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Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
†‡INESC TEC - Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência

ORCID: ∗0000-0003-4537-5095, †0000-0002-7023-8562, ‡0000-0001-8573-3147

Abstract—Localisation is a critical problem in ground mobile
robots. For dead reckoning, odometry is usually used. A disad-
vantage of using it alone is unbounded error accumulation. So,
odometry calibration is critical in reducing error propagation.
This paper presents an analysis of the developments and advances
of systematic methods for odometry calibration. Four steering
geometries were analysed, namely differential drive, Ackerman,
tricycle and omnidirectional. It highlights the advances made
on this field and covers the methods since UMBmark was
proposed. The points of analysis are the techniques and test
paths used, errors considered in calibration, and experiments
made to validate each method. It was obtained fifteen methods for
differential drive, three for Ackerman, two for tricycle, and three
for the omnidirectional steering geometry. A disparity was noted,
compared with the real utilisation, between the number of pub-
lished works addressing differential drive and tricycle/Ackerman.
Still, odometry continues evolving since UMBmark was proposed.

Index Terms—mobile robots, calibration, odometry

I. INTRODUCTION

In ground mobile robots, localisation is one of the most
critical problems associated with the navigation of an au-
tonomous mobile robot [1]. Two basic localisation methods are
absolute and dead reckoning, commonly employed together.
Dead reckoning methods are usually based on odometry [2].

Odometry computes, for example, the robot’s relative mo-
tion from the measurement of wheel revolutions (usually
obtained from optical encoders) and/or steering angles [3]. As
compared to other localisation methods, odometry allows very
high sampling rates and better short-term accuracy [4]. How-
ever, odometry is based on the assumption that the revolutions
of the wheels can be translated to linear displacement. This
assumption may not be valid in all situations. For example,
if one wheel loses traction because, say, over accelerations,
the wheel revolutions do not correspond to the real linear
displacement of the wheel [2].

A disadvantage of odometry is the accumulation of errors.
Their source can be categorised into systematic or nonsys-
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tematic errors [2]. Systematic ones are deterministic and
constantly accumulate over time, so it is possible by calibration
to reduce their effect. Nonsystematic cannot be predicted, only
described probabilistically. Therefore, odometry calibration is
crucial to its accuracy. It is based on the identification or
correction of kinematic parameters that compute the mobile
robot pose with a minimum error associated with it [5].

This paper focuses on analysing the literature relative
to odometry calibration. Specifically, it targets studies that
estimate the physical dimensions necessary to correct the
kinematic model, instead of the robot’s linear displacement
and orientation. The analysis covers the time period since the
UMBmark [2] method was published (1996). The objective is
to perform a qualitative analysis of the methods and highlight
the advances made on odometry calibration.

The paper is organised as follows. Section II presents
the methods found, dividing them by the steering geometry
intended for each one. Section III discusses and analyses them.
Section IV presents the conclusions from this analysis.

II. METHOD

This study aims to elicit meaningful research by analysing
existing literature about odometry calibration methods. Fur-
thermore, it intends to cover the most used steering geometries.
In ground mobile robotics, the most frequent ones are differ-
ential drive, tricycle, omnidirectional of three or four wheels,
and Ackerman [1]. An in depth search from January 1996 to
January 2020 was performed on Scopus, Inspec, IEEE Xplore,
and Google Scholar. Only full text articles published in English
were considered for this analysis. To collect relevant studies,
the following keywords combined with the logical operator
AND were used: calibration, mobile robot(s), and odometry.

Table I presents the obtained search results. In terms of
steering geometries, the results are divided into 15 for dif-
ferential drive, 3 for omnidirectional, 3 for Ackerman, and
2 for the tricycle steering geometry. Further analysis and
comparisons between the different methods for the respective
steering geometry are made in Section III.
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TABLE I
SYNTHESIS OF THE SEARCH RESULTS

Steering geometry References
Differential drive Borenstein and Feng [2] (1996), Martinelli et

al. [6] (2003), Caltabiano et al. [7] (2004),
Antonelli et al. [8] (2005), Abbas et al. [3]
(2006), Ivanjko et al. [5] (2007), Bostani et al.
[9] (2008), Mondal et al [10] (2010), Lee et
al. [11] (2011), Jung and Chung [12] (2012),
Maddahi et al. [4] (2012), Censi et al. [13]
(2013), Cantelli et al. [14] (2016), Tomasi and
Todt [15] (2017), Goronzy and Hellbrueck [16]
(2017)

Ackerman Lee et al. [17] (2010), Jung et al. [18] (2016),
Galasso et al. [19] (2019)

Tricycle De Cecco [20] (2002), Kallasi et al. [21] (2017)

Omnidirectional Han et al. [22] (2010), Maddahi et al. [23]
(2013), Lin et al. [24] (2019)

III. DISCUSSION

The methods were divided according to the steering geome-
try they were designed for. First, for each method is presented
the technique and the path used for calibration. Second, it is
described the different error sources considered by the authors.
Finally, the simulations and experiments made are discussed.

A. Differential drive

1) Calibration technique and test path: Borenstein and
Feng [2] was the pioneer method for odometry calibration.
However, Lee et al. [11] demonstrated that the path size
influences the calibrated odometry accuracy. So, [11] and
[12] propose a 2x2m square path. The square size is based
on experimental results, and it is not proven that effectively
improves the odometry for all robots when compared to the
4m side squared path. Although Tomasi and Todt [15] is based
on [12], it does not make any straight line motion, only a
rotational one for calibration. [15] needs much less space than
[12]. Indeed, [15] uses only the space occupied by the robot
base while [12] needs a 2x2m area.

Bostani et al. [9] do not specify the path length. The distance
between the three points described in Table II (initial, point
of rotation, and final robot position) allows the computation
of two angles (one for CW, clockwise, and another for CCW,
counterclockwise) that calibrate the kinematic parameters. A
method with only a straight line was proposed by Maddahi
et al. [4]. Comparing it to [9], [4] is simpler in terms of the
test path. However, the effort is higher because it needs 10
experiments to reduce the influence of nonsystematic errors.
As an alternative to square paths, Abbas et al. [3] proposed the
bi-directional circular path test (BCPT). One advantage is that
the robot does not make “on-the-spot” rotations (reduces the
probability of slippering). Also, [3] needs less effort compared
to the [2], [11] and [12] (these need 5 trials for each direction).

The methods based on optimisation need more information
than just the end-points. Antonelli et al. [8] formulated the
odometry calibration as a linear problem defining the robot’s
velocities (linear and angular) and wheels angular velocities

TABLE II
TEST PATHS AND TECHNIQUES USED BY THE METHODS FOR

DIFFERENTIAL DRIVE

Ref. Method information Path #Runs
[2]

(1996)
Closed-form equations.
Needs initial and final
position

4x4m bi-
directional
square

5 (CW) +
5 (CCW)

[6]
(2003)

Augmented Kalman filter
(AKF). Needs a known
map (landmarks), wheels
velocities along path

Single arbitrary
path

1

[7]
(2004)

Extended Kalman filter
(EKF). Needs DPGS data,
wheels velocities along path

Single arbitrary
path

1

[8]
(2005)

Optimisation (least squares).
Needs initial and final posi-
tion and orientation, wheels
velocities along path

Open paths
(guidelines
defined in [8])

Number
of suitable
paths

[3]
(2006)

Closed-form equations.
Needs the circumference
diameter of CW and CCW
directions

5m diameter bi-
directional cir-
cumferences

1 (CW) +
1 (CCW)

[5]
(2007)

Optimisation (Gauss-Newton
or Nelder-Med). Needs initial
and final position, initial and
final orientation, wheels ve-
locities along path

5m straight line
+ 180º “on-the-
spot” rotation

5 (rot. CW)
+
5 (rot. CCW)

[9]
(2008)

Closed-form equations.
Needs initial and final
position, and the position at
point of rotation

Straight line +
180º “on-the-
spot” rot

1 (rot. CW)
+
1 (rot. CCW)

[10]
(2010)

Terminal Iterative Learning
Control (TILC). Needs initial
and final position, initial and
final orientation, wheels ve-
locities along path

Single arbitrary
path

1

[11]
(2011)

Closed-form equations.
Needs initial and final
position

2x2m bi-
directional
square

5 (CW) +
5 (CCW)

[12]
(2012)

Closed-form equations.
Needs initial and final
orientation

2x2m bi-
directional
square

5 (CW) +
5 (CCW)

[4]
(2012)

Closed-form equations.
Needs initial and final
position

Straight
line (length
undefined)

10

[13]
(2013)

Optimisation (least squares)
with closed-form equations.
Needs relative motion mea-
sures, wheels velocities

Segments with
constant wheels
velocities

Several
segments
needed

[14]
(2016)

Extended Kalman filter
(EKF). Needs DGPS,
attitude and heading data,
and wheels velocities

Single arbitrary
path

1

[15]
(2017)

Closed-form equations.
Needs initial orientation
(360º rot.), and final position
relative to y-axis (180º rot.)

360º + 180º
“on-the-spot”
rotation

5 (rot. CW)
+
5 (rot. CCW)

[16]
(2017)

Weighted nonlinear least
squares. Needs positions and
wheels velocities along path

Path defined by
a heuristic if is
suitable or not

1

by a matrix 2x2. Due to the use of least squares, it must
be performed several calibrations runs with different trajec-
tories to compute an unbiased estimator for the algorithm.
In contrast, Ivanjko et al. [5] needs less effort compared
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to [8] (5 calibration sets for [5], while [8] can be greater
if the trajectories aren’t suitable). [5] optimises corrective
factors to the kinematic parameters. Mondal et al. [10] also
requires more information than just the end-points by using
a terminal iterative learning control (TILC) algorithm. The
advantages over [8] and [5] are ideally only one run to perform
a calibration, and the test path is arbitrary (less effort compared
to [8] and [5]). However, the odometry accuracy depends
on the trajectory chosen. Censi et al. [13] simultaneously
calibrates the odometry and the extrinsic sensor parameters.
The method differs from [8], [5] and [10] by using the robot
relative motion (scan matching of laser scanner measurements)
over the entire trajectory. Even though [13] does not impose
a particular trajectory, its calibration accuracy is dependent
on the trajectory chosen. Lastly, Goronzy and Hellbrueck [16]
differs from [8], [5], [10] and [13] by using the robot position
over the entire trajectory. Although the method only takes 1
run, the absolute localisation system needed for calibration
results in a more complex procedure.

Lastly, the methods based on a Kalman filter have the advan-
tage of being able to be executed when the robot is performing
tasks. Martinelli et al. [6] developed an augmented Kalman
filter (AKF) which estimates the robot pose and the odometry
adjustment parameters to correct the wheels diameters and the
wheelbase over time. However, [6] needs a known map (e.g.,
landmarks) to fuse the laser with odometry data and update the
filter. Caltabiano et al. [7] developed an extended Kalman filter
(EKF) estimating the odometry parameters directly. The main
difference relative to [6] is the DGPS data required to update
the filter, instead of a known map. Although Cantelli et al. [14]
is similar to [7], the data fusion considers also measurements
from an inertial and magnetometer unit. This unit provides
attitude and heading measurements to update the filter. Also,
the augmented state takes into account the magnetometer offset
over time. Comparing [6], [7] and [14] in terms of hardware
needed, [7] requires less hardware. Table II summarises the
description of the techniques, the test paths and the number
of runs for each method.

2) Error sources considered: Methods [2], [3], [9], [11],
[12], [15] considered the unequal wheel diameters and wheel-
base uncertainty. Method [2] did not considered the scaling
error (ratio of the actual average and the nominal wheel
diameter), and considered the wheel radius and wheelbase
errors as independent from each other. [3] differs from [2] by
reducing the influence of nonsystematic errors in calibration
(because of the test path). [11] proven that the wheelbase
uncertainty and unequal wheel radius have a coupled effect.
[11] considered it except on straight motion, but made trigono-
metric approximations (sinα = α, cosα = 1) to compute
the calibration equations. Given that [12] used the final robot
orientation, trigonometric approximations used by [2] and [11]
were no longer needed. [15] is based on [12] reducing the same
error sources. In contrast, [9] considers the unequal wheel
diameters, wheelbase uncertainty, and the scaling errors.

The five methods ( [5], [8], [10], [13], [16]) that use
optimisation and the three methods ( [6], [7], [14]) based

on Kalman filters are classified as “Not specific to any error
source”. Indeed, these methods do not consider the individual
contribution of each specific error source. Lastly, [4] has the
same classification given that it defines corrective factors that
englobe the contribution of errors in general.

3) Simulations/experiments performed: Methods [3] and
[9] did not experiment with robots. Although [11] makes
comparisons with [3] and [2], no direct comparison was
possible to make between these two. [12] compared [2] and
[9] in the same experiment showing that [9] improves the
odometry accuracy over [2]. Also, [12] shows that its method
is more accurate in calibrating the robot than [11]. Lastly, [15]
do not specify the robot used. Although [15] is based on [12],
only compares it with [2] showing better odometry accuracy.

Work [8] compares different performances by analysing the
final robot pose errors statistically (mean and max errors, and
standard deviation estimation). Using a Khepera II robot, the
performance of [8] and [2] were similar. For the Magellan Pro
robot, the results were worse than with the odometry provided
by the manufacturer.

As for methods based on the Kalman filter, [6] performed
two experiments and added tape to the wheels in the second
one. Although it was noted in the second experiment an
expected increase of the wheels diameters, there are not
presented any evaluations relative to the estimations error
of the odometry parameters. Method [7] did not make any
comparisons with [6]. However, [7] simulated DGPS failure
comparing itself to the EKF classic (system state does not take
into account odometry parameters, only the robot localisation)
initialised with wrong odometry parameters, and to [2]. The
calculated trajectories of each method were computed, and
[7] obtained better results over the other two methods, in
terms of the final position error. Work [14] did not make any
comparisons with other methods proposed in the literature. The
method compared its performance with gaussian noise added
to the DGPS to the true position of the robot (given by the
DGPS system). When the robot went through a rectangular,
circle and an arbitrary path, the algorithm did reconstruct
the robot’s path accurately, in comparison with the DGPS
measures. The final estimations of the odometry parameters
were similar to their manual measurements.

For the other methods, [5] did not make any comparison
with other methods. It improved odometry accuracy over
the uncalibrated robot. [10] only compared its method with
[2]. The results demonstrate an improvement in odometry
accuracy over [2]. Similarly, [4] only compares its odometry
accuracy to [2]. Even tough [16] did not make any com-
parisons to other methods in terms of accuracy, it evaluated
the algorithm susceptibility to measurement noise (from the
absolute localisation system). For the two cases, QRPos and
UWM localisation systems, lead to similar results for the
kinematic parameters. Lastly, [13] compared its accuracy with
manual measurements and [2] estimations. It obtained similar
results for the odometry while also calibrating the extrinsic
sensors parameters. Table III summarises the simulations and
experiments performed by each method.
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TABLE III
SIMULATIONS/EXPERIMENTS PERFORMED BY THE METHODS FOR

DIFFERENTIAL DRIVE

Ref. Simulations and experiments made
[2]

(1996)
No simulations performed. Experiment with a LabMate robot
moving slowly (0.2m/s to avoid slippering). Comparison with
raw odometry using the measure of odometric accuracy for
systematic errors as reference

[6]
(2003)

No simulations performed. Experiments with a Donald Duck
robot. Comparison with tape on both robot wheels

[7]
(2004)

Simulations with DGPS failure. Experiments with a Robovolc
robot. Comparison with EKF classic and [2]

[8]
(2005)

No simulations performed. Experiment with a Khepera II and
Magellan PRO robots. The first compared with raw odometry
and [2]. The other with the odometry of the manufacturer

[3]
(2006)

Simulations with kinematic parameters different from the real
ones. Added gaussian noise to wheelbase and measurement
values. No experiments with robots were performed

[5]
(2007)

No simulations performed. Experiment with a Pioneer 2DX
robot. Comparison between 2 or 3 corrective coefficients, and
raw odometry using the final pose normalised error

[9]
(2008)

Simulations with wheelbase and wheels radius different from
real ones. Comparison with [2]. No experiments with robots
were performed

[10]
(2010)

Simulation with MATLAB. Comparison with the actual robot
path. Experiment with a Pionner-DX3 robot. Comparison with
[2] calibrated robot path and raw odometry

[11]
(2011)

Simulations without non-systematic errors. Different size tracks
also simulated. Experiment with a TETRA DS(II) robot. Ex-
periments with different size tracks. Comparison with raw
odometry, [2], [3] and [9]

[12]
(2012)

Simulations without non-systematic errors. Different size tracks
also simulated. Comparison with [2] and [11]. Experiment with
a TETRA DS(II) robot. Comparison with raw odometry, [2],
[9] and [11]

[4]
(2012)

No simulations performed. Experiments with Six prototyped
robots. Comparison with raw odometry and [2]. Validated on
unseenpath bi-directional square

[13]
(2013)

Experiments with a Kephera III robot. Comparison with manual
measurements and [2]

[14]
(2016)

Experiments with a tracked mobile platform. Addition of gaus-
sian noise to DGPS measurements and testing of DGPS failure.
Comparison with robot real position

[15]
(2017)

No simulations performed. Experiment with a unknown robot.
Comparison with raw odometry and [2] using the measure of
odometric accuracy as reference

[16]
(20017)

Simulations with a straight line, square path, and a com-
plex/random path. Measurement noise also simulated. Compar-
ison with raw odometry. Experiment with a Roomba 520 robot.
QRPos and UWB position systems tested and their measurement
noise influence analysed. Comparison with raw odometry

B. Ackerman and Tricycle

1) Calibration technique and test path: De Cecco [20]
proposed a self-calibration algorithm for tricycle Automated
Guided Vehicles (AGVs). The algorithm only needs one run
and does not require an initial vector for the kinematic
parameters. Also, for the tricycle steering geometry, Kallasi et
al. [21] proposed a method based on least squares technique
to calibrate the odometry. Several runs are needed to satisfy
the condition of well-conditioned data acquired by measuring.
In comparison to [20], the effort needed is higher because it

TABLE IV
TEST PATHS AND TECHNIQUES USED BY THE METHODS FOR

TRICYCLE/ACKERMAN

Ref. Method information Path #Runs
[20]

(2002)
Closed-form equations. Self-
calibration. No initial guess
needed. Needs intermediate
and final positions and orien-
tations

Initial
curvilinear
+ straight
line + turn
left + turn
right (lengths
undefined)

1

[17]
(2010)

Closed-form equations.
Needs initial and final
position

Bi-directional
path: 2 straight
lines + 2
semicircles
(∼3x1.75m
space)

5 (rot. CW)
+
5 (rot. CCW)

[18]
(2016)

Closed-form equations.
Needs initial and final
orientation

Bi-directional
path: 2 straight
lines + 2
semicircles
(∼3x1.75m
space)

5 (rot. CW)
+
5 (rot. CCW)

[21]
(2017)

Optimisation (Least Squares)
with Closed-form equations.
Needs steering angle and
thick count, and relative mo-
tion for each path segment

Circular
segments
with increasing
steering angle
(CW + CCW)

Several

[19]
(2019)

Optimisation (Least Squares)
with Closed-form equations.
Needs steering angle, thick
count, and relative rotation
for each path segment

Circular
segments
with increasing
steering angle
(CW + CCW)

Several
segments
needed

requires several runs, and it is not a self-calibrated method.
Lee et al. [17] proposed a method that by measuring the

position errors and performing the path 5 times for CW and
CCW directions, the kinematic parameters are adjusted using
the position error centre of gravity. Instead, Jung et al. [18]
uses the final orientation error (similar to [12] for the differen-
tial drive geometry). Lastly, Galasso et al. [19] method needs
not only the steering angle and thick count along a segment
path but also the relative rotation given by an exteroceptive
sensor (laser range finder). A least square algorithm is applied
to compute the calibrated kinematic parameters. Table IV
summarises the description of the techniques, the test paths
and the number of runs for each method.

2) Error sources considered: In terms of the tricycle con-
figuration, [20] considers the steering angle offset, wheel
radius and distance between wheel rotation axis as possible
error sources. On the contrary, [21] does not consider the
distance between wheel rotation axis as an error source. As
for Ackerman robots, [17] and [18] considers the same error
sources: wheel radius and distance between rear wheels. In
comparison to these methods, [19] considers the wheel radius
and the steering angle offset as error sources.

3) Simulations/experiments performed: In contrast to ex-
periments with differential drive geometries, the articles re-
ferred did not make any comparison with other existing
methods, except for [18]. However, [21] and [19] made a
critical comparison. That is, AGVs have manual procedures
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TABLE V
SIMULATIONS/EXPERIMENTS PERFORMED BY THE METHODS FOR

TRICYCLE/ACKERMAN

Ref. Simulations and experiments made
[20]

(2002)
No simulations performed. Experiment with a three-wheeled
industrial robot. Compared with an uncalibrated odometric, un-
calibrated inertial, calibrated inertial, and a calibrated odometric
robot

[17]
(2010)

Simulations with tread and wheel diameters error, and evaluated
the region of convergence. Experiment with a prototype CLMR.
Artificial errors induced using winding tape to change wheel
radius. Compare with raw odometry. Experiment with EKF for
odometry fusion

[18]
(2016)

No simulations performed. Experiment with a prototype CLMR.
Compared with raw odometry and [17]

[21]
(2017)

No simulations performed. Experiments with CB16 and CB25
industrial AGVs. Comparison between STC and ATC proce-
dures. Comparison between ATC and manual calibration (expert
operator)

[19]
(2019)

No simulations performed. Experiments with AGV17 (Acker-
man) and AGV12 (Dual Drive) industrial robots. Experiments
on calibration stability and position precision. Compared with
manual calibration (expert operator) and 2 different calibration
trials

that usually take much time (1 hour, as referred by [21]
and [19]). Thus, these two methods have the advantage of
only taking approximately 15 minutes, reducing the effort
need to perform the AGV calibration (regardless if it is an
Ackerman or a tricycle robot). [20] also focused on the
industrial environment by doing experiments with industrial
robots. Furthermore, since this is a self-calibration method, it
takes much less effort than methods [21] and [19].

Lastly, [17] and [18] focuses on the automobile industry.
Indeed, the surge of automatic parking systems led to the
necessity of improving odometry accuracy of the Ackerman
geometry. As a comparison, [18] obtained better odometry
accuracy than [17] ( [18] does not make any trigonometric
approximations). Table V summarises the simulations and
experiments performed by each method.

C. Omnidirectional

1) Calibration technique and test path: First, Han et al.
[22] proposed a kinematic equation adjustment for a four-
wheel omnidirectional robot. The algorithm adjusts the three
kinematic parameters (associated with slippage, bearing and/or
axle friction, and point contact friction respectively) to reduce
the error associated with the robot’s velocity. Next, based on
[4], Maddahi et al. [23] also proposed a straight line path but
to calibrate an omnidirectional. As in [4], the authors alert that
the number of runs depends on the positioning accuracy in the
calibration process. Lastly, Lin et al. [24] proposed a method
similar to [8] but intended for omnidirectional geometry. Table
VI summarises the description of the techniques, the test paths
and the number of runs for each method.

2) Error sources considered: Only [22] specifies which
error sources intends to reduce it, namely errors from slippage,
bearing and/or axle friction, and point contact friction. Still,
[23] and [24] reduce systematic errors independently of its

TABLE VI
TEST PATHS AND TECHNIQUES USED BY THE METHODS FOR

OMNIDIRECTIONAL

Ref. Method information Path #Runs
[22]

(2010)
Optimisation (Least Squares).
Needs wheel velocities and
robot relative position along
path

Movement
along x-axis
+ y-axis + Θ
direction

10 for
each
movement

[23]
(2013)

Closed-form equations. Need
initial and final position

Straight
line (length
undefined)

10

[24]
(2019)

Optimisation (Least Squares).
Needs initial and final robot
pose

Open paths
(guide-lines
defined in [8])

Number
of trajec-
tories

TABLE VII
SIMULATIONS/EXPERIMENTS PERFORMED BY THE METHODS FOR

OMNIDIRECTIONAL

Ref. Simulations and experiments made
[22]

(2010)
No simulations performed. Experiment with PODIMOR v1.0:
custom-made four-wheeled omnidirectional robot. Uses RMS
errors as reference. Comparison with the desired path

[23]
(2013)

No simulations performed. Experiment with a prototype three-
wheeled omnidirectional robot. Comparison with raw odometry.
Validated on unseen paths (bi-directional square, triangle, and
a combination between straight and curved)

[24]
(2019)

No simulations performed. Experiment with a prototype three-
wheeled omnidirectional robot. Validated on L-shaped and
square paths. Comparison with raw odometry

error source. Lastly, none of these three methods compared
between each other.

3) Simulations/experiments performed: In Table VII are
presented the simulations and experiments made by each
method for omnidirectional robots. Analysing the results of
each method, all improved the odometry accuracy over an
uncalibrated robot.

IV. CONCLUSIONS

This article analysed the evolution of odometry calibration
methods in ground mobile robots. If odometry is not accurate,
the cost of localisation systems can increase due to the need
for more measures from the absolute positioning systems.

Therefore, we surveyed 23 odometry calibration methods
developed over time. Analysing the results, a disparity between
differential drive versus tricycle/Ackerman was high: 15 and
5 results, respectively. Also, most methods for the differential
drive, given its simplicity, use closed-form equations. How-
ever, for Ackerman, tricycle, and omnidirectional geometries,
the latest methods developed used some sort of optimisation
technique. This trend could be related to the fact that these
geometries are more complex than the differential drive, being
more difficult to compute closed-form equations.

In terms of the differential drive geometry, only [11] and
[12] performed comparisons with other methods than [2].
Indeed, [12] improves odometry accuracy over [2], [9], and
[11]. Overall, [12] seems to be the most accurate, taking into
account the comparisons made with other methods. In terms of
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the procedure simplicity, [9] is simple in terms of the path and
runs needed. Even though [4] requires 10 runs, the test path
used is a straight line needing less space than other methods.
However, the methods based on Kalman filter are useful to
calibrate the robot without the need of taking the robot out
of normal operation. The work presented in [7] is the only
one based on a Kalman filter that compared its accuracy with
other methods. As for tricycle/Ackerman methods, although
[18] improved over [17], [21] and [19] compared themselves
with a calibration method performed by an expert. So, [18],
[21] and [19] seem to be the most odometric accurate. In terms
of simplicity, [20] is the simplest method because it is self-
calibrated. Lastly, [23] is the simplest of the three methods for
omnidirectional robots, due to the only straight line path. Also,
it is because of a similar number of runs relative to the other
two methods. In terms of odometry accuracy, no experiments
were made to compare the methods between them.

This analysis led us to conclude that odometry is still evolv-
ing (by improving its accuracy or simplifying the calibration
procedure). Thus, we hope the analysis helps the scientific
community evaluates existing methods and propose new ones.
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