for the user
response, other time restrictions are also represented, namely
1 second as the maximum delivery time of the messages and
13 seconds between the sending of the notification to the user
and the sending of the alert message in case of no response.

In order to be able to check the interactions with the envi-
ronment (actors) and between the system components, and
simulate inputs from the environment at multiple locations,
local testers have to be deployed close to the system compo-
nents, coordinated by a central tester, as depicted in Fig. 2.
The local testers may act as test monitors (observing the
messages sent and received by each component), test drivers
(simulating inputs from the environment), or even test stubs
(simulating responses from emulated system components).

To cope with non-determinism (multiple system outputs
being possible for the same input sequence) and response
time constraints, test inputs may have to be selected at run-
time in an adaptive and responsive way, based on the observed
execution events and the behavioral specification (UML SD),
suggesting an adaptive and distributed test input generation
approach. To facilitate fault localization, conformance errors
(i.e., deviations from the behavioral specification) should
be detected as early as possible and as close as possible to
the offending components, suggesting an incremental and
distributed conformance checking approach. Hence, the test
components (central and local testers) in the middle layer

FIGURE 2. Test architecture for the model-based integration testing of
distributed systems.

of Fig. 2 work as a Distributed Test Input Generation and
Conformance Checking Engine.

Test coordination in such a test architecture is a big
challenge.

To address this, we first check, in a pre-processing step
(performed by the Local Observability and Controllability
Analysis and Enforcement component in Fig. 2, closely inte-
grated with the Visual Modeling Environment), if confor-
mance errors can be detected locally (local observability) and
test inputs can be decided locally (local controllability) by the
local testers for the test scenario under consideration, without
the need for exchanging coordination messages between the
test components during test execution (which could delay
test input selection and conformance checking and impose a
communication overhead). In that case, a purely distributed
testing approach can be followed: after the central tester
initiates the local testers, no communication between test
components occurs during test execution; the central tester
only needs to receive a verdict from each local tester at the
end of successful execution or as soon as an error is detected.

If the properties of local (distributed) observability and
controllability do not hold for the test scenario under consid-
eration, we next try to determine a minimum set of coordina-
tion messages or coordination time constraints to be attached
to the given test scenario to enforce those properties, whilst
preserving the semantics of the test scenario. Then the refined
test scenario (test ready model in Fig. 2) is executed as in
the purely distributed approach. If only coordination time

VOLUME 8, 2020 167173

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

constraints are added, the whole testing approach is still
purely distributed. But if coordination messages are added,
the whole testing approach becomes a hybrid one (with some
coordination messages exchanged during test execution, with
minimal overhead and delays).

The analysis and enforcement procedures were imple-
mented in the DCOAnalyzer tool for test scenarios described
by means of UML sequence diagrams. DCO Analyzer was
able to correctly identify local observability and controllabil-
ity problems in real-world scenarios and help the users fix
the detected problems. Since many local observability and
controllability problems may be caused by design flaws or
incomplete specifications, and multiple ways may exist to
enforce local observability and controllability, the tool was
designed as a static analysis assistant to be used before test
execution.

To our knowledge, although observability and controlla-
bility have been addressed by other authors in the context of
distributed systems testing, they were not analyzed before in
the context of integration testing with control flow variants
and time constraints. The ability to recommend fixes in such
a context is also absent in other works, to our knowledge.

The main contributions of this article are:

• examples of test scenarios that exhibit different combi-
nations of local observability and local controllability
properties, illustrating common causes of those prob-
lems and ways to overcome them when appropriate;

• a set of procedures and a tool to automatically analyze
test scenarios with control flow variants and time con-
straints, and check their local (distributed) observability
and controllability, pinpointing any violations found;

• a set of procedures and a tool to automatically suggest
coordination messages and/or coordination time con-
straints to be added to test scenarios to enforce local
observability and/or local controllability;

• description of a real-world case study showing the
usefulness of local observability and controllability
analysis.

The rest of the paper is organized as follows: Section II
provides some insight about the problem addressed based on
a few examples; Section III presents some concepts, assump-
tions and definitions; procedures for checking local observ-
ability and controllability are presented in Sections IV and V;
procedures for enforcing local observability and controllabil-
ity are presented in Section VI; implementation and evalu-
ation (case study) are discussed in Sections VII and VIII;
related work is presented in Section IX; conclusions and
future work are presented in Section X.

II. MOTIVATING EXAMPLES
Figures 3 and 4 show examples of simple scenarios to illus-
trate local observability and controllability problems and
ways to overcome them.

Scenario a) illustrates a local controllability problem
caused by a race condition. Based on local knowledge only,

FIGURE 3. Interaction fragments with local observability and
controllability problems and possible refinements.

lifeline L1 doesn’t know when to send z to ensure that it
arrives at L3 after y, so it may generate invalid (unintended)
traces with ?z before ?y. On the right, are illustrated two ways
to overcome this problem. In the first solution, a coordination
message is transmitted from L3 to L1, so that L1 knows
when to safely send z. From a testing perspective, assuming
that L1 is simulated by a local tester (test driver) and L3 is
monitored by another local tester, the coordination message
would be exchanged between the local testers (without affect-
ing the SUT). The communication overhead of this solution
(1 message) is much smaller than the overhead incurred by a
centralized testing approach, in which the events observed by
the local testers are constantly communicated to the central
tester (4 messages from the local testers at L2 and L3 to the
central tester), that decides and communicates back to the
local testers the next test inputs (2 messages from the central

167174 VOLUME 8, 2020

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

FIGURE 4. Interaction fragments with local observability and
controllability problems and possible refinements (continued).

tester to the local tester at L1). The second solution relies
on coordination time constraints. From a testing perspective,
the maximum duration constraints could represent assump-
tions about the SUT behavior (lifelines and communication
channels), and the minimum duration constraint could repre-
sent a constraint to be followed by the test driver at L1. If such
assumptions can be made, this approach has the advantage
of not implying any communication overhead during test

execution (possibly at the cost of a pessimistic wait time
at L1).

Scenario b) illustrates a local observability problem caused
by an optional message without a corresponding acknowl-
edgment message. If message x is lost (i.e., is sent by L1
but does not arrive at L2), the problem will go unnoticed
at L2, because not receiving any message is also a valid
behavior. In other words, the invalid trace [!x] is locally
uncheckable. This problem may be overcome by adding a
coordination (acknowledgment) message c, as illustrated on
the right; now, if x is lost, that will be noticed at L1. The
coordination message need only be exchanged between the
local testers. Again, the communication overhead of this solu-
tion (1 message) is smaller than the overhead of a centralized
testing approach, in which the events observed by the local
testers are constantly communicated to the central tester for
conformance checking (2 messages from the local testers at
L1 and L2 to the central tester).
In scenario c), a roundtrip time constraint causes a local

controllability problem. Since there are no limits on the trans-
mission times of x and y, nor on the reaction time of L2,
there is no guarantee that the roundtrip constraint will be met,
so invalid (unintended) traces may be generated violating
it. The problem may be solved by setting appropriate limits
on the transmission and reaction times, as illustrated on the
right. This example also illustrates a tension between local
controllability and local observability, because the scenario
on the left is locally observable, contrarily to the scenario on
the right (inter-lifeline time constraints can only be checked
after merging the traces observed at each lifeline).

Scenario d) (Fig. 4) illustrates a local observability and
local controllability problem due to a non-local choice. In
this case, and based only on local information, L3 does not
know in which situations it should send y or w, leading to
invalid (unintended) traces with combinations of x & w or
z & y. Locally this error is also not detectable, since for L2
and L4, reception of x or z and y or w is always locally valid.
In order to solve this problem (as shown on the right), two
coordination messages (c1 and c2) are required between L1
and L2. With these coordination messages, L3 becomes able
to know locally which message to send in order to ensure
correct execution. Once again, the communication overhead
of this solution (2 messages) is smaller than the overhead of
a centralized testing approach.

Scenario e) illustrates a local observability and local con-
trollability problem caused by an inter-lifeline event ordering
constraint. Based on local knowledge only, lifeline L1 does
not know when to send y to ensure that this is done only after
x has reached L2 (the strict interaction operator requires
that all events in one interaction operand occur before all the
events in the next operand). The early emission of y can then
lead to invalid (unintended) traces with !y before ?x. On the
other hand, the above error may not be locally observable,
since, based on local knowledge only, the invalid execution
trace [!x, !y, ?x, ?y] is locally uncheckable. This problemmay
be overcome by adding a coordinating message c between

VOLUME 8, 2020 167175

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

L2 and L1, so that L1 knows when it can send message y.
The communication overhead of this solution (1 message)
is again smaller than the overhead of a centralized testing
approach. Alternatively, the problem may be overcome by
adding coordination time constraints in a way similar to
scenario a) (with the difference that, in this case, the ordering
we want to enforce is between events in different lifelines).

Scenario f) illustrates a local observability and local con-
trollability problem caused by mutually exclusive emission
and reception events simultaneously enabled. In this case,
L1 and L2 do not have local information that allows them
to determine which alternative should be executed; this can
lead to invalid (unintended) traces in which both y and z are
sent or none is sent. The scenario is also locally uncheck-
able, since the loss of both messages y and z will not be
detected by L1 and L2. This problem may be overcome
by adding a coordinating message c between L1 and L2.
Alternatively, the controllability problem may be overcome
by adding coordination time constraints so that emission and
reception events are not enabled at the same time from the
perspective of any of the lifelines. In this case, the minimum
duration constraint may be seen as a timeout after which L1
may send z.
In all cases, the scenarios on the right are refinements of

the scenario on the left, in the sense that execution traces
valid for the latter are also valid for the former (with coor-
dination messages removed), although the opposite may not
be true (that is, the semantics is narrowed for the sake of
implementability and testability).

In the rest of the paper we show how to automatically check
if an integration test scenario is locally observable and locally
controllable, pinpointing any violations (locally uncheckable
and unintended traces, respectively), and automatically sug-
gest coordination messages and/or time constraints to enforce
those properties.

The results of local observability and controllability anal-
ysis can be used by a user or a tool to refine the scenario or
decide about the test approach in several ways:
• if the analysis shows that a test scenario is locally
observable and controllable, then it can be executed
safely in a decentralized way, without any communi-
cation overhead during test execution; this is particu-
larly important when the local testers have to inject
time-constrained inputs (as in Fig 1);

• if the analysis shows that a test scenario is locally con-
trollable but not locally observable (as in scenario b
above), then it can still be executed safely in a decen-
tralized way, requiring only that events observed by the
local testers are communicated to the central tester at
the end of test execution to arrive at a final verdict
(at the cost of delayed error detection, complicated by
non-synchronized clocks);

• in many cases, local observability and controllability
problems are associated with incomplete specifications
or design flaws [8], so the analysis helps to identify the
needed refinements;

• in other cases, the analysis helps identifying timing con-
straints or coordination messages to insert manually or
automatically to enforce local observability or, at least,
local controllability, with a lower communication over-
head than a centralized testing approach.

III. PRELIMINARIES
Before investigating the procedures for local observability
and controllability checking of time-constrained SDs, it is
important to formalize their syntax and semantics.

A. TIME-CONSTRAINED SEQUENCE DIAGRAMS
In UML, an SD is a variant of an Interaction [7]. SDs may be
annotated with time constraints [7], as illustrated by the SD of
Fig. 1. Although the UML standard allows the specification
of more complex constraints, in this article we restrict our
attention to the types of time constraints that are commonly
addressed in the literature and are most relevant in practice:
constraints that specify the minimum and maximum duration
between two events (message sending or receiving) in the
same lifeline, or between the sending and receiving of a
message between two lifelines.

B. TIMED TRACES
In UML, the semantics of an Interaction is expressed in terms
of sets of valid and invalid traces [7]. In this article, we do not
handle the rarely used constructs for defining invalid traces
(such as the neg interaction operator), so only the valid traces
are relevant here.

In general, a trace is a sequence of event occurrences [7],
corresponding to the sending or receiving of messages at
lifelines. We represent an event by a tuple 〈m, l, k〉, where
m is the message, l is the lifeline where the event occurs
and k is the event kind (Send or Receive). For example,
the event e1 shown in Fig. 1 may be represented by the tuple
〈‘‘fall_signal’’, ‘‘Care Receiver’’, Send〉.

In the presence of time constraints, it is important to
store time information associated with the event occurrences.
We use the term timed traces (or t-traces, for short) for
traces that convey the time instants of the event occurrences,
and represent them by a sequence of pairs of events and
associated time instants, in some integer time scale (seconds,
milliseconds, etc.) as in [〈e1, 1〉, 〈e2, 5〉, 〈e3, 8〉].

C. TIME-CONSTRAINED TRACES
Since the set of valid timed traces defined by an SD is usually
infinite, we need a finite representation by means of a set of
time-constrained traces (or tc-traces, for short).
A tc-trace is a pair of a trace and an associated Boolean

expression on time constraints between pairs of event occur-
rences. In those constraints, the time instance of the i-th
event occurrence is represented by the time variable τi. The
time constraints are normalized as a conjunction of difference
constraints [9] of the form τi − τj ≤ d , where d is a time
duration literal (positive or negative integer).

167176 VOLUME 8, 2020

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

For example, the SD of Fig. 1 defines the following valid
tc-traces:
• 〈[e1, e2, e3, e4, e5, e6, e7, e8], τ4− τ3 ≤ 1∧ τ5− τ4 ≤
10∧τ6−τ5≤1〉

• 〈[e1, e2, e3, e4, e9, e10], τ4 − τ3 ≤ 1 ∧ τ5 − τ4 ≤ 10 ∧
τ6 − τ5 ≤ 1〉

• 〈[e1, e2, e3, e4, e11, e12], τ4−τ3 ≤ 1∧τ3−τ5 ≤ −13〉

D. VALID TRACES AND SATISFIABILITY CHECKING
We express the semantics of a time-constrained SD by a set of
valid tc-traces. In this article, we assume that loops have (or
are explored up to) a bounded number of iterations, so such a
set is finite.

Procedure 3.1 (Valid Time-Constrained Traces):We com-
pute the set V(ι) of valid tc-traces defined by an interaction ι
in 3 steps:
1) Compute the set U(ι) of valid (untimed) traces defined

by ι ignoring time constraints, following the procedure
described in [10] (this set gives all the possible event
combinations and total orderings defined by ι);

2) Obtain the set D(t, ι) of time constraints applicable to
each trace t in U(ι) (see Proc. 3.2);

3) Determine the satisfiability of those constraints (sat),
and select the traces with satisfiable constraints (see
Proc. 3.3).

Formally,

V(ι) , {(t,D(t, ι))|t ∈ U(ι) ∧ sat(D(t, ι))}

The procedure for obtaining the applicable time constraints
is presented next. The last condition is important for SDs
with loops, to make sure that time constraints are applied
to event occurrences in the same loop iteration. To this end,
the untimed traces calculated by U(ι) include the iteration
counter of each event occurrence.

Procedure 3.2 (Applicable Time Constraints): Generates
a conjunctive expression with time constraints between time
instants of event occurrences in a (untimed) trace t of an
interaction ι, based on the constraints defined between pairs
of events in ι.

D(t, ι) ,
∧
{τi + min ≤ τj ≤ τi + max|1 ≤ i < j ≤ |t|

∧〈ti, tj,min,max〉 ∈ timeConstr(ι)

∧itercounter(ti) = itercounter(tj)}

A set of time constraints c is satisfiable for a trace t if
there is an assignment of non-decreasing time instants to the
event occurrences in t that satisfies all the constraints in c.
Due to the special nature of the time constraints involved
(conjunction of difference constraints), satisfiability can be
checked in polynomial time, following the procedure summa-
rized below (partly based on [9]) and illustrated in Fig. 5. The
example refers to a trace derived from the SD of Fig. 1 that
is valid when the time constraints are ignored but is invalid
otherwise. In the case of a more general Boolean expression
on difference constraints, as we will need later, we reduce the

FIGURE 5. Satisfiability checking example (trace from Fig. 1).

expression to disjunctive normal form (DNF), and apply the
same procedure to each conjunctive term.

Procedure 3.3 (Satisfiability Checking): Checks if a con-
junctive expression E on time constraints is satisfiable
(sat(E)), i.e., there is an assignment of non-decreasing values
to the time variables referenced in E that makes the expres-
sion true, as follows:
1) Add to E implicit ordering constraints τi ≤ τj between

consecutive variables referenced in E (ordered by their
indices).

2) Normalize E into a conjunction E ′ of difference con-
straints of the form τi − τj ≤ d , where τi and τj are
integer (time) variables and d is a literal integer.

3) Build the corresponding difference constraint graph G,
with an edge (i, j) of weight d for each difference con-
straint τi − τj ≤ d in E ′.

4) E is satisfiable iff G has no cycles of negative weight.

E. OPERATORS ON TIMED TRACES AND
TIME-CONSTRAINED TRACES
The definitions and procedures for local observability and
controllability analysis use the operators defined in Fig. 6.
Due to space limitations, implicit (instead of explicit) defi-
nitions are given for some operators, resorting to a function
(ext) that gives the (possibly infinite) set of timed traces
defined by a set of tc-traces. We also apply the ext function
to complex structures (such as maps), in order to convert
all occurrences of sets of tc-traces to corresponding sets
of timed traces. By a feasible timed trace (see the join
operator), we mean a timed trace with non-decreasing time
instants that respects the fact that messages can be received
only after being sent. Application examples can be found
in Fig. 7.

VOLUME 8, 2020 167177

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

FIGURE 6. Operators on timed traces and time-constrained traces.

FIGURE 7. Example of local observability checking.

IV. LOCAL OBSERVABILITY ANALYSIS
In this section, we present procedures to check if confor-
mance checking of observed execution traces against the
expectations set by a time-constrained SD under consider-
ation can be performed by the local testers alone based on
the events observed locally, without the need to communicate
those events to the central tester to ensure that the final test
verdict is correct (local observability). The procedures pre-
sented in this article extend, for the case of time-constrained
SDs, the procedures presented in [10] for SDs without time
constraints.

Local observability is best defined in terms of timed traces,
but, since the set of valid timed traces is usually (almost)
infinite, it is best checked in terms of tc-traces.

A. DEFINITIONS
In this article we assume a strict notion of conformance,
i.e., we say that an observed time trace t conforms to the

specification (described by a time-constrained interaction ι),
or is globally valid, when t ∈ ext(V(ι)). However, in dis-
tributed testing, global traces are not directly observed, but
only the local traces observed at each lifeline. We say that a
timed trace t is locally valid when ∀l∈L(ι), πl t ∈ ext(πlV(ι)),
where L(ι) denotes the lifelines in ι.

We next define local observability based on the concepts
of global and local validity.

Definition 4.1 (Local Observability):We say that a test sce-
nario specified by a time-constrained interaction ι is locally
observable iff there are no feasible timed traces that are
locally valid but are not globally valid (also called locally
uncheckable traces).

B. LOCAL OBSERVABILITY CHECKING
Procedure 4.1 (Local Observability Checking): We check

the local observability of a test scenario described by a
time-constrained interaction ι in a constructiveway (pinpoint-
ing violations), as follows:
1) Calculate the set V(ι) of valid tc-traces defined by ι;
2) Compute the valid local tc-traces in each lifeline, i.e., the

projection P of V(ι) onto L(ι);
3) Compute the set J of all possible feasible joins of traces

in P;
4) Compute the global tc-traces that are not locally check-

able, by subtracting from J the valid traces V(ι).
5) The given scenario ι is locally observable iff the previous

result is empty.
Formally,

isLocallyObservable(ι) , (on (πL(ι)V(ι))) \ V(ι) = ∅

Theorem 4.1 (Correctness of Procedure 4.1): Procedure
4.1 correctly checks if an interaction ι is locally observable.

Proof: Follows from Definition 4.1 and from the defini-
tions of the operators involved in Procedure 4.1. Based on the
meaning of the difference operator (see Fig. 5), the right-hand
side of the formula in Procedure 4.1 can be rewritten:

{t | t ∈ ext(on (πL(ι)V(ι))) ∧ t /∈ ext(V(ι))} = ∅

Based on the definitions of the join operator (see Fig. 6),
the first term (t ∈ ext(on (πL(ι)V(ι)))) can be rewritten:

∀l∈L(ι), πl t ∈ ext(πlV(ι))

This corresponds to the definition of local validity in Defi-
nition 4.1, whilst the second term (t /∈ ext(V(ι))) corresponds
to the negation of global validity. Hence, we conclude that
Procedure 4.1 correctly checks local observability.
Example 4.1: Procedure 4.1 is illustrated in Fig. 7. In this

case, there are two tc-traces that are not locally checkable,
so the scenario is not locally observable. The first one is due
to an optional message without a corresponding acknowledg-
ment message. The second one is due to an inter-lifeline time
constraint (transmission constraint) that is not present in the
projections onto the lifelines.

167178 VOLUME 8, 2020

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

C. IMPACT OF NON-SYNCHRONIZED CLOCKS
Next we show that imperfect clock synchronization in a dis-
tributed SUT does not affect local observability. In distributed
testing, the time instant of each observed event occurrence
is measured with the local clock of the respective lifeline.
Although it is impossible to ensure perfect clock synchroniza-
tion between lifelines, in practice the difference between the
readings of any two clocks (clock skew) may be limited to a
small value of the order of 10ms over Internet and below 1ms
over LAN [11]. This clock skew might not have a practical
impact for coarser time scales used in testing (e.g., seconds),
but could be relevant for finer time scales (e.g., milliseconds).
In any case, for test cases that run for short time spans,
one can assume that there is no noticeable clock drift during
test execution (i.e., clocks run at the same rate). Under this
assumption, we next prove our proposition.

Theorem 4.2 (Local Observability and Clock Synchroniza-
tion): If an interaction ι is locally observable with perfectly
synchronized clocks, then it is also locally observable if
clocks are not perfectly synchronized but run at the same rate.

Proof: Let us assume that ι is locally observable, i.e., all
invalid feasible global traces are also locally invalid, in case
the clocks are perfectly synchronized. Let us pick one arbi-
trary of those invalid feasible global traces t , and let us denote
by tk an invalid local trace observed at a lifeline k (based on
our assumption, such lifeline and trace must exist). In case
clocks are not perfectly synchronized but run at the same rate,
the time instants of the corresponding observed local trace
t ′k in lifeline k will differ from the time instants in tk by a
constant amount (the clock skew δk of lifeline k). Since all
the local time constraints we are considering are difference
constraints, shifting time instants by the same amount will
not affect the validity of those constraints. So t ′k will also
be checked as invalid by lifeline k . Hence we conclude that
invalid traces will also be detected locally.

This result might look surprising, but is in reality consistent
with the fact that scenarios with inter-lifeline time constraints
not implied by other constraints are not locally observable.

V. LOCAL CONTROLLABILITY ANALYSIS
A. DEFINITIONS AND EXAMPLE
Definition 5.1 (Local Controllability): We say that a

time-constrained interaction ι is locally controllable if no
invalid timed traces are generated (i.e., there are no unin-
tended traces) and all valid timed traces can be generated
(i.e., there are no missing traces) when the lifelines and the
communication channels behave in a locally correct way,
using local knowledge only. Formally, denoting by S(ι) the
set of feasible timed traces that can be generated when the
lifelines and the communication channels behave in a locally
correct way, ι is locally controllable iff S(ι) = ext(V(ι)).
Unintended traces are given byS(ι)\ext(V(ι)). Missing traces
are given by ext(V(ι)) \ S(ι).

In a locally controllable interaction, local correctness
of actions implies global correctness. Local controllability

ensures that the decision of when andwhat inputs to inject can
be taken locally by the local testers (simulating lifelines that
represent external actors or mocked components) using local
knowledge only, without the need to exchange coordination
messages between the test components during test execution.
Example 5.1: The scenario of Fig. 1 is locally controllable.

In fact, the projection of the defined time constraints onto
the ‘‘Fall Detection App’’ lifeline generates the derived local
constraints time(e6) ≤ time(e3) + 12 and time(e10) ≤
time(e3) + 12. So, the lifeline knows that, after requesting
confirmation from the user (event e3), it should wait for a
response (events e6 or e10) of up to 12 time units, and only
send ‘‘notify_possible_fall’’ after at least one more time unit.
Without the specified constraints, the scenario would not be
locally controllable, because the lifeline would not know how
much time to wait before sending ‘‘notify_possible_fall’’.
This could result in the generation of invalid traces such as:
• [e1, e2, e3, e4, e11, e12, e5, e6] (and other permuta-
tions with e11 before e6)

• [e1, e2, e3, e4, e11, e12, e9, e10] (and other permuta-
tions with e11 before e9)

We next clarify and formalize the notion of a locally correct
behavior of lifelines, in Definition 5.2, and communication
channels, in Definition 5.3. The set S(ι) contains all feasible
timed traces that satisfy the conditions of 5.2 and 5.3.

Definition 5.2 (Locally Correct Behavior of Lifelines):
A global timed trace t in an interaction ι demonstrates a
locally correct (and complete) behavior of a lifeline l ∈ L(ι)
iff the local timed trace p = πl t observed at l satisfies the
following conditions:
(a) all outputs (emissions) are locally valid, i.e.,

∀i ∈ inds(p) · isSend(pi) H⇒ p1,...,i ∈ Pl

where Pl = prefixes(Vl) and Vl = πl ext(V(ι));
(b) l may remain in a quiescent state after p (i.e., not send

any output, at least without first receiving an input [12]),
because one of the following holds (denoted Ql(p)):
(i) p is a locally valid trace, i.e., p ∈ Vl ;
(ii) in case there are valid outputs that can be sent after

p, there are also valid inputs that can be received with
a deadline greater or equal than the deadline for the
outputs (in this case, l may decide to wait for input,
and, if it does not arrive up to the deadline, will no
longer be able to send any output); formally,

∀py [s] ∈ Pl · isSend(s) H⇒

∃py [r] ∈ Pl · isRecv(r) ∧ time(r) ≥ time(s);

(c) there are no missing intermediate outputs, i.e., for each
input event pi in p, not send any output between pi−1 and
pi is a valid behavior of l (because of a quiescent state
or because possible outputs have not expired); formally,

∀i ∈ inds(p) · isRecv(pi) H⇒ Ql(p1,...,i−1) ∨

∃p1,...,i−1 y [s] ∈ Pl · time(s) ≥ time(pi).

VOLUME 8, 2020 167179

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

Definition 5.3 (Correct Behavior of Communication Chan-
nels): A global timed trace t in an interaction ι demonstrates
a correct (and complete) behavior of the communication
channels iff the following conditions hold:
(a) messages are delivered within the specified transmission

duration constraints (between pairs of related emission
and reception events in t);

(b) all messages are delivered (i.e., for each emission event
in t there is a corresponding reception event).

B. SYMBOLIC SIMULATION
Because S(ι) may be infinite or almost infinite, we calculate a
finite setS ′(ι) of tc-traces (instead of timed traces), equivalent
to S(ι) in the sense that ext(S ′(ι)) = S(ι).
S ′(ι) is calculated incrementally by symbolic simulation,

starting from the empty tc-trace, as outlined in Procedure 5.1.

Procedure 5.1 (Symbolic Simulation):Computes a set S ′(ι)
of tc-traces describing the timed traces that can be generated
by the execution of an interaction ι when the lifelines and
communication channels behave in a locally correct way,
as follows:

S ′(ι) , {〈u, c ∧ Qι(〈u, c〉)〉|
〈u, c〉 ∈ T ∗ι (〈[], true〉) ∧ sat(Qι(〈u, c〉))}

where
• Tι(〈u, c〉) is a transition function that gives the succes-
sors of tc-trace 〈u, c〉 (a pair of a trace u and a constraint
c) in the symbolic execution tree of ι, by appending
time-constrained emission or reception events generated
according to conditions 5.2.a) or 5.3.a), in a proper tem-
poral ordering. This ordering is determined by comput-
ing the earliest deadlineD among all emission deadlines,
for lifelines that are not in a quiescent state, and delivery
deadlines, for messages in transit. When working with
tc-traces, D is in fact a constraint on the time instants of
the next event and previous events. For each candidate
time-constrained event 〈e, c′〉 to append to 〈u, c〉, if the
conjunction c ∧ c′ ∧ D is satisfiable, then the event is
selected, generating the tc-trace 〈uy [e], c ∧ c′ ∧ D〉.

• T ∗ι (〈[], true〉) denotes the set of tc-traces reachable from
the empty tc-trace 〈[], true〉 by 0 or more applications of
Tι (reflexive transitive closure);

• Qι(〈u, c〉) denotes the condition (on the time variables of
events in u) upon which the system may remain quies-
cent after the occurrence of 〈u, c〉, as set by conditions
5.2.b) and 5.3.b). If Qι(〈u, c〉) is satisfiable, 〈u, c〉 is
added to the result, further restricted by Qι(〈u, c〉).

Theorem 5.1 (Correctness of Procedure 5.1): Procedure
5.1 correctly computes S ′(ι).
Proof Sketch: Conditions 5.2.a) and 5.3.a) are satisfied for

any tc-trace in the generated execution tree, because they
trivially hold for the initial empty state, and are explicitly con-
sidered in the transition function Tι that generates next states.
Conditions 5.2.b) and 5.3.b) are also guaranteed, because

they are explicitly considered in the quiescence condition Qι
used to select tc-traces to include in S ′(ι). Condition 5.2.c) is
also satisfied for any tc-trace in the generated execution tree,
because it trivially holds for the initial empty state, and the
temporal ordering constraint (D) considered in Tι guarantees
that a message is not delivered in a timing after the expiration
of any existent emission deadline of the target lifeline. The
temporal ordering also guarantees that a quiescent state is
reachable from any execution state generated (i.e., infeasible
states are not generated). Procedure 5.1 is also complete,
in the sense that it generates all feasible tc-traces that satisfy
Definitions 5.2 and 5.3, due to the fact that all candidate
events are considered in Tι.

An example of an execution tree and possible quiescent
tc-traces generated by the application of Procedure 5.1 is
shown in Fig. 8.

FIGURE 8. Example of symbolic execution for the SD of Fig. 1 without the
"{13..}" time constraint.

VI. LOCAL OBSERVABILITY AND CONTROLLABILITY
ENFORCEMENT
As illustrated by the examples in Section II, many observabil-
ity and controllability problems can be solved by the addition
of coordination messages or coordination time constraints.
Hence, in this section, we present algorithms to search for
coordination messages or coordination time constraints to
enforce local observability and/or local controllability of an
interaction ι, whilst preserving the traces valid locally at each
lifeline (apart possibly from timing constraints).

167180 VOLUME 8, 2020

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

To guide the search, we use the following heuristic: the
locations of local observability or controllability problems
(locations where the locally uncheckable or unintended traces
deviate from valid traces) suggest points where coordination
messages or time constraints need to be inserted.

Therefore, our main algorithm (Procedure 6.1) comprises
four main steps, starting by determining the error locations.

Procedure 6.1 (Local Observability and Controllability
Enforcement):

Input: test scenario described by a time-constrained inter-
action ι with local observability or controllability problems.
Output: a failure indication or a set of coordination mes-

sages and/or time constraints to enforce local observability
and/or controllability.

1) Determine error locations (where the locally uncheck-
able or unintended traces deviate from valid traces);

2) Generate candidate coordination messages;
3) Generate candidate coordination time constraints;
4) Apply and evaluate candidate fixes (coordination mes-

sages or time constraints).

In the next subsections, we describe each of these steps.

A. DETERMINATION OF ERROR LOCATIONS
Procedure 6.2 (Determination of Error Locations):
Input: test scenario described by a time-constrained inter-

action ι.
Output: set E of missing or erroneous events in the unin-

tended and/or locally uncheckable tc-traces of ι; set S of
lifeline locations in ι where the events in E occur (error
locations).

1) Determine the set V of valid tc-traces defined by ι;
2) Determine the set U of unintended and/or locally

uncheckable tc-traces of ι (problematic traces);
3) Determine the set E of missing or erroneous events in

the traces in U , doing as follows for each trace t ∈ U :
a) if t is a valid partial trace (i.e., ∃v ∈ V · u ∈

prefixes(v)), select all the valid next events, formally
{e|t y [e] ∈ prefixes(V)} (missing events);

b) otherwise, select the first event e in t such that the
prefix of t up to e is not a valid partial trace (erroneous
event);

4) Determine the set S of lifeline locations in ι where the
events in E occur (error locations).

B. GENERATION OF COORDINATION MESSAGES
Procedure 6.3 (Generation of Coordination Messages):
Input: test scenario described by a time-constrained inter-

action ι; set S of error locations computed by Procedure 6.2.
Output: sorted set of candidate coordination messages.

1) Determine a set C of candidate coordination messages,
according to the following criteria:
• they can start in any location in any lifeline
(before/after any event or boundary);

• they cannot cross boundaries of interaction operands,
and, inside an interaction operand, can only be
exchanged between participating lifelines;

• they can terminate in any lifeline, different from the
start lifeline, in the earliest possible location;

2) Rank the candidatemessages in C based on their proxim-
ity to the error locations in S, in order to obtain a sorted
set C′ of candidates.

3) Filter out candidates below a certain ranking threshold
(e.g., to exclude candidates that do not touch any suspi-
cious lifeline).

C. GENERATION OF COORDINATION TIME CONSTRAINTS
As illustrated in Section II, several controllability problems
(such as race conditions and inter-lifeline event ordering
constraints) may be solved by adding coordination time con-
straints that impose an ordering between pairs of events.
In fact, lifelines may coordinate their actions by dynamically
exchanging coordination messages or by statically ‘agreeing’
on an adequate timing for their actions.

FIGURE 9. Fixing race conditions with coordination time constraints.

The pattern of race conditions that our heuristic algorithm
looks for and the fix strategy used are illustrated in Fig. 9.

FIGURE 10. Causal dependencies and slicing operations (trace of
Figure 3.a).

We use several trace slicing operations illustrated in
Fig. 10, based on the causal dependencies that exist between
pairs of emission and reception events, and between all the
events that precede an emission event in a lifeline and the

VOLUME 8, 2020 167181

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

emission event itself (assuming the emission decision is taken
based on the events previously observed in the lifeline).

Procedure 6.4 (Generation of Coordination Time Con-
straints to Fix Race Conditions):

Input: test scenario described by a time-constrained inter-
action ι; set E of missing or erroneous events computed by
Procedure 6.2.

Output: set of candidate fixes found, where each candidate
fix is a set of time constraints to enforce the ordering between
a particular pair of events.

1) Take as candidate instances for e2 the events in E .
2) Take as candidate instances for e1 the events that imme-

diately precede e2 (without intermediate events from the
respective lifelines) in at least one valid trace t ∈ V , and
do not occur after e2 in any valid trace.

3) Take as candidate instances for e0 the closest common
ancestors of e1 and e2 in the valid traces t ∈ V in which
both occur (calculated as illustrated in Fig. 10).

4) Discard triples (e0, e1, e2) where e0 = e1 or the max-
imum duration from e0 to e1 is less than the minimum
duration from e0 to e2 (cases where e1 is guaranteed to
precede e2).

5) Inject upper time bounds between pairs of events in the
causal chain of events from e0 to e1 (bidirectional slice),
based on default values for the maximum transmission
time (between emission and reception events) and max-
imum reaction time (between an event in a lifeline and
a subsequent emission event).

6) Determine the maximum duration τ from e0 to e1 that
results from step 5, and inject a lower time bound τ+1
(wait time) in the chain of events from e0 to e2, between
an event in a lifeline and a subsequent emission event
(giving priority to emissions performed by actors as
close as possible to e0). If a time bound cannot be
injected, the triple (e0, e1, e2) is discarded.

7) Return the set of candidate fixes found, where each
candidate fix is a set of time constraints to enforce the
ordering between a pair (e1, e2) of events.

Regarding controllability problems caused by pairs of
mutually exclusive emission and reception events simultane-
ously enabled in a lifeline, we use a similar fix strategy: we
inject coordination time constraints that impose an ordering
between those events, based on their physical vertical location
in the sequence diagram (although such physical location
does not have a semantic meaning inside alt fragments,
it usually has an intuitive meaning for the user).

Procedure 6.5 (Generation of Coordination Time Con-
straints to Fix Pairs of Mutually Exclusive Reception and
Emission Events Simultaneously Enabled):

Input: test scenario described by a time-constrained inter-
action ι.

Output: set of candidate fixes found, where each candidate
fix is a set of time constraints to enforce the ordering between
a particular pair of events.

1) Find pairs of events e1 and e2 that: (i) occur in the same
lifeline, with e1 located before e2; (ii) are of different
types (send and receive); (iii) are mutually exclusive
(i.e., there is no valid trace in which both occur); and (iv)
may be simultaneously enabled (from the perspective of
their lifeline).

2) Perform step 3 as in Procedure 6.4, with the difference
that distinct traces t1 and t2 have to be considered for
e1 and e2, instead of a common trace t .

3) Perform steps 4, 5, 6 and 7 as in Procedure 6.4.

D. APPLICATION AND EVALUATION OF CANDIDATE FIXES
Procedure 6.6 (Application and Evaluation of Candidate

Fixes):
Input: test scenario described by a time-constrained inter-

action ι; set F of candidate fixes, where each candidate fix is
a single coordination message or a set of coordination time
constraints, as computed by Procedures 6.3, 6.4 and 6.5.

Output: a failure indication or a set of coordination mes-
sages and/or time constraints to enforce local controllability
and/or observability.
1) Search for single fix solutions, doing as follows for each

candidate fix f (message or constraint-set) in F :
a) apply the fix f (i.e., insert the message or

constraint-set in ι), obtaining a new interaction ι′;
b) determine the set V ′ of valid traces defined by ι′;
c) if the projections of V and V ′ onto the lifelines of ι do

not coincide (apart from coordination events and time
constraints), discard f ;

d) if the set U ′ of unintended and/or locally uncheckable
traces of ι′ is empty, return f ;

e) otherwise, if #U ′ (with coordination events removed)
is not smaller than #U , discard f ;

2) If a single fix solution was not found, search for multiple
fix solutions using a greedy heuristic as follows:
a) pick the candidate fixes in F that were not discarded,

and rank them by increasing values of #U ′ (with coor-
dination events removed), obtaining a new ordered set
F ′ of candidate fixes;

b) for each candidate fix f ∈ F ′, by the defined order,
insert f onto ι and execute recursively Procedure 6.6;
if a solution is found, return the inserted messages
and/or time constraints.

3) If no single or multiple fix solution was found, fail.
Because of being based on several heuristics, the presented

algorithm has several limitations. Although it was able to find
a solution ofminimum size in a few seconds or tenths of a sec-
ond in all test cases and case studies we experimented with,
it might be unable to find a solution when a solution exists,
or might produce a solution more complex than needed.

VII. IMPLEMENTATION
The algorithms described in this article were implemented
in the DCO Analyzer tool [13]. DCO Analyzer is an appli-
cation developed in Java [14] and VDM++ [15] to analyze

167182 VOLUME 8, 2020

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

FIGURE 11. DCO analyzer overview.

UML SDs representing distributed systems test scenarios. As
depicted in Fig. 11, the user can use any visual editor of UML
SDs (e.g. Papyrus1) and then upload the created diagrams to
DCO Analyzer.

Internally, DCO Analyzer comprises a front-end, devel-
oped in Java, and a back-end, developed in VDM++. The
front-end is responsible for receiving and parsing.uml files
describing UML SDs, verifying their conformance with the
UML metamodel [16], and converting them into the for-
mal representation expected by the back-end (VDM++ data
structures). It is also possible to directly provide a.vdmpp file
containing the VDM++ data structures; this may be useful
to overcome limitations of modeling tools.

The DCO Analyzer back-end is capable of analyzing the
following properties:

• Valid Traces: Set of valid global traces defined by the
given SD;

• Unintended Traces: Set of invalid global traces caused
by locally valid decisions (representing violations of
local controllability);

• Locally Uncheckable Traces: Set of invalid global
traces that cannot be verified locally (representing vio-
lations of local observability);

• Local Controllability: The diagram is locally control-
lable if there are no unintended traces;

• Local Observability: The diagram is locally observable
if there are no locally uncheckable traces;

• CoordinationMessages andCoordinationTimeCon-
straints: Set of coordination messages and/or time
constraints to enforce local controllability and/or local
observability.

In the back-end, we implemented all the algorithms and
auxiliary operations needed for local observability and con-
trollability analysis and enforcement in the VDM++ formal
specification language [15]. Specifications in VDM++ can be
directly executed with the Overture tool and translated to Java
code ready for execution and integration with other code.

1https://papyrusuml.wordpress.com

To test the implemented algorithms regarding correctness
and performance, we used several test scenarios coming from
a nation-wide project in the ambient-assisted living (AAL)
domain, plus additional test scenarios to maximize coverage.
In total, 30 test scenarios (test cases) were defined, covering a
variety of causes for locally observability and controllability
(see Section II). The complete test suite ran in approximately
10 seconds in an Intel Core i7 machine running Windows
10 Professional at 2.20GHz with 16GB RAM.
Fig. 12 shows an example of an input test scenario, drawn

with the Papyrus tool, for an online driving license renewal
system (greatly simplified for illustration purposes). Fig. 13
shows the output produced byDCOAnalyzer for this scenario
when all the analysis options are selected.

FIGURE 12. Initial SD in Papyrus.

FIGURE 13. DCO Analyzer output.

In the output, a set of traces is represented between {. . .},
a trace (sequence of events) is represented between [. . .], the
emission of a message m by a lifeline L is represented as
!m@L, and the reception of a message m at a lifeline L is
represented as ?m@L.

In this example, our tool was able to detect that the given
diagram is not locally controllable, indicating six unintended
traces. These unintended traces are related to the possibility

VOLUME 8, 2020 167183

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

of the electronic payment message (m3) being received by the
electronic payment service (L3) before the reference valida-
tion message (m2).

In order to help the user to make this diagram locally
controllable, our tool suggests adding a coordination message
(Ctrl1) between the Electronic Payment Service (L3) and the
Driver APP (L1), after m2 (suffix ‘‘Am2’’) and m1 (suffix
‘‘Am1’’), respectively. In practice, such message might repre-
sent a payment authorization confirmation message, thereby
ensuring that payment can only be made after the payment
reference has been validated.

With this suggestion, the user can then refine the SD as
shown in Fig. 14.

FIGURE 14. Refined SD in Papyrus.

The suggestion given by our tool can be used in several
ways:
• the suggested message is actually implemented in the
SUT, so the SD is just modified to include it (incomplete
specification);

• the SUT is redesigned to incorporate the suggested mes-
sage, and the SD is updated accordingly (design flaw);

• the system design is not changed, so the suggested
message is marked as a test coordination message to
be exchanged between the test components during test
execution (e.g., between a test monitor co-located with
L3 and a test driver co-located with L1).

Another example, illustrating a local observability prob-
lem, is shown in Fig. 15. This diagram represents the
login scenario of a mobile application, where the user, after
login, can receive pending notifications since the last time
the application was connected to the server. By analyz-
ing the diagram with our tool it is possible to determine
that local testers are unable to locally detect the execution
trace [!m1@L1, ?m1@L2, !m2@L2], which corresponds to
the case where the message m2 is sent but lost. Such loss will
not be detected as an error at L1 because not receiving m2
is also a valid behavior at L1. The solution to this problem
recommended by the DCO Analyzer is to place a coordina-
tion message between L1 and L2 upon receipt of m2 in L1.

FIGURE 15. Example of a scenario not locally observable.

Such message can be interpreted as an acknowledgment mes-
sage; if m2 is lost (or the acknowledgment message is lost),
then a problem will be detected at L2.
More complex SDs are also supported, namely SDs with

other control flow variants (alt and loop combined frag-
ments) and time constraints.

DCO Analyzer executable files, algorithms (described in
previous sections) implemented in VDM, and some test
scenarios in UML can be found at https://brunolima.info/
DCOANALYZER/.

VIII. CASE STUDY
In order to validate the algorithms in industrial scenarios we
conducted an evaluation experiment with real-world test sce-
narios from an industrial partner who is currently developing
a solution for automatic incident detection on motorways.
The goals of the evaluation are:
1) to check if our analysis tool is able to correctly identify

local controllability and/or local observability issues in
real-world test scenarios;

2) to check if the analysis is performed in an adequate time;
3) to check if the output results produced by the tool help

the users to understand the root causes of the detected
problems and refine the input test scenarios accordingly.

FIGURE 16. Traffic control system.

A. MOTORWAY INCIDENT DETECTION PROJECT
The project of our industrial partner (here described in a
simplified way for privacy reasons), illustrated in Fig. 16,

167184 VOLUME 8, 2020

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

FIGURE 17. Initial scenario and problem locations.

consists of the placement of sensors on the motorways that
interact with each other and are able (among other features)
to detect incidents automatically.

When the system detects a possible incident, a message is
automatically presented to the drivers through the Dynamic
Message Sign (DMS), so that they can reduce the speed
and thus reduce the possibility of a chain collision. On the
other hand, the system also automatically informs the Oper-
ational Coordination Center (OCC) operators so that they
can validate the occurrence and trigger the help assistance if
necessary.

B. TEST SCENARIO
We asked our partner to describe the system interactions
(including temporal constraints) using UML SDs. Fig. 17
shows one of the scenarios that was provided.

The scenario involves 3 alternatives. In the first case,
a vehicle circulating on the motorway is detected by sensors
A and B, situated 1 km apart, in a time interval between 24 s
and 72 s (indicating that the vehicle circulates at a speed
between 50 and 150 kmh−1). In this case, the system does
not need to take any action. In the second case, the vehicle
is detected by the sensors A and B in a time interval less
then 23 s, which corresponds to a speed above 150 kmh−1.
In this case, the system sends a speed alert to the Traffic
Management Controller (TMC). In the last case, a vehicle is
detected by sensor A but is not detected by sensor B in the
next 72 s, meaning that something may have occurred with

the vehicle and it may be immobilized on the road. In this
case, the system informs the TMC that automatically sends a
message to be presented to the other drivers through the DMS
and informs the OCC. In the OCC the operator visualizes the
alert and can optionally cancel the alert which is done through
the TMC that removes the message from the DMS.

C. SCENARIO ANALYSIS - LOCAL CONTROLLABILITY
We analyzed the local controllability of the previous test
scenario (Fig. 17) with our tool, which took 1.1 s to run in
the machine previously described and reported 3 unintended
tc-traces (with lifeline indicated only when needed to disam-
biguate):
1) [!id_signal, ?id_signal@A, !notify_id , !id_signal,

?id_signal@B, ?notify_id , . . .], with τ4 − τ1 ≤ 72;
2) [!id_signal, ?id_signal@A, !id_signal, ?id_signal@B,
!notify_id , ?notify_id , . . .], with τ3 − τ1 ≤ 72;

3) [!id_signal, ?id_signal@A, !notify_id , ?notify_id ,
!notify_traffic_alert , . . . , ?warning_msg_off , ?warning_
msg_on], with τ5 − τ1 ≥ 73.

These 3 tc-traces correspond to the following 2 problems,
both related with race conditions:
1) Unexpected reception of id_signal at sensor B before

reception of notify_id (unintended traces 1 and 2).
As delays can occur in the transmission of the notify_id
message between sensor A and sensor B, the message
notify_id may arrive at sensor B before the message
id_signal. As a consequence, the system may be unable

VOLUME 8, 2020 167185

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

to use the sensor data or may incorrectly conclude that
a vehicle is moving against the flow of traffic; this
suggests a design flaw or an incomplete specification.

2) Unexpected late reception of warning_msg_on at DMS
after reception of warning_msg_off (unintended trace
3). As delays can occur in the transmission of the
warning_msg_on message between TMC and DMS,
the message warning_message_off may arrive at DMS
before the message warning_message_on. This case
shows that in some situations an alert message can
remain visible in theDMS even after it has been removed
by the operator, thereby transmitting erroneous informa-
tion to the drivers.

D. SCENARIO ANALYSIS - LOCAL OBSERVABILITY
We also analyzed the local observability of the previous test
scenario with our tool, which took 1.3 s to run in the machine
previously described and reported 22 locally uncheckable tc-
traces:
1) [!id_signal, ?id_signal@A, !notify_id , ?notify_id ,
!id_signal, ?id_signal@B, !notify_speed_alert], with
τ5−τ1 ≤ 72∧τ6−τ4 ≤ 23 (message notify_speed_alert
lost);
. . .

22) [!id_signal, ?id_signal@A, !notify_id , ?notify_id ,
!notify_traffic_alert , . . . , !warning_msg_off], with τ5 −
τ4 ≥ 73 (message warning_message_off lost).

After close inspection, we conclude that all the uncheck-
able tc-traces are due to the presence of the following
6 optional asynchronous messages without corresponding
acknowledgment messages:
• notify_speed_alert;
• notify_traffic_alert from SensorB to TMC ;
• warning_message_on;
• notify_traffic_alert from TMC to OCC ;
• message_cancel;
• warning_message_off .
As explained in Section II, if any of these messages is lost,

the problem will go undetected by the target lifeline, because
not receiving a message is also a locally valid behavior. The
solution recommended by our tool to enforce local observ-
ability consists of the addition of 6 corresponding acknowl-
edgment (coordination) messages.

However, in discussion with our partner, considering the
solution architecture and technologies, the possibility of such
messages being lost was deemed negligible, and the insertion
of acknowledgment messages was not considered a priority,
so we focused only on fixing the local controllability issues
as explained in the next section.

E. SCENARIO REFINEMENT
In discussion with our industrial partner, we concluded that
a maximum delay of 1 s could be assumed for all internal
actions in the system (message emission after some observed
events, and message transmission between lifelines). Hence,

we ran our tool again asking for recommendations of coor-
dination time constraints and/or coordination messages to
enforce controllability, using the 1s upper bound for system
transmission and reaction time where needed (these bound
are currently configured in a configuration file).

The tool recommended the addition of 3 upper time bounds
and 2 lower time bounds as indicated in red in Fig. 18, solving
both controllability problems. The analysis took 1.8 s to run
in the machine previously described.

Our partner accepted the suggestions, but opted to fur-
ther refine the test scenario as indicated by the solid arrows
in Fig. 18. Considering that a maximum car speed of
450 kmh−1 could be safely assumed, the minimum time for
a car to travel between sensors A and B was changed from
3 to 8 s. Our partner also decided to redesign the operator user
interface, so that traffic alert messages can only be canceled
after 5 s; hence, the minimum operator response time was
changed from 2 to 5 s.

Other test scenarios from the same project were also ana-
lyzed and refined successfully using the same procedure.

Those scenarios are related to other traffic anomalies that
can be detected and notified using the same road infrastruc-
ture (see Fig. 16), namely:

• cars that reverse direction after passing the first sensor
(A), causing the sensor activation sequence A-A;

• cars that move against the flow of traffic, causing an acti-
vation of sensor B without a prior activation of sensor A.

Those scenarios differ from the scenario in Fig. 17 in the
initial sensor activation sequence, but share a similar traf-
fic alert notification sequence, and present similar types of
observability and controllability problems.

F. DISCUSSION
Regarding the goals of the experiment, we conclude that:

1) our tool was able to correctly identify relevant local con-
trollability issues in real-world test scenarios, including
issues that escaped manual inspection;

2) the analysis was performed quickly by the tool (in a few
seconds);

3) the outputs produced by the tool helped in understanding
and fixing the root causes of the detected problems (in
this case, incomplete specifications or system design
flaws).

G. THREATS TO VALIDITY
Our experiments have several validity threats. First, our val-
idation examples may not cover all possible real-world sce-
narios. In order to reduce this possibility, in addition to the
scenarios provided by our industrial partner, we also tested
fictitious scenarios with all UML combined fragments. Sec-
ond, themanual interpretation of the error messages produced
by our solution can only mean that people with some experi-
ence in modeling can understand the errors in more complex
scenarios. In order to better understand this phenomenon we
asked our industrial partner to analyze the results produced by

167186 VOLUME 8, 2020

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

FIGURE 18. Refined locally controllable scenario (automatic refinement in red, followed by manual refinement indicated
with solid arrows).

our tool; this analysis was performed by people with different
modeling experiences. The results showed that although there
is a better perception from more experienced professionals,
the less experienced ones can also understand the problems
that have been detected.

IX. RELATED WORK
A. MODEL-BASED TESTING
Model-based testing (MBT) techniques and tools promote
the effectiveness and efficiency of the test process, by means
of the automatic generation of executable test cases from
behavioral models of the system under test (SUT) [17].

MBT can be performed offline, with separate test gener-
ation and execution phases [18], or online, with intermixed
phases [17], [19], [20]. The latter is the preferred approach if
the SUT is non-deterministic, because the test generator can
see which path the SUT has taken, and follow the same path
in the model [21].

Regarding the input models, one can distinguish
state-based approaches, in which UML state machines [22] or
similar models [23], [24] are used for describing all possible
behaviors of the SUT or its components, and scenario-based
approaches, in which UML SDs [25], message sequence
charts (MSC) [26] or similar models [27] are used for
describing interactions between the system components or
with the environment in key scenarios, minimizing test case
explosion [28].

However, few works address the challenges of MBT for
distributed systems, and the works found are mostly focused
on system testing and not integration testing.

B. OBSERVABILITY AND CONTROLLABILITY IN
DISTRIBUTED SYSTEMS TESTING
One difficulty in distributed systems testing is observabil-
ity, because communication delays and the lack of a global
clock limit the conformance faults detectable. Three test
architectures have been proposed, with different conformance
relations and fault detection capabilities: a purely distributed
test architecture with independent local testers communicat-
ing synchronously with the SUT components [29]; a purely
centralized test architecture, in which a single central tester
interacts asynchronously with the SUT components [30]; a
hybrid test architecture that combines local testers and a cen-
tral tester to achieve a higher fault detection capability [30].

Under the hybrid approach of [30], the central tester is
responsible for deciding and sending test inputs to the SUT
components, and local testers are responsible for observing
the events (inputs and outputs) at each location; the SUT
outputs are observed by the local testers and sent to the central
tester. This way, the local testers are able to detect confor-
mance faults associated with an incorrect combination or an
incorrect ordering of events occurring in the same location,
whilst the central tester is able to detect conformance faults
associated with an incorrect combination of events or an
incorrect ordering of pairs of input and output events occur-
ring at different locations (e.g., an SUT output that is pre-
maturely produced at one location before an input is injected
at another location). In our approach, we further decentralize
test input generation and injection, minimizing the messages
exchanged between the test components during test execution
and increasing the responsiveness of the test harness, whilst

VOLUME 8, 2020 167187

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

keeping the same fault detection capability. Another differ-
ence in our work is that we check not only the interactions
with the environment (system testing perspective), as in those
works, but also the interactions between the system com-
ponents (integration testing perspective), as well as timing
constraints.

Another difficulty in distributed systems testing is con-
trollability, i.e., the difficulty for the local testers to decide
when and what test inputs to inject, without causing global
conformance faults (e.g., in the presence of race conditions
or non-local choices). Solutions proposed in the literature are
based on the insertion of coordination messages between test
components [8], [12], [31], but they do not handle timing
constraints and, in most of the cases, they address only the
‘‘when’’ and not the ‘‘what’’ aspect (i.e., they don’t consider
control flow variants).

In [8], the author discusses the problems related to
race conditions in scenarios described through MSCs or
UML SDs, and presents solutions to these problems.
The focus of their work is on analyzing scenario-based
requirements specifications, but such scenarios can also be
used for testing purposes. However, only basic scenarios
are considered, without control flow variants and timing
constraints.

In [12], the author investigates the use of coordination
messages to overcome controllability problems when testing
from an input/output transition system (IOTS) and give an
algorithm for introducing sufficient messages. The algorithm
operates by identifying all of the controllability problems,
and then resolving these one at a time. The author also
characterizes the types of controllability problems that cannot
be solved this way, and introduces the notion of strongly
uncontrollable test cases. The author also proves that the
problem of minimizing the number of coordination messages
used is NP-hard. However, the approach is focused on system
testing only and not integration testing, i.e., the messages
exchanged between the system components are not consid-
ered (the observation of these messages by the local testers
may reduce the need for introducing coordination messages).
Other differences with our work are that they do not consider
timing constraints, and assume that test inputs are determin-
istic (which we do not require).

In [31], the authors propose algorithms to extend test sce-
narios for distributed systems represented by MSCs or UML
SDs, in order to obtain race-free scenarios suitable for test
implementation, by inserting coordination messages between
test components and quiescence observation events (based on
timeout events) in each test component. However, in their
work, only the interactions with the environment are mod-
eled, and they do not consider control flow variants and time
constraints.

A common limitation of the above works (except [8])
is that they only consider the messages exchanged with
the environment (system testing perspective), represented
by a single input or output event, and not the messages

exchanged between the system components (integration test-
ing perspective), that need to be represented by pairs of send
and receive events.

More recently, observability and controllability in the con-
text of integration testing of distributed systems based on
UML SDs were analyzed in [10]. In order to be able to check
not only the interactions with the environment but also the
interactions between the system components during integra-
tion testing, local testers are deployed close to the system
components, coordinated by a central tester. They introduce
the notions of local observability and local controllability, and
present procedures to check if a given test scenario (repre-
sented by a UML SD) is locally observable and/or locally
controllable. However, they did not take time constraints into
consideration and do not provide procedures to enforce local
observability and local controllability, as we do here. The
handling of time constraints greatly complicates the analysis
and enforcement procedures, because of the need to work
with time-constrained traces instead of plain (untimed) traces.
Even if not specified explicitly in the provided test scenarios,
time constraints play an important role for test coordination
in distributed testing, as shown in this article.

C. OTHER TESTABILITY ISSUES IN DISTRIBUTED
SYSTEMS TESTING
When testing a distributed system, it is sometimes neces-
sary to test a running/deployed system (runtime validation),
the additional challenge being that testing should not interfere
with system use. In runtime validation, a component of a
system is said to be testable if it has a separate test interface
whose use reduces the potential for interference. Isolation
methods have been proposed for components that are not
testable. There is a line of work in which approaches to run-
time validation have been developed using Testing and Test
Control Notation Language Version 3 (TTCN-3) in order to
enhance applicability [32]. The proposed approach (TT4RT)
includes a test management layer and a test isolation layer.
A further development aimed to optimise the placement of
test components that interact with system components, with
this taking into account resource availability and network
connectivity [33]. It has also been noted that a system might
have some components that are testable and some that are not,
with a procedure being proposed to choose the appropriate
test isolation approaches [34]. The focus of this line of work
is on the execution of abstract test cases that have already
been provided, and it does not address coordination issues.
However, there is potential for runtime validation approaches
to be integrated with techniques, such as those described in
this article, that analyse test case and address coordination
problems where they exist.

D. TIME CONSTRAINTS IN DISTRIBUTED
SYSTEMS TESTING
The temporal dimension is addressed in several works, but
very few refer to distributed systems testing.

167188 VOLUME 8, 2020

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

TABLE 1. Summary of comparison of related works in distributed systems testing and analysis and our work (*).

In [35], the authors derive the valid traces for Timed Mes-
sage Sequence Charts (T-MSCs), similar to UML SDs, but
do not address the problem of conformance checking based
on distributed observations. Timed traces are represented by
incorporating special time events between normal events.

In [36], the authors present a timed model of communicat-
ing finite-state machines, which communicate by exchanging
messages through channels and use event clocks to gen-
erate collections of T-MSCs. In a more recent work [37],
the authors addressmodel checkingmessage-passing systems
with real-time requirements. As behavioral specifications,
they use TC-MSCs (time-constrained MSCs), in which lower
and upper bounds on the time interval between certain pairs of
events are added to plain MSCs. As system model, they use a
network of communicating finite state machines with local
clocks, whose global behavior can be regarded as a timed
automaton. Their goal is to verify (by model checking) that
all timed behaviors exhibited by the system model conform
to the timing constraints imposed by the specification, and
not to check the conformity of the implementation with the
specification or system model.

In [38], the authors derive conformance relations taking
into account the event timestamps obtained with the local
clocks present at each system port (point of interaction with
the environment), assumed to differ up to a maximum clock
skew, but only for system testing.

In [39], the authors show that conformance checking in the
presence of time constraints, within a distributed test archi-
tecture without a global clock, can be done in two phases:
in the first phase, each local tester checks local conformance
according to the tioco conformance relation; in the second
phase, the local traces are brought together and it is checked if
events are exchanged following some communication rules.
Their results do not apply directly to UML SDs [7], since
they assume internal multicast communications, among other
differences.

In [40], the authors present criteria and decision procedures
to check the conformance of observed execution traces (based
on distributed observations) against the specification, in the
context of integration testing of distributed systems based on
UML SDs enriched with time constraints.

However, none of the above works address the observabil-
ity and controllability properties, as we do in this article.

The only previous work we found that relates the issue of
observability and controllability to time constraints is [41].
In this article, the author demonstrates how to solve the prob-
lems of observability and controllability using coordination
messages and time constraints. However, they do not support
timing constraints or non-determinism in the input models,
only consider interactions with the environment, and restrict
their attention to SUT behaviors consisting of alternating
sequences of inputs from the environment and outputs to the
environment. In a more recent work [42], the authors propose
to solve controllability problems using so called synchroniza-
tion messages, for the same type of input models, but do not
support timing constraints either in the input model.

E. SUMMARY
Table 1 summarizes themain characteristics and features cov-
ered by the related works previously analyzed, in comparison
with our work. Although some works address observability
and controllability problems in distributed systems testing
and design, none addresses the problem of observability and
controllability analysis and enforcement for time-constrained
distributed systems, as we do in this article. We believe this
is a key contribution to help solving the test coordination
problem in distributed testing with time constraints.

X. CONCLUSION AND FUTURE WORK
Given the growing importance of distributed systems testing,
and the benefits of distributed conformance checking and
test input selection in the scenario-based integration testing
of distributed systems, particularly in the presence of time
constraints and non-determinism, we presented in this article
an approach to assess if test scenarios are ready for distributed
execution, and, if not, refine them to become test ready with
minimal overhead.

Our approach is based on the notions of local (or dis-
tributed) observability and controllability, that is, the ability
to perform conformance checking (observability) and test
input selection (controllability) in a purely distributed way,
without exchanging coordination messages between the test

VOLUME 8, 2020 167189

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

components during test execution or overlooking confor-
mance faults or causing incorrect test inputs.

Local observability and controllability are checked in a
constructive way (pinpointing violations) by analyzing the set
of valid time-constrained traces defined by a time-constrained
test scenario under consideration. Local observability is
determined based on operators introduced in the paper for
manipulating time-constrained traces (join, project and dif-
ference). Local controllability is determined based on a
symbolic simulated execution algorithm. If needed, local
observability and/or local controllability are enforced by the
addition of coordination messages and/or coordination time
constraints, that are determined based on heuristic search.

All the algorithms were implemented in the DCO Ana-
lyzer tool, for test scenarios specified by means of UML
sequence diagrams. To validate the algorithms and the tool
in an industrial setting, we conducted an evaluation experi-
ment with real-world test scenarios from an industrial partner.
In that experiment, our tool was able to correctly identify
local observability and controllability issues and recommend
possible fixes; the outputs reported helped the users to under-
stand and fix the root causes of the detected problems.

As future work, we intend to integrate DCO Analyzer as a
static analysis tool in a full-fledged toolset for model-based
distributed systems testing, and conduct further experiments
in industrial settings.

REFERENCES
[1] B. Boehm, ‘‘Some future software engineering opportunities and chal-

lenges,’’ in The Future of Software Engineering. Cham, Switzerland:
Springer, 2011, pp. 1–32.

[2] G. Tassey, The Economic Impacts of Inadequate Infrastructure for Soft-
ware Testing, vol. 7007, Nat. Inst. Standards Technol., RTI Project 011,
2002.

[3] F.-Z. Moutai, S. Hsaini, S. Azzouzi, and M. E. Hassan Charaf, ‘‘Testing
distributed cloud: A case study,’’ in Proc. Int. Symp. Adv. Electr. Commun.
Technol. (ISAECT), Nov. 2019, pp. 1–5.

[4] H. Kim, A. Ahmad, J. Hwang, H. Baqa, F. Le Gall, M. A. R. Ortega, and
J. Song, ‘‘IoT-TaaS: Towards a prospective IoT testing framework,’’ IEEE
Access, vol. 6, pp. 15480–15493, 2018.

[5] J. Hwang, A. Aziz, N. Sung, A. Ahmad, F. Le Gall, and J. Song,
‘‘AUTOCON-IoT: Automated and scalable online conformance testing for
IoT applications,’’ IEEE Access, vol. 8, pp. 43111–43121, 2020.

[6] B. Lima and J. P. Faria, ‘‘Automated testing of distributed and heteroge-
neous systems based on uml sequence diagrams,’’ in Proc. 10th Int. Joint
Conf. Softw. Technol. (ICSOFT). Cham, Switzerland: Springer, Jul. 2015,
pp. 380–396.

[7] OMG Unified Modeling Language TM (OMG UML) Version 2.5, Object
Management Group, Needham, MA, USA, 2015.

[8] B. Mitchell, ‘‘Resolving race conditions in asynchronous partial order
scenarios,’’ IEEE Trans. Softw. Eng., vol. 31, no. 9, pp. 767–784,
Sep. 2005.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 3rd ed. Cambridge, MA, USA: MIT Press, 2009.

[10] B. M. C. Lima and J. C. P. Faria, ‘‘Towards decentralized conformance
checking in model-based testing of distributed systems,’’ inProc. IEEE Int.
Conf. Softw. Test., Verification Validation Workshops (ICSTW), Mar. 2017,
pp. 356–365.

[11] D. L. Mills, ‘‘Internet time synchronization: The network time
protocol,’’ IEEE Trans. Commun., vol. 39, no. 10, pp. 1482–1493,
Oct. 1991.

[12] R.M.Hierons, ‘‘Overcoming controllability problems in distributed testing
from an input output transition system,’’ Distrib. Comput., vol. 25, no. 1,
pp. 63–81, Mar. 2012.

[13] B. Lima and J. P. Faria, ‘‘DCO Analyzer: Local controllability and observ-
ability analysis and enforcement of distributed test scenarios,’’ in Proc.
42nd Int. Conf. Softw. Eng. Companion (ICSE). New York, NY, USA:
ACM, 2020, pp. 1–4.

[14] Oracle. (Dec. 2019) Java SE 12. [Online]. Available:
https://www.oracle.com/technetwork/java/javase/overview/index.html

[15] E. Durr and J. van Katwijk, ‘‘VDM++, a formal specification language
for object-oriented designs,’’ in Proc. Comput. Syst. Softw. Eng., 1992,
pp. 214–219.

[16] OMG Unified Modeling Language TM (OMG UML) Version 2.5.1, Object
Management Group, Needham, MA, USA, 2017.

[17] M. Utting and B. Legeard, Practical Model-Based Testing: A Tools
Approach. San Mateo, CA, USA: Morgan Kaufmann, 2010.

[18] S. Schulz, J. Honkola, and A. Huima, ‘‘Towards model-based testing with
architecture models,’’ in Proc. 14th Annu. IEEE Int. Conf. Workshops Eng.
Comput.-Based Syst. (ECBS), Mar. 2007, pp. 495–502.

[19] M. Mikucionis, K. G. Larsen, and B. Nielsen, ‘‘T-uppaal: Online model-
based testing of real-time systems,’’ in Proc. 19th Int. Conf. Automated
Softw. Eng., 2004, pp. 396–397.

[20] K. Chen, J. Lv, J. Huang, H. Guo, S. Su, and T. Tang, ‘‘Online conformance
testing of CBTC on-board ATO functions based on UPPAAL-TRON
framework,’’ in Proc. IEEE Intell. Transp. Syst. Conf. (ITSC), Oct. 2019,
pp. 3334–3339.

[21] M. Utting, A. Pretschner, and B. Legeard, ‘‘A taxonomy of model-
based testing approaches,’’ Softw. Test., Verification Rel., vol. 22, no. 5,
pp. 297–312, Aug. 2012.

[22] J. Lilius and I. P. Paltor, ‘‘Formalising UML state machines for model
checking,’’ in Proc. Int. Conf. Unified Modeling Lang. Cham, Switzerland:
Springer, 1999, pp. 430–444.

[23] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann, and
L. Nachmanson, ‘‘Model-based testing of object-oriented reactive systems
with spec explorer,’’ in Formal Methods and Testing. Cham, Switzerland:
Springer, 2008, pp. 39–76.

[24] Q. Tani and A. Petrenko, ‘‘Input/output automata’’ in Proc. Test. Commun.
Syst. IFIP TC6 11th Int. Workshop Test. Commun. Syst. (IWTCS), vol. 3.
Tomsk, Russia: Springer, Aug./Sep. 1998, p. 83.

[25] A. Z. Javed, P. A. Strooper, and G. N. Watson, ‘‘Automated generation of
test cases using model-driven architecture,’’ in Proc. 2nd Int. Workshop
Autom. Softw. Test (AST), May 2007, p. 3.

[26] W. Damm and D. Harel, ‘‘LSCs: Breathing life into message sequence
charts,’’ Formal Methods Syst. Des., vol. 19, no. 1, pp. 45–80, 2001.

[27] W. Grieskamp, ‘‘Multi-paradigmatic model-based testing,’’ in For-
mal Approaches to Software Testing and Runtime Verification. Cham,
Switzerland: Springer, 2006, pp. 1–19.

[28] W. Grieskamp, ‘‘Multi-paradigmatic model-based testing,’’ in Proc. 1st
Combined Int. Workshops Formal Approaches Softw. Test. Runtime Veri-
fication (FATES). Berlin, Germany: Springer, Aug. 2006, pp. 1–19.

[29] A. Ulrich and H. König, ‘‘Architectures for testing distributed systems,’’
in Testing of Communicating Systems (The International Federation for
Information Processing), vol. 21, G. Csopaki, S. Dibuz, and K. Tarnay,
Eds. Cham, Switzerland: Springer, 1999, pp. 93–108.

[30] R. M. Hierons, ‘‘Combining centralised and distributed testing,’’ ACM
Trans. Softw. Eng. Methodology, vol. 24, no. 1, pp. 5:1–5:29, Oct. 2014.

[31] S. Boroday, A. Petrenko, and A. Ulrich, ‘‘Implementing MSC tests with
quiescence observation,’’ in Proc. 21st IFIP WG 6.1 Int. Conf. Test.
Softw. Commun. Syst. 9th Int. FATES Workshop. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 49–65.

[32] M. Lahami, F. Fakhfakh, M. Krichen, and M. Jmaiel, ‘‘Towards a TTCN-3
test system for runtime testing of adaptable and distributed systems,’’ in
Proc. 24th IFIP WG 6.1 Int. Conf. Test. Softw. Syst. (ICTSS), in Lecture
Notes in Computer Science, vol. 7641, B. Nielsen and C. Weise, Eds.
Cham, Switzerland: Springer, 2012, pp. 71–86.

[33] M. Lahami, M. Krichen, M. Bouchakwa, and M. Jmaiel, ‘‘Using knapsack
problem model to design a resource aware test architecture for adaptable
and distributed systems,’’ in 24th IFIP WG 6.1 International Conference
on Testing Software and Systems (ICTSS 2012), ser. Lecture Notes in
Computer Science, B. Nielsen and C. Weise, Eds., vol. 7641. Springer,
2012, pp. 103–118.

[34] M. Lahami and M. Krichen, ‘‘Test isolation policy for safe runtime val-
idation of evolvable software systems,’’ in Proc. Workshops Enabling
Technol., Infrastruct. Collaborative Enterprises, S. Reddy and M. Jmaiel,
Eds., Jun. 2013, pp. 377–382.

[35] T. Zheng, F. Khendek, and L. Helouët, ‘‘A semantics for timed MSC,’’
Electron. Notes Theor. Comput. Sci., vol. 65, no. 7, pp. 85–99, May 2002.

167190 VOLUME 8, 2020

B. Lima et al.: Local Observability and Controllability Analysis and Enforcement in Distributed Testing With Time Constraints

[36] S. Akshay, B. Bollig, and P. Gastin, ‘‘Automata and logics for timed
message sequence charts,’’ in Int. Conf. Found. Softw. Technol. Theor.
Comput. Sci. Cham, Switzerland: Springer, 2007, pp. 290–302.

[37] S. Akshay, P. Gastin, M. Mukund, and K. Narayan Kumar, ‘‘Checking
conformance for time-constrained scenario-based specifications,’’ Theor.
Comput. Sci., vol. 594, pp. 24–43, Aug. 2015.

[38] R. M. Hierons, M. G. Merayo, and M. Núnez, ‘‘Using time to add order to
distributed testing,’’ in Proc. Int. Symp. Formal Methods. Cham, Switzer-
land: Springer, 2012, pp. 232–246.

[39] C. Gaston, R. M. Hierons, and P. Le Gall, ‘‘An imple-
mentation relation and test framework for timed distributed
systems,’’ in Proc. IFIP Int. Conf. Test. Softw. Syst. Cham,
Switzerland: Springer, 2013, pp. 82–97.

[40] B. Lima and J. Faria, ‘‘Conformance checking in integration testing of
time-constrained distributed systems based on UML sequence diagrams,’’
in Proc. 12th Int. Conf. Softw. Technol., 2017, pp. 459–466.

[41] A. Khoumsi, ‘‘A temporal approach for testing distributed systems,’’ IEEE
Trans. Softw. Eng., vol. 28, no. 11, pp. 1085–1103, Nov. 2002.

[42] S. Azzouzi, S. Hsaini, and M. E. H. Charaf, ‘‘A synchronized test control
execution model of distributed systems,’’ Int. J. Grid High Perform. Com-
put., vol. 12, no. 1, pp. 1–17, Jan. 2020.

BRUNO LIMA (Student Member, IEEE) received
the master’s degree in informatics and computing
engineering from the Faculty of Engineering of
the University of Porto (FEUP), in 2014, where
he is currently pursuing the Ph.D. degree with the
Department of Informatics Engineering. He con-
ducted a master’s thesis on component testing and
certification for an ambient assisted living ecosys-
tem, as a member of the AAL4ALL Research
Team, INESC TEC. He is currently an Assistant

Lecturer with the Department of Informatics Engineering, FEUP. He is also
a Researcher with INESC TEC, where he participates in research projects in
the area of e-health and software engineering. His research interests include
software engineering, certification, and software testing, particularly in the
scope of e-health and ambient assisted living systems.

JOÃO PASCOAL FARIA (Member, IEEE)
received the Ph.D. degree in electrical and com-
puter engineering from the Faculty of Engineer-
ing of the University of Porto (FEUP), in 1999.
He is currently an Associate Professor with FEUP,
a Senior Researcher with the Institute for Sys-
tems and Computer Engineering, Technology and
Science (INESC TEC), and the President of the
Sectorial Commission for Information and Com-
munications Technology (CS/03) in the scope of

the Portuguese Quality Institute (IPQ). He has more than 25 years of research
and development experience in software engineering, having published more
than 60 papers in several journals and conferences, and obtained four Best
Paper Awards. His current research interests include model-based testing,
software process improvement, and model-driven development. He is a
member of ACM.

ROBERT HIERONS (Senior Member, IEEE)
received the B.A. degree in mathematics from
the Trinity College, Cambridge, and the Ph.D.
degree in computer science from Brunel Univer-
sity. He then joined the Department of Mathemati-
cal and Computing Sciences, Goldsmiths College,
University of London, before returning to Brunel
University, in 2000. He was promoted to a Full
Professor in 2003 and joined The University of
Sheffield, in 2018.

VOLUME 8, 2020 167191

