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João F. Teixeira1(B), Lúıs F. Teixeira2, João Fonseca3, and Tiago Jacinto3

1 Department of Electrical and Computer Engineering, University of Porto,
Porto, Portugal

jpfteixeira.eng@gmail.com
2 Department of Informatics Engineering, University of Porto, Porto, Portugal

luisft@fe.up.pt
3 Department of Health Information and Decision Sciences, University of Porto,

Porto, Portugal
jfonseca@med.up.pt, tajacinto@gmail.com

Abstract. Over 250 million people, worldwide, are affected by chronic
lung conditions such as Asthma and COPD. These can cause breath-
lessness, a harsh decrease in quality of life and, if left undetected or not
properly managed, even death. In this paper, we approached part of the
lines of development suggested upon earlier work. This concerned the
development of a system design for a smartphone lung function classi-
fication app, which would only use recordings from the built-in micro-
phone. A more systematic method to evaluate the relevant combinations
of methods was devised and an additional set of 44 recordings was used
for testing purposes. The previous 101 were kept for training the models.
The results enabled to further reduce the signal processing pipeline lead-
ing to the use of 6 envelopes, per recording, half of the previous amount.
An analysis of the classification performances is provided for both previ-
ous tasks: differentiation into Normal from Abnormal lung function, and
between multiple lung function patterns. The results from this project
encourage further development of the system.
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1 Introduction

Chronic respiratory diseases such as Asthma and Chronic Obstructive Pul-
monary Disease (COPD) are incurable, yet treatable and their early detection is
crucial to provide a better quality of life. Major risk factors include air pollution,
tobacco smoking and occupational environments containing dust and chemicals.
The World Health Organization (WHO) estimates that over 250 million peo-
ple suffer from asthma and COPD [15] and more than 3 million people died of
COPD in 2005 [16].

Spirometry is the measurement of breath, i.e., is the most popular noninvasive
set of timed tests that enables to measure the mechanical properties of the lungs,
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also named pulmonary function [8]. The keystone test is the Forced Expiratory
Maneuver (FEM) where the patient fully inspires and then forcefully exhales all
the air available, as fast as possible.

The increasing use of smartphones has enabled the emergence of several
health related systems. Their computational power is ever increasing and,
equipped with multiple sensors, it is possible to develop disease prevention, diag-
nosis and monitoring applications.

This paper provides an extension of previous work [12], where the perfor-
mance of several groups of methods, along with clinical parameters, were com-
pared. The aim is to find the most relevant, most efficient and fastest combination
to produce a smartphone app for measuring and classifying lung function. The
system’s input is restricted to the smartphone’s built-in microphone, in order to
avoid external components.

2 Background and Related Work

From the dawn of non-invasive lung function evaluation, which produced the
standard spirometer, several improvements have been made throughout the
years. The next logical step concerning portability and affordability involves lung
function estimation with smartphones’ microphones. Some studies have already
been conducted in order to accurately measure the clinical parameters [5,17],
and also considering robustness to ambient noise [11].

In previous work [12], a lung function estimation system was proposed con-
taining signal processing and machine learning algorithms. It was based on 101
recordings, collected from 61 patients performing the forced expiratory maneuver
(FEM). Due to the reduced and unbalanced number of instances (label-wise),
the evaluation of all models was done in a 5-fold cross-validation scheme.

3 Dataset

The dataset for this work comprises the previous 101 recordings and a new
set of 44 recordings, collected in the same conditions of the previous ones. Some
recordings were gathered on a controlled environment with low background noise,
however more than 80 % of the recordings experienced background noise such as
physicians giving verbal incentive, talking voices and small machine noises at a
short distance. The recordings were made using a Samsung GT-I9000. The first
101 instances constituted the training set while the new set was used for testing.

Due to data collection constraints, the new recordings only included the 4
most popular parameters. However, this is not very problematic since, as previ-
ously shown, the remaining clinical indicators are very unreliable and extremely
patient cooperation dependent. In fact, this enables the optimization process for
the signal processing pipeline to focus on the most relevant values.
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Each recording is accompanied by the patient’s anthropometric parameters
(age, height, weight and gender), clinical parameters, and classification of the
patients lung function provided by the recording physician. The clinical para-
meters were obtained by performing the FEM to a spirometers available. The
classification types are normal and abnormal (obstruction, restriction or mixed).

The included patients were part of the clinical study Control and Burden
of Asthma and Rhinitis (ICAR), patients attending the allergology clinic from
CUF Porto Institute (ICP) or from CUF Porto Hospital (HCP). Data collection
occurred between April 3rd 2014 and February 1st 2015.

4 Algorithms and System Architecture

4.1 Signal Processing

The system’s input consists of microphone recordings which are AC coupled,
uncalibrated signals that represent air pressure. The signal processing pipeline
can be divided in four portions: automatic signal segmentation, signal pre-
processing, envelope generation and envelope processing. Figure 1 shows the ini-
tial architecture for the signal processing part without the signal segmentation.

Automatic Signal Segmentation. The audio input was initially segmented
in order to remove non expiration sounds, such as the inspiration portion of
the maneuver and ambient noise. The definition and cropping the beginning of
the sound was accomplished using a modified version of the Back-Extrapolation
algorithm [7].

First, an LPC envelope of the signal is obtained, as it will be described fur-
ther on the paper. Then the minimum value between inspiration and expiration
peaks is found and the initial part is removed. Afterwards, the zero-time back-
extrapolation is performed by finding the instant corresponding to the envelope’s
peak (PEF time), calculating the Time-Volume curve, drawing the tangent at
the PEF time and finding where the tangent crosses the abscissas, which is the
initial instant.

The ending at noise level was detected using a sliding window algorithm (5 %
of signal’s length, 25 % overlap) based on the magnitude ratio threshold of the
maximum value (2 %).

Signal Pre-Processing. The recordings are limited in excursion and patients
need to perform the expiratory maneuver at an arms length to avoid microphone
saturation. Therefore, it seems relevant to compensate the pressure lost between
the lips (plips) and smartphone (p), using an Inverse Radiation Model. Fur-
thermore, this model also atones the reverberation effect from sound reflections
around a person’s body. Afterwards, plips was converted to airflow at the lips
(ulips), using a Pressure to Flow Conversion Model. Both models were developed
in similar fashion to [5].
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Envelope Generation. The third stage employed several methods to calcu-
late the signal envelopes, approaching different sound characteristics to obtain
a comprehensively robust feature extraction. The algorithms’ input consisted of
both the segmented audio and the two resulting signals from the pre-processing
stage, as all of them can be considering roughly proportional to air flow.

Generic Envelope Extraction. To obtain an envelope based on a time domain
approach two methods were used: the Hilbert Transform and Shannon curves
[6]. The first approach consists of calculating the signal’s harmonic conjugate,
with the Hilbert Transform, and to add it back to the signal, resulting on an
envelope. The second approach involves calculating the Shannon Entropy and
Energy envelopes of the signal. They act as non-linear transformations focusing
either on the higher (Energy) and lower (Entropy) intensities of the signal. Both
approaches output highly noisy curves that need subsequent smoothing.

Linear Predictive Coding. The audio input is segmented in windows of 31.25ms,
with 50 % overlap. The white noise variance, or power, is obtained from the
LPC model outputs. While the LPC filters can approximate the vocal tract [14],
the succession of power values should be proportional to the exhalation power
at the respective time and constitute a sampled envelope of the signal. The
implementation included models of degrees 2, 4, 8, 16 and 32, which represents
increasing vocal complexity.

Mean of Resonances. Similarly to LPC, the signal was buffered into 31.25 ms
frames, with 50 % overlap. Each frame underwent a 256-point FFT operation
using a hamming window, producing a spectrogram. All spectrogram values
lower then 20 % the respective frames’ maximum were considered noise and
were consequently discarded. Resonances over 250ms, within the respective fre-
quencies’ 2 bin neighborhood were kept, preserving only relatively large and long
frequencies, and taking into account the natural occurring frequency shift. The
envelope was obtained by averaging the frames’ saved resonances.

Envelope Post-processing. The several envelopes obtained were processed
using different settings in order to find the best combination for the application.
The envelopes were smoothed by a regular low pass filter (LPF) and, in parallel,
were also approximated by a 4th order polynomial. To obtain the same sampling
rate as the buffered methods, the Hilbert Transform and Shannon envelopes’
results were downsampled accordingly. The non-approximated envelopes were
also further processed using a Savitzky-Golay filter (SG) with order 3 and size
11 [10], as depicted on Fig. 1.

4.2 Parameter Extraction

For each recording, the spirometry parameters were calculated from each
of the final envelopes. The measurements extracted were PEF, FVC, FEV1

and FEV1/FVC. The envelopes are viewed as Flow-Time curves, typical of
spirometer reports.
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Fig. 1. Initial signal processing pipeline (P0).

PEF is defined as the Peak Expiratory Flow or the global maximum of the
audio envelope. By integrating the envelope with respect to time the Volume-
Time curve can be obtained. FVC is defined as the total volume expired of a
FEM. FEV1 is the total volume expired during the first second.
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4.3 Machine Learning

The system’s machine learning pipeline can be divided into two stages: the para-
meter regression and the classification. The first uses the parameters extracted
from the curves to obtain an estimation of the respective clinical values, as given
by spirometers. The second, devises models that can discern between the pos-
sible illness states, initially addressing the distinction of normal from abnormal
lung function and then, normal from 2 types of pathologies.

Regression Stage. Every recording produces several envelopes and each one
is used to extract clinical measurements. This information is used to produce
a relatively robust estimation of the respective spirometer measurement. For
instance, each set of PEF measurements computed from any recording is used
as a batch input for the trained regression model to obtain an estimated PEF
value. The process is then repeated for the other types of clinical measurements.
The corresponding spirometer measurements acted as ground truth or regression
targets. For this task, Regression Tree Bagging [1] and Random Forests (RF)
[2] were used. The number of trees in the ensembles was reduced to 10 without
significant loss in accuracy. Also, RF employed a selection size for the random
feature subset of n/3 out of the total n feature set.

Classification Stage. On this stage, the regressed parameters were the input of
the learning models. Several different classification models were tested, namely:
Decision Trees [3], either as one tree, Tree Bagging, Random Forest (

√
n subset)

and AdaBoost [4], Support Vector Machines (SVM) [13] and Näıve Bayes [9].
Although the tree ensemble methods used 70 trees, only 10 trees were grown for
AdaBoost to avoid overfitting.

5 Experimental Approach

5.1 Regression Experiments

Unlike in the previous work, we aimed to devise a more systematic approach con-
cerning the removal of the signal processing blocks. Hence, the experiments are
based on random forward selection and model improvement tracking. Basically,
a random path (sequence of methods) of the system’s pipeline is used to predict
the parameters’ values and, iteratively, more are added. After each prediction
the mean error and standard deviation is saved as well as the improvement of
the respective path’s addition (Fig. 2). The termination condition is adding 12
paths (maximum number of paths from previous work and to reduce cumulative
path bias).

The Avg(Avg) and Avg(Std) refer to the averages of the mean value and
standard deviation of the error, respectively. The Score (blue line) is calculated
as an average of the parameter-wise weighted average between the mean (w = 3)
and standard deviation (w = 2) of the error. The vertical lines indicate the
minimum.
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This process is repeated 100 times, ultimately providing a histogram of the
relative influence of each path (Fig. 3). To evaluate which system blocks were
more useful to include, the importance of a method was considered as the average

Fig. 2. Score progression with inclusion of system paths. Tree Bagging, initial dataset.

Fig. 3. Relative system path importance. Tree Bagging, initial dataset, 100 iterations.
The 6 maximum values are represented as red dots (Color figure online).

Fig. 4. Relative system block importance. Tree Bagging, initial dataset, 100 iterations.
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of the importance of each path that uses that method (Fig. 4). Each model
generated used a 5-fold cross validation dataset and was later tested with the
new dataset.

5.2 Classification Experiments

The classification process was first devised as a Normal against Abnormal clas-
sification problem, referred to as two label experiments (TLE). Then, multiple
label experiments (MLE) were conducted, where the models tried to distinguish
between Normal lung function and Obstruction and Mixed pathologies. For both
problems, the experiments varied on the feature space used. The experiments
used:

1. Set A1,
2. Set A and height,
3. Set A, height and age.

6 Results and Discussion

6.1 Regression Experiments

We proceeded to execute the analysis described in Sect. 5.1, several times. The
ranking of relevance of the SP pipeline blocks, such as in Fig. 4, presented vary-
ing results for each 100 iterations run. The exception to these changes were
the filtering options LP-sGolay and Polynomial Fitting that maintained a very
high importance value, contrasting with using just the LP filter which tended

Table 1. Comparison of regression error average and standard deviation for the clinical
parameters. P1 refers to results with the previous final SP pipeline and P2 to the new
pipeline.

Task SP Model Average Error (%) Std. Dev. Error (%)

PEF FVC FEV1 Tiff PEF FVC FEV1 Tiff

Train P1 Bag 23.46 30.03 22.77 10.32 22.93 35.77 23.36 8.66

RF 22.26 28.25 24.05 9.59 22.98 29.14 26.40 8.20

P2 Bag 22.66 26.03 23.73 10.22 23.96 25.74 24.19 8.27

RF 22.43 28.62 24.29 10.21 24.55 27.98 24.98 8.10

Test P1 Bag 27.83 32.18 26.67 12.99 27.11 22.82 17.60 13.10

RF 27.21 32.53 25.53 13.74 27.34 23.19 17.56 13.56

P2 Bag 26.76 32.26 26.95 13.23 25.83 22.66 17.19 12.86

RF 27.37 32.57 25.88 13.61 26.18 23.30 17.51 13.29

1 Set A: PEF, FEV1, FVC, FEV1/FVC.
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to be of very low importance. The remaining methods, pre-processing and enve-
lope generating functions, changed often relative importance value and order,
which suggests that neither is particularly relevant for the generation of good
attributes/paths.

Based on these results, and in order to further reduce the complexity of the
system to be implemented, we opted for the following system:

– Maintain all the filtering models (discarding the direct use of LP output)
– Maintain all the pre-processing outputs (p, plips, ulips)
– Just use Shannon Energy (least complex envelope generator: x2,

√
x and

log10(x))

Fig. 5. P2 signal processing architecture.
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This new pipeline (P2, Fig. 5), produces a total of 6 attributes per clinical
parameter, half than the previous system (P1). With the pipeline selected, the
models were retrained and tested. The results are shown in Table 1.

From these results a few remarks can be made. First, all values are very
similar, either across models, signal processing pipeline and task. This is partic-
ularly interesting since, by halving the number of values to combine in regression,
and consequently simplifying the pipeline, approximately the same results were
obtained. Furthermore, the training version of Bagging with P2 pipeline for FVC
managed to present significantly better results than the correspondent version
for P1.

Another interesting fact is that the testing results quite resemble the train-
ing ones, with a maximum of 5 % increase in the average error rates and even
significant improvement in standard deviation for FVC and FEV1.

Like in previous work, Bagging and Random Forest present very similar
results and an option cannot be chosen for deployment with sufficient confi-
dence. As before, the Random Forest was chosen to be used for the subsequent
experiments, so to reduce overfitting and shorten regression time, along with the
P2 pipeline.

6.2 Classification Experiments

The classification experiments using P2 presented interesting results, shown on
Table 2. As before, through the inclusion of height and age attributes the models
accuracies managed to improve. However, unlike in the experiments of previ-
ous work, including just height introduced significant bias towards the Normal
class, despite improving the accuracy (Ac.). This apparent contradiction can
be explained by the instance label unbalance. In fact, both testing results have
shown a clear bias for Example 1 and 2, leaving the precision (Prec.) and recall
(Rec.) for the Abnormal class mostly at zeros (not on table). Either way, simi-
larly to previous work, using Set A in conjunction with height and age provides
the best results and thus, mainly the Example 3 results are considered for model
evaluation.

At this stage, the model that provides best results is Tree Bagging, which
has the best accuracy (88.1 % / 65.9 %) and has one of the best precision-recall
tradeoffs, in the sense that a higher precision is desirable, implying lower bias
towards the Normal class (prec. 90.4 % / 78.2 %).

Overall, the training results resembled those from previous work, reaching a
difference in error rate of 4 % for the best method, which is hardly significant for
the dataset’s size. Surprisingly, however, the models did not manage to produce
testing results that matched training predictions. Models with P1 pipeline were
also tested but did not show significant change (accuracy improvement below
2 %, not shown). This suggests that the testing set is somewhat different from
the training set.

Table 3 presents the results of the multiple label classification problem, using
P2. Like before, the training results seemed to improve with the succession of
experiments reinforcing the importance of using the anthropometric values with
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Table 2. Two label classification problem (TLP) results (%) for the best performing
models and single tree classifier.

Method Training Testing

Exp. 1 Exp. 3 Exp. 1 Exp. 3

Ac. Prec. Rec. Ac. Prec. Rec. Ac. Prec. Rec. Ac. Prec. Rec.

Single Tree 53.4 68.7 61.9 83.1 87.5 88.7 56.8 60.9 89.2 65.9 80.9 60.7

Tree Bagging 62.3 69.4 83.1 88.1 90.4 92.9 59.0 61.9 92.8 65.9 78.2 64.2

Random Forest 68.3 70.9 92.9 86.1 86.0 95.7 61.3 62.7 96.4 63.6 66.6 85.7

Adaboost 68.3 71.4 91.5 80.2 82.2 91.5 63.6 63.6 100 65.9 66.6 92.8

SVM 70.3 70.3 100 87.1 90.2 91.5 63.6 63.6 100 63.6 63.6 100

the clinical ones. On the other hand, the accuracy of the test results were overall
slightly reduced. However this is caused by a reduction of bias towards the
Normal class. In fact, on the Tree Bagging experiment evolution, the accuracy
was maintained but the precision for the Normal class rose from 66.6 % to 84.6 %
while precision and recall values for the other classes were changed from null
values.

Table 3. Multiple label classification problem (MLP) results (%) for the best perform-
ing models and single tree classifier.

Method Training Testing

Exp. 1 Exp. 3 Exp. 1 Exp. 3

Single Tree 58.5 77.7 61.9 54.7

Tree Bagging 65.6 86.8 66.6 66.6

Random Forest 67.6 81.8 66.6 61.9

Adaboost 65.6 76.7 66.6 64.2

SVM 71.7 86.8 66.6 9.52

The testing results has also shown relatively low accuracy comparing to the
training results, despite being more evident on Example 3 values.

Similarly to the TLP results, these also suggest that Tree Bagging is the best
option among the tested. It provides the best accuracies in both training and
testing and even slightly improves on the P1 results (accuracy 82.2 %) [12], even
though not significantly.

7 Limitations and Future Work

7.1 Limitations

This project presented some issues concerning data collection that, once over-
come, should enhance the learning models’ performance and, consequently, the
results.
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A great portion of the recordings was gathered on a relatively fast paced clin-
ical study where patients had to perform several respiration maneuvers before
recording to the smartphone. This could have reduced the patient’s cooperation
level due to fatigue. On the other hand, the forced expiration maneuver itself is
difficult to perform, specially when concerning these recordings where no mouth-
piece was used. These factors also contributed to the reduced yield of properly
executed recordings. The small dataset with little intra-patient samples is most
likely the cause of the regression errors of over 20 %.

Additionally, since the spirometer and smartphone maneuvers were made
separately there is no completely reliable ground truth.

7.2 Future Work

Further study of this technology is needed and some key features are proposed.
In addition to collect further recordings, it is relevant to devise an algorithm
to automatically detect poorly executed FEMs in order to immediately request
a repetition during data collection. Also, an application based on the proposed
architecture should be implemented.

8 Conclusion

In this paper, we approached part of the lines of development suggested upon
earlier work. A more systematic method to evaluate the relevant combinations
of methods was devised and an additional set of recordings was used for testing
purposes.

The new evaluation method lead to a new pipeline (P2) which is simpler
to implement and should be faster to execute, due to the decrease in envelope
generating functions. This, in turn, further reduced the number of the envelopes
processed to 6, half the amount of the previous system. The regression results
from the P2 system are very similar to the previous ones (P1). Furthermore,
models from either pipeline show test values with a maximum 5 % increase in
error rate and even better standard deviation for some clinical parameters.

The classification experiments confirmed the usefulness of combining the clin-
ical parameters with the patient’s anthropometric data. The TLP and MLP
results were comparable to previous work, even slightly improving on the MLP.
The testing results were not expected to be so low and, considering the test
results using the P1 pipeline, it suggests an issue with the testing data. Despite
this, the remaining results encourage further development of the system.
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