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José Boaventura Ribeiro da Cunha,

Professor Associado com Agregação do

Departamento de Engenharias

do Escola de Ciências e Tecnologia

da Universidade de Trás-os-Montes e Alto Douro

Filipe Baptista Neves dos Santos,

Investigador Sénior do
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Resumo

A Agenda 2030 para o Desenvolvimento Sustentável da ONU visa promover uma

agricultura sustentável. A procura de recursos naturais e de alimentos é expectável

que continue a crescer devido ao cont́ınuo crescimento da população mundial. Por

isso, existe a necessidade de tornar a agricultura mais eficiente e sustentável. A

robótica pode desempenhar um papel fundamental na agricultura dado que os robôs

podem adquirir informação em tempo real, desempenhar operações autonomamente,

desencadear planos de ação em caso de pragas, entre outros. A agricultura impõe

diversos desafios à robótica. Nomeadamente, a elevada extensão dos ambientes

agŕıcolas, as irregularidades do terreno, a elevada simetria em culturas caracterizadas

por corredores naturais, e as inclinações ı́ngremes em culturas de montanha. Em

termos de robótica para a agricultura, a perceção semântica e o mapeamento

são conceitos essenciais. Através da semântica, os robôs podem aprender a

atribuir significado aos dados, aprender a coexistir com humanos, e providenciar

informação útil para o posterior uso humano. Para implementar sistemas de

navegação autónoma nestas condições, os robôs devem ser capazes de operar

totalmente autonomamente durante largos peŕıodos de tempo. Por isso, algoritmos

de Localização e Mapeamento Simultâneos devem ser capazes de ser executados em

condições de operação de larga escala e longo termo. Um dos desafios é manter

recursos de memória reduzidos durante o mapeamento de ambientes extensos.

Este trabalho propõe uma nova solução chamada VineSLAM que permite que os

robôs se localizarem em ambientes desafiantes enquanto criam diferentes tipos de

mapas da cultura - métricos, semânticos, e topológicos. A primeira camada de

xi



mapeamento (métrica) utiliza sensores Light Detection And Ranging para mapear

pontos e poĺıgonos correspondentes ao plano do chão e aos planos das canópias. A

segunda camada de mapeamento (semântica) utiliza deteção de objetos baseada em

Deep Learning para detetar elementos naturais em diferentes fases de crescimento, e

mapeia-os. Nesta tese, testou-se este método de mapeamento através da deteção de

troncos de videira e cachos de uvas. Finalmente, a terceira camada de mapeamento

(topológica) possibilita aos robôs trabalhar continuamente na cultura sem restrições

temporais ou de escala, através de um mapa topológico baseado num grafo. Para

além desta arquitetura de mapeamento, o VineSLAM providencia um algoritmo de

localização baseado num Filtro de Part́ıculas que é capaz de utilizar diferentes tipos

de caracteŕısticas do ambiente e mapas para calcular os seis graus de liberdade da

pose do robô. A utilização de diferentes sensores em conjunto para localização e

mapeamento é posśıvel através de um algoritmo de calibração extŕınseca LiDAR-

para-câmera proposto nesta tese. Como uma ferramenta, o VineSLAM abre a porta

para robôs operarem autonomamente em condições agŕıcolas desafiantes através de

um algoritmo de localização robusto combinado com um algoritmo de mapeamento

em multicamada que providencia uma representação rica e variada da cultura.

Em comparação com algoritmos do estado de arte, o VineSLAM apresenta uma

performance genérica melhor, dado que consegue localizar o robô com uma precisão

semelhante ou superior, e consegue operar durante periodos de tempo ilimitados.

Os resultados demonstram que, em termos de perceção semântica, obteve-se uma

precisão média na deteção de troncos de 84.16% e de 44.93% na deteção de cachos de

uvas. O algoritmo de localização e mapeamento foi testado em diversos ambientes,

tendo-se obtido, por exemplo, um erro absolute de pose de 0.9 metros numa

sequência realizada numa vinha de montanha com 337.1 metros com uma variação

de altitude de 7 metros. Foi demonstrado que esta abordagem permite a navegação

autónoma sem restrições de tempo ou de escala, tendo sido o algoritmo testado em

robôs agŕıcolas em diversos ambientes reais, permitindo a sua navegação de forma

autónoma.

Palavras Chave: SLAM, Semântica, Topologia, Robôs Agŕıcolas.
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Abstract

The ONU’s 2030 Agenda for Sustainable Development aims to promote sustainable

agriculture. The demand for natural resources such as food is expected to continue

to grow due to the continuous increase of the world’s population. Thus, there is

the need to make agriculture more efficient and sustainable. Robotics can play

a key role in agriculture since robots can collect real-time information, perform

autonomous operations, trigger action plans in case of diseases, among others.

Agriculture imposes several challenges to agriculture. Namely, the high extension

of the crops, the terrain irregularities, the high symmetry in crops characterized by

natural corridors, and harsh inclinations in mountain crops. In this environments,

semantic perception and mapping are essential concepts. With semantics, robots can

learn how to assign meaning to data, learn to coexist with humans and provide useful

information for further human use. To implement autonomous navigation systems

in these conditions, robots should be able to operate fully autonomously during large

periods.Thus, Simultaneous Localization and Mapping algorithms should be able to

work in large-scale and long-term operating conditions. One of the main challenges

is maintaining low memory resources while mapping extensive environments. This

work proposes a novel solution called VineSLAM that allows robots to localize

themselves in challenging environments while creating different types of maps of the

crop - metric, semantic, and topological. The first mapping layer (metric) uses Light

Detection And Ranging sensors to map feature points and polygon-based features

such as the ground plane or the canopy walls. The second mapping layer (semantic)

uses Deep Learning-based object detection models to detect natural elements in

xiii



different growth stages in images, and maps them. In this thesis, this semantic

perception system was tested through the detection of vine trunks and grapes

bunches. Finally, the third mapping layer (topological) enables robots to work

continuously in the crop without time or scale restrictions through a graph-based

topological map. On top of the entire mapping architecture, VineSLAM provides

a localization algorithm based on a modular Particle Filter that is able to use the

different sources of features and maps to compute the six degrees of freedom of the

robot’s pose. The usage of different sensors together for localization and mapping

is possible through a LiDAR-to-camera extrinsic calibration algorithm proposed

in this thesis. As a framework, VineSLAM opens the door for robots to operate

autonomously in challenging agricultural conditions through a robust localization

algorithm combined with a multi-layer mapping approach that provides a rich

and varied representation of the crop. Compared with state-of-the-art algorithms,

VineSLAM presents an overall better performance since it can localize the robot

with similar or higher precision, and can operate for unlimited time frames. Results

show that in terms of semantic perception, was obtained an average precision of

84.16% for trunk detection and 44.93% for grape bunch detection. The localization

and mapping algorithm was tested in multiple environments, demonstrating, for

example, an absolute pose error of 0.9 meters in a sequence placed in a mountain

vineyard with 337.1 meters long and an altitude differential of 7 meters. It was

shown that this formulation allows the autonomous navigation without time or

scale restrictions. The algorithm was tested in agricultural robots in different real

environments, allowing them to move autonomously.

Keywords: SLAM, Semantics, Topological, Agricultural Robots
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Graphical Abstract

Figure 1 – Graphical abstract of the systems proposed in this thesis and their relationship.
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1 Introduction

1.1 Context and motivation

The strategic research agenda for robotics in Europe 2014-2020 (Robotics, 2014)

emphasizes the importance of developing robotic solutions for agriculture. The

automation of agricultural processes is expected to have a positive impact on

the environment by reducing waste and increasing food security, maximizing the

utilization of resources (Duckett et al., 2018; Billingsley et al., 2008). Additionally,

robotics will highly decrease the intensive human labor that is still characteristic of

the agricultural sector.

Agriculture presents several challenges to the implementation of robotics. One

particular challenging scenario are the Oporto vineyards located in the Douro

Demarched Region, the oldest controlled winemaking region in the world, a United

Nations Educational, Scientific and Cultural Organization (UNESCO) heritage

place (Andresen et al., 2004). These vineyards are built in steep slope hills, which

brings several challenges to the development of robotic solutions in this context. The

hill’s characteristics cause a signal blockage that decreases the accuracy of signals

emitted by the Global Navigation Satellite System (GNSS), making unreliable the

3
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(a) AgRob robot (b) Weta robot

(c) Modular-E robot

Figure 1.1 – Autonomous robotic platforms used in the scope of this work.

use of, for example, the Global Positioning System (GPS). Also, the terrain highly

characterized by irregularities leads to a decrease in accuracy of sensors like wheel

odometry and Inertial Measurement Units (IMU)s. These vineyards are an example

of the harsh conditions that are usually present in agriculture, which open intense,

interesting and challenging research topics for robotics. This work formulates a

solution that is general enough to work in different types of environments, and focus

on testing and deploying them in agricultural robots to implement autonomous

navigation in agriculture.

Given the above, the development of autonomous robots can revolutionize the

agricultural sector, but faces many challenges. With them, precision agriculture

can be implemented with the automation of several tasks such as application of

fertilizers, nutrients and water, harvesting, monitoring and planting. The main

motivation of this work is the belief that ground robots can be efficiently automatized

to perform precision agriculture tasks even in harsh conditions. Autonomous robots
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can improve the efficiency of the agricultural sector, improve the quality of human-

labor in this area and perform many operations that are increasingly unwanted by

humans.

1.2 Thesis statement and goals

Three main components are required for implementing autonomous robots:

localization and mapping, path planning, and motion control (Fahimi, 2009). This

work focuses on the localization and mapping components. The statement that

this thesis defends is: it is possible to localize a robot and simultaneously

map the environment in long-term and large-scale considering metric,

semantic, and topological information by the fusion of different types of

sensors.

This work makes use of the vast knowledge acquired during the development of the

SLAM (Durrant-Whyte and Bailey, 2006; Bailey and Durrant-Whyte, 2006) concept

over the years and extends it to the agricultural area. The main goals aimed in this

thesis are:

• G1: An approach for automatic extrinsic calibration method to calibrate

the main sensors used in the proposed localization and mapping algorithms -

cameras and 3D LiDARs.

• G2: An approach for a perception system that can recognize and detect

semantic elements in agricultural environments.

• G3: An approach for a 6-DoF localization approach based on 3D metric

information considering the geometry of the environment.

• G4: An approach for semantic mapping to create maps of agricultural

environments with meaningful information in different growth stages.
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• G5: An approach for a multi-layer mapping algorithm that is suitable for

long-term operations and large-scale environments without time and scale

limitations.

This thesis presents a novel system that pushes forward the implementation of

robotics in agriculture. In particular, the main focus is placed on the exploration of

a robust 3D localization system that is interdependent of a multi-layer mapping

architecture. The 6-DoF of the robot’s pose are estimated due to the harsh

inclinations, terrain irregularities, and differentials of altitude that characterize

agricultural environments. Also, in this work we consider that the 3D mapping

should be decomposed in three layers: metric, semantic and topological. The

mapping should find different ways of representing the environments and dealing

with the typical large dimension of agricultural crops working without time and scale

limitations. The environments’ dimension is a problem that triggers memory issues

on SLAM systems since, if they are not optimized, processors will not have enough

resources to allocate all the necessary memory to consider the entire environment.

The formulated approach proposes an efficient way to deal with this issue, adding a

mapping layer - topological - to manage the memory resources. It is worth noting

that this multi-layer architecture is modular, in the sense that the proposed approach

can be used without the memory management mapping layer and operate only using

the feature-based layers.

1.3 Scientific contributions

The work developed and presented in this thesis was applied in the following

R&D European projects: ROMOVI, SCORPION and NOVATERRA. The close

relation with researchers working on agricultural robotics contributed to the achieved

scientific contributions. During this work the following scientific contributions were

accomplished:

• Creation of a camera-to-LiDAR extrinsic calibration approach that is fully
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general on the amount of sensors to calibrate retrieving a precise homogeneous

transformation between all the sensors considered in the calibration process;

• A Deep Learning- (DL)-based semantic perception system to detect vine

trunks and grape bunches through the creation dataset of vineyard images

with grape bunches in different growth stages and in different stages of the

year. The dataset was made available for the community and includes the

image annotations.

• Creation of a SLAM algorithm for agricultural robots that comprises:

– A Particle Filter- (PF)-based localization and mapping algorithm based

on point feature extraction and semiplane segmentation (polygon-based

ground plane and vegetation walls) from 3D LiDAR data;

– A clustering procedure to refine the PF estimation using stereo camera

systems;

– A topological mapping approach that is responsible for managing the

memory resources and allowing the algorithm to run without time and

scale restrictions;

– A semantic mapping pipeline that is able to map vine trunks and

grape bunches in different growth stages using a camera-LiDAR fusion

technique.

Resultant from the listed contributions, the following 9 journal articles were

published:

• Aguiar, A. S., dos Santos, F. N., Cunha, J. B., Sobreira, H. and Sousa, A. J. (2020)

Localization and mapping for robots in agriculture and forestry: A survey. Robotics,

9. URL: https://www.mdpi.com/2218-6581/9/4/97.

• Aguiar, A., M. Oliveira, E. Pedrosa, and F. Santos, A Camera to LiDAR calibration

approach through the Optimization of Atomic Transformations, Expert Systems

with Applications (2021) p. 114894, ISSN: 0957-4174, DOI: https://doi.org/10.

1016/j.eswa.2021.114894,2021

https://www.mdpi.com/2218-6581/9/4/97
https://doi.org/10.1016/j.eswa.2021.114894, 2021
https://doi.org/10.1016/j.eswa.2021.114894, 2021
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• A. S. Pinto de Aguiar, F. B. Neves dos Santos, L. C. Feliz dos Santos, V. M. de Jesus

Filipe, and A. J. Miranda de Sousa, “Vineyard trunk detection using deep learning –

an experimental device benchmark,” Computers and Electronics in Agriculture,vol.

175, Aug. 2020, doi:10.1016/j.compag.2020.105535.

• Aguiar, A. S., Santos, F. N. D., De Sousa, A. J. M., Oliveira, P. M. and Santos, L.

C. (2020) Visual trunk detection using transfer learning and a deep learning-based

coprocessor. IEEE Access, 8, 77308–77320.

• Aguiar, A. S., Monteiro, N. N., Santos, F. N. d., Solteiro Pires, E. J., Silva, D.,

Sousa, A. J. and Boaventura-Cunha, J. (2021c) Bringing semantics to the vineyard:

An approach on deep learning-based vine trunk detection. Agriculture, 11. URL:

https://www.mdpi.com/2077-0472/11/2/131.

• Aguiar, A. S., Magalhães, S. A., dos Santos, F. N., Castro, L., Pinho, T., Valente, J.,

Martins, R. and Boaventura-Cunha, J. (2021b) Grape bunch detection at different

growth stages using deep learning quantized models. Agronomy, 11. URL: https:

//www.mdpi.com/2073-4395/11/9/1890.

• Aguiar AS, Neves Dos Santos F, Sobreira H, Boaventura-Cunha J, Sousa AJ.

Localization and Mapping on Agriculture Based on Point-Feature Extraction and

Semiplanes Segmentation From 3D LiDAR Data. Front Robot AI. 2022 Jan

28;9:832165. doi: 10.3389/frobt.2022.832165. PMID: 35155589; PMCID:

PMC8831384.

• Aguiar, A. S., dos Santos, F. N., Sobreira, H., Cunha, J. B. and Sousa, A.

J. (2021a) Particle filter refinement based on clustering procedures for high-

dimensional localization and mapping systems. Robotics and Autonomous Systems,

137, 103725. URL: https://www.sciencedirect.com/science/article/pii/

S0921889021000105.

• Aguiar, A.S., dos Santos, F.N., Santos, L.C., Sousa, A.J. & Boaventura-Cunha,

J. (2022) Topological map-based approach for localization and mapping memory

optimization. Journal of Field Robotics, 1– 20. https://doi.org/10.1002/rob.

22140.

Additionally, the following manuscript was submitted and is being peer reviewed at

the moment:

• Semantic Mapping of Grape Bunches and Stems using Sensor Fusion and a

Robust Localization Algorithm [submitted to the Journal of Robotics and

Autonomous Systems at 19-08-2022].

doi: 10.1016/j.compag.2020.105535
https://www.mdpi.com/2077-0472/11/2/131
https://www.mdpi.com/2073-4395/11/9/1890
https://www.mdpi.com/2073-4395/11/9/1890
10.3389/frobt.2022.832165
https://www.sciencedirect.com/science/article/pii/S0921889021000105
https://www.sciencedirect.com/science/article/pii/S0921889021000105
https://doi.org/10.1002/rob.22140
https://doi.org/10.1002/rob.22140
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Finally, this thesis produced:

• An open-source repository1 containing the VineSLAM C++ implementation.

• A publicly available dataset2 for DL object detection model training containing

vineyard images with trunk and grape bunch annotations in different growth

stages. This dataset, called VineSet, was recognized by the ROS Agriculture

community3 as “A Large Vine Trunk Image Collection and Annotation using

the Pascal VOC format”.

• A set of publicly available datasets4 in the ROSBag2 format containing

navigation data (cameras, LiDARs, IMUs, RTK-GNSS, odometry) of

agricultural robots in vineyards and orchards.

1.4 Thesis organization

This document contains six chapters. Chapters 2, 3, 3, 4 and 5 and their

corresponding sections present a small introduction followed by one or multiple

articles. In summary, the document is structured as follows:

Chapter 1: Presents the introduction and is composed of the context and

motivation of the work, the thesis statement and its goal, the scientific contributions

made during the developed work and the thesis organization.

Chapter 2: Explores the state-of-the art presenting a survey on localization and

mapping algorithms for robots in agriculture and forestry. Besides performing an

extensive review of the literature, this section also approaches fundamental concepts

of SLAM.

Chapter 3: Approaches the extrinsic calibration method for cameras and 3D

LiDARs. This method appears as the first implementation chapter since it is a

basis for the simultaneous use of cameras and LiDARs in the remaining chapters.

Thus, the calibration procedure is of extreme importance for the proper fusion of

1https://gitlab.inesctec.pt/agrob/vineslam_stack/vineslam
2https://zenodo.org/record/5362354
3http://wiki.ros.org/agriculture
4https://zenodo.org/communities/scorpion-h2020/

https://gitlab.inesctec.pt/agrob/vineslam_stack/vineslam
https://zenodo.org/record/5362354
http://wiki.ros.org/agriculture
https://zenodo.org/communities/scorpion-h2020/
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both modalities of sensors and, consequently, for the localization and multi-layer

mapping steps.

Chapter 4: Describes the research around the created semantic perception system

for vineyards. This chapter is composed of four different papers that tackle the

use a coprocessor for performing the DL-based object detection; the experimental

benchmark between two devices to perform vine trunk detection; and a DL-based

approach to detect vine trunks and grape bunches at different growth stages. In this

chapter it is possible to observe an evolution on the semantic perception system with

the constant increase of the dataset size, the improvement of the detection precision

and recall, and the consideration of a temporal dimension on the detection using

images of the crop in different stages.

Chapter 5: Presents VineSLAM, the localization and mapping algorithm for

agricultural robots, in four different papers (two of them still in peer reviewing

process). This chapter describes all the contributions made in terms of 6-

DoF localization and multi-layer mapping, providing three papers describing

each mapping layer (metric, semantic and topological), and another describing a

refinement of the PF-based localization algorithm using clustering concepts.

Chapter 6: Provides the main conclusions obtained from this work and research

topics for possible exploration in future work.
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2 Related work

This chapter presents a general overview of the current state-of-the-art of localization

and mapping algorithms applied to robots that operate in agricultural and forestry

environments. In this scope, this chapter is composed of a survey paper entitled

Localization and Mapping for Robots in Agriculture and Forestry: A survey (Aguiar

et al., 2020a).

2.1 Localization and mapping for robots in

agriculture and forestry: A survey

The article presented in this section was published in the special issue Advances in

Agriculture and Forest Robotics1 of the MDPI Robotics journal. The main goal

of this work is to achieve a localization and mapping approach that can estimate

efficiently the robot’s 6-DoF pose while considering multiple types of features and

maps. Thus, this paper presents a brief overview of the localization and mapping

problem and the common approaches to solve it. Then, it explores the mapping

strategies presented in the literature focusing on metric, topological, and semantic

maps. To review the works that approach these issues, the article looks for the

1https://www.mdpi.com/journal/robotics/special_issues/agriculture_forest_

robotics
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following criteria: application, localization approach, mapping approach, accuracy,

scalability, and availability. These topics help to characterize the applicability of

SLAM approaches to agricultural and forestry environments and were taken in

consideration during the development of this thesis.

To achieve a localization and mapping algorithm that uses multiple types of sensors,

and that considers metric, semantic and topological information, a more in-depth

literature review was made during the work on each topic. The remaining articles

presented in this thesis contain their own target literature review.
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Abstract: Research and development of autonomous mobile robotic solutions that can perform
several active agricultural tasks (pruning, harvesting, mowing) have been growing. Robots are now
used for a variety of tasks such as planting, harvesting, environmental monitoring, supply of water
and nutrients, and others. To do so, robots need to be able to perform online localization and,
if desired, mapping. The most used approach for localization in agricultural applications is based
in standalone Global Navigation Satellite System-based systems. However, in many agricultural
and forest environments, satellite signals are unavailable or inaccurate, which leads to the need of
advanced solutions independent from these signals. Approaches like simultaneous localization and
mapping and visual odometry are the most promising solutions to increase localization reliability and
availability. This work leads to the main conclusion that, few methods can achieve simultaneously
the desired goals of scalability, availability, and accuracy, due to the challenges imposed by these
harsh environments. In the near future, novel contributions to this field are expected that will help
one to achieve the desired goals, with the development of more advanced techniques, based on
3D localization, and semantic and topological mapping. In this context, this work proposes an
analysis of the current state-of-the-art of localization and mapping approaches in agriculture and
forest environments. Additionally, an overview about the available datasets to develop and test
these approaches is performed. Finally, a critical analysis of this research field is done, with the
characterization of the literature using a variety of metrics.

Keywords: localization and mapping; autonomous navigation; agriculture; forestry

1. Introduction

There have been several developments in the research and applications of robotic solutions for the
agriculture sector and novel contributions in the near future are expected [1,2]. The need for automatic
machines in this area is increasing since farmers increasingly recognize its impact in agriculture [3].
Robots are now used for a variety of tasks such as planting, harvesting, environmental monitoring,
supply of water and nutrients, and others [4]. In this context, developing solutions that allow robots
to navigate safely in these environments is essential. These advances impose a main requirement:
localizing the robots in these agriculture and forestry environments. The most common solution is to
use Global Navigation Satellite System (GNSS) standalone-based solutions [5,6]. However, in many
agricultural and forestry places, satellite signals suffer from signal blockage and multi-reflection [7,8],
making the use of GNSS unreliable. In this context, it is extremely important to research and develop
intelligent solutions that use different modalities of sensors, as well as different sources of input
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data, to compute the robot localization. Simultaneous localization and mapping (SLAM) [9,10] is the
state-of-the art approach to do so. This technique consists of estimating the state of a robot using input
sensor data, while simultaneously building a map of the surrounding environment [11]. The robot
model usually comprises its pose, and, in some cases, its velocity, calibration parameters, sensor offsets,
among others. The map is a multi-dimensional representation of the agents observed by the on-board
robot sensors, that are used as references in the localization procedure. The map creation is usually
important to provide information about the environment. In agriculture and forestry, they can be
used by human operators to report information about the cultures. Furthermore, maps can be saved
and loaded, being reused and updated by the robotic platforms each time they operate in the terrain.
When mapping the environment is not desired, alternatives to SLAM are also approached. One of the
most common is visual odometry (VO) [12]. As stated by Scaramuzza et al. [13], VO is the process of
estimating the motion of the on-board camera (s) using only image data as input.

Given all of the above, one can conclude that there is a huge dependency on GNSS-free localization
systems from autonomous mobile robots working in agriculture and forestry. So, this leads to the main
question: is robotics localization a solved topic? The answer to this question depends on many aspects:
the context where the robot operates, the quality of the on-board sensors, and, the desire performance of
the localization system. For example, 2D LiDAR-based SLAM in indoor environments is a mature research
field, with many high-quality state-of-art methods [14,15] reporting high-performance results. On the other
hand, SLAM in harsh outdoor environments (as agriculture and forestry) is still a growing research topic.
These are highly dynamic environments that change drastically over the year, which makes long term
mapping a difficult task. To overcome this, the concept of 4D mapping, i.e., spatio-temporal reconstruction
of the environment [16], is becoming popular. Additionally, the characteristics of illumination and terrain
irregularities lead to a more unstable motion and to a more difficult perception of the environment.
Furthermore, both SLAM and VO suffer from the well known drift problem, and usually in these
environments, it is intended that robots perform long term operations. So, as these localization algorithms
tend to accumulate error over time, for long term operations the drift can be quite significant. To overcome
this, many SLAM algorithms are endowed with the capability of recognizing previously visited places.
With this, they can detect loop closures [17,18] and correct the drift issue.

Even though so many solutions have been proposed to solve localization and mapping main
issues in agriculture and forestry, it is clear that there are still several working lines to be improved.
The difficulty of this problem leads to the creation of new solutions and the development of new
concepts to localize outdoor robots and make them autonomous. This work explores the research field
of localization and mapping in agriculture and forestry, highlighting the solutions that are present
in the literature to solve this problem. In a first stage, in Section 2, the general approaches to solve
SLAM and VO are detailed, and the main issues inherent to them are described. In this, the solutions
to solve the theoretical SLAM problem are detailed, the mapping approaches and data association
problems are discriminated, and VO is also presented. Then, Section 3 presents the methodology used
in this work to collect the set of works presented in the article, related to localization and mapping
in agriculture and forestry. Following this description, Sections 4 and 5 present the respective works.
Next are described the existing datasets that contain sensor data acquired in agriculture or forestry
that can be used in localization and mapping. Finally, the main conclusions of this work are outlined
in Section 7.

2. The Localization and Mapping Problem

Localization and mapping can be approached in several different ways. The most
common technique is to perform both tasks simultaneously, as performed in SLAM.
Additionally, localization can be performed singly. On one hand, maps previously built can be
loaded and used to localize the robot inside it. On the other, localization can be performed without
registering the observed keypoints, as in VO. This section presents a description of all these approaches.
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2.1. The SLAM Method

SLAM was originally proposed by Smith and Cheeseman [19] in 1986. By this time, robotics started
to be addressed in innovative ways, considering probabilistic viewpoints. This new way of thinking
robotics lead to the consideration on how to manipulate geometric uncertainty [20], which was crucial
to the development of mapping techniques. An example is [21] that came up with the concept of
a stochastic map, that is a map as we know it by now, considering relationships between objects
and their uncertainty, given the available sensor data information. All these concepts provided the
sufficient knowledge to the creation of the well known SLAM problem: estimating the map objects
location along with the robot pose in a single joint state [22]. So, from the very beginning, SLAM was
formulated as a probabilistic problem, as will be described further.

2.1.1. Solving the SLAM Problem

The SLAM problem, as referenced in [23], can be defined as: an autonomous mobile robot starts
its travel in a known starting point, and explores an unknown environment. The SLAM offers a
solution to estimate the unknown robot motion while building a map of the unknown environment.
This solution had been formulated statistically, in many different ways. Let us denote each time instant
as k, the robot pose at each instant as xk, and the full robot trajectory until the time instant k as

Xk =
{

x0, x1, ..., xk

}
. (1)

The robot pose encodes the robot location and orientation, and can describe both 2D and 3D
spaces. Then, SLAM uses two sources of input information. The first are the controls uk that usually
represent odometry, i.e., relative information from wheel encoders between two consecutive robot
poses. Additionally, other sources of controls can be used such as inertial sensors. The historic of
control inputs is here represented as

Uk =
{

u0, u1, ..., uk

}
. (2)

The other source of input information are observations taken from on-board sensors zk. With these
measurements, a map m is built using registration methods. Similar to robot states and controls,
observations can be stored and their historic can be defined as

Zk =
{

z0, z1, ..., zk

}
. (3)

Figure 1 shows a graphical representation of SLAM, as well as all the previously mentioned
variables involved in it.

In this, the relationships between the entities are well defined. It is possible to observe the sequence
of robot poses, as well as the interconnection of the localization and mapping procedures.

Given all of the above, probabilistic SLAM can be addressed in two different ways. The first
estimates the posterior distribution

p(Xk, m|Zk, Uk, x0), (4)

i.e., the full robot trajectory and the environment map, given the entire set of observations, all the
control inputs, and the first robot pose. The second approach does not consider the entire robot path,
but only its current pose, as follows

p(xk, m|Zk, Uk, x0). (5)

This approach performs an incremental estimation and discards the historic of poses. To solve
Equations (4) and (5), two main groups of SLAM approaches have been created and are still under
development: filter-based SLAM and optimization-based SLAM.
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Figure 1. Graphical representation of simultaneous localization and mapping (SLAM). The robot
moves from xk−1 to xk+3 through a sequence of controls. At each time instant, features are observed by
the on-board robot sensors, and are registered on the global map m.

Filter-based SLAM is derived from the Bayesian filtering and is composed of two main steps:
prediction step and update step. In the first, the robot pose is updated through a motion model that
considers the control inputs. This is defined as

p(xk|xk−1, uk). (6)

With this information, the joint posterior can be updated integrating the motion model over the
previously joint state as follows

p(xk, m|Zk−1, Uk, x0) =
∫

p(xk|xk−1, uk) · p(xk−1, m|Zk−1, Uk, x0)dxk−1. (7)

Similarly, the update step uses an observation model defined as the probability of making an
observation zk given the robot pose and map configuration, as follows

p(zk|xk, m). (8)

Usually, SLAM assumes that once the robot pose and map configuration are known, there is a
conditional independence between observations. With this information, the update step is formulated
as the following conditional probability

p(xk, m|Zk, Uk, x0) =
p(zk|xk, m) · p(xk, m|Zk−1, Uk, x0)

p(zk|Zk, Uk)
. (9)

With all these fundamentals, several filter-based approaches are used to solve the SLAM problem.
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1. The extended Kalman filter (EKF): EKF-SLAM [24,25] is based on the well known group
of Kalman filters (KFs) [26]. Since both SLAM-based motion and observation models are, in most
cases non-linear, the original KF is not suitable for such systems. In this context, EKF is usually
used, since it linearizes the models. Additionally, this approach considers that the state uncertainty is
approximated by a mean and a covariance, i.e., a Gaussian distribution. EKF-SLAM state is formulated
as f (xk−1, uk) = [xk, m]T , i.e., the robot pose and the map built so far. This means that the motion
model is described as

p(xk|xk−1, uk) = f (xk−1, uk) + wk, (10)

where f (.) is a non linear representation of the robot motions, and wk represents Gaussian motion
noise with covariance Qk. This formulation can lead to a high-dimensional filter, as long as the map
grows, that can have serious impact on the SLAM algorithm runtime performance. Since the SLAM
update time depends quadratically on the size of the state vector, EKF-SLAM is usually not suitable for
large scale environments. To solve this issue, some approaches developed the sub-map concept [27,28].
In these, the global map is partitioned in local sub-maps, that can share information, still becoming
conditionally independent. In this way, the state vector dimension is reduced, and the global map can
still be recovered by the composition of the local sub-maps. To introduce the observations, EKF-SLAM
formulates the observations model in a similar way of what is done in the motion model, by linearizing
a non linear function h(xk, m) that is introduced in the model as follows

p(zk|xk, m) = h(xk, m) + vk, (11)

where h(.) describes the observations and vk is zero mean Gaussian noise with covariance Rk.
Both f (xk−1, uk) and h(xk, m) are formulated accordingly with the input data and the type of mapping
approach used.

2. The information filter (IF) in the IF [29], also known as inverse covariance filter, the covariance
matrix is replaced by the information matrix, i.e., its inverse. In comparison with the KF and EKF,
in case of complete uncertainty, i.e., when the covariance is infinity, the information matrix is zero,
which is easier to work with. Additionally, the information matrix is usually sparser than the covariance
matrix. On the other hand, if the system presents non-linearities, to recover the mean is required to
solve a linear system of equations. In the literature, IF is not as popular as the EKF to solve the SLAM
problem. Even so, some works adopt this approach [30,31], and it is especially popular in multi-robot
SLAM systems [32].

3. The particle filter (PF): PFs are based on Monte Carlo sampling, and are widely used in the
SLAM context. In these, the system state is sampled by a well-defined number of particles with a
given likelihood. each particle encodes information about the robot pose, and can also contain the
map data. The PF overcomes the limitation of KF-based approaches, by not restricting the motion and
observation models noise to zero mean Gaussians. This formulation can approximate the on-board
sensors characteristics in a more realistic way. In this context, FastSLAM [33] was a huge mark
in probabilistic SLAM research. This algorithm considers N particles where each one contains the
robot trajectory Xk and a set of 2-dimensional Gaussians representing each landmark on the map,
solving the full-SLAM problem represented in Equation (4). However, the high dimension that
characterizes SLAM systems can lead PFs to become computationally unfeasible, as the number of
required particles increases to perform a good approximation of the state-space. To overcome this
problem, the Rao–Blackwellization became popular in the SLAM context, where the Rao–Blackwellized
PFs gained impact [15,34,35]. In these, the joint state is represented as {w(i)

k−1, X(i)
k−1, p(m|X(i)

k−1, Z(i)
k−1)}N

i ,

where w(i)
k−1 is the weight of the ith particle. To solve the probabilistic SLAM problem, this approach

factorizes the posterior distribution in the following way

p(Xk, m|Zk, Uk, x0) = p(m|Xk, Zk) · p(Xk|Zk, Uk, x0). (12)
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This formulation is the key factor that speeds up the filter, since the posterior over maps
p(m|Xk, Zk) can be solved analytically given the robot path and the observations until the
current instant.

4. Graph-based optimization SLAM: Graph-SLAM [36] is a whole different way of looking and
approaching the SLAM problem, comparing to filter-based techniques. The basic principle of this
approach is as follows: the robot and map features can be represented as nodes in a graph-way
procedure. Then, arcs exist between consecutive robots poses xk−1, xk representing the information
given by the input controls uk, and between robot poses and map features. Figure 2 represents
this configuration.

Figure 2. Illustration of graph construction present in Graph-SLAM. Adapted from [23].

In this figure, it is possible to observe that, for example, when the robot in the pose x1 observed a
map feature m1, an arc is added between these two agents. This relation is also encoded in a matrix-like
representation, where a value is added between the x1 and m1 components. When the robot moves
(Figure 2b), the control input u2 leads to an arc between x1 and x2. As the input data increase, the graph
representation also increases. Even so, this representation is considered to be sparse, in that each
robot pose node is connected to few other nodes. This leads to a great advantage in comparison
with EKF-SLAM, since the update time of the graph is constant, and does not grow quadratically as
in EKF-SLAM. As stated in [37], this graph-based approach can solve for the robot pose and map
structure, by finding a minimum of a cost function of the following form

F(Xk, m) = ∑
ij

eij(Xk, m)T Ωij eij(xk, m), (13)

where Xk is the vector containing the robot trajectory until the time instant k, m is the map, eij is an error
function that relates the prediction and the observations, and Ωij is graph-based matrix representation
referenced before. Thus, the optimal values (X∗k , m∗) are obtained minimizing as

(X∗k , m∗) = argmin
Xk ,m

F(Xk, m). (14)

To solve (14), the state-of-the-art methods can be used, such as Gauss–Newton, Levenberg–Marquardt,
and others.
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2.1.2. Mapping the Environment

The mapping procedure is crucial in the localization performance. The accuracy of the on-board
sensors, and the quality of the data post-processing algorithms dictate the quality of the perception of
the surrounding environment by the robotic platform. In agriculture, this is specially true, since in
most cases, the environment present harsh conditions for robotics localization and mapping. Figure 3
shows an example of a working place of an agricultural robot.

In this are visible the long corridors that constitute the vineyard, as well as the absence of
structured objects, such as walls. All these characteristics complicate the mapping procedure. To build
precise maps of these environments, the robotic platform present in Figure 3 uses high-range 3D
LiDARs and stereo cameras. In this way, 3D dense reconstruction with color information is achieved
using the vision systems, and high range omnidirectional maps are constructed using the 3D LiDAR
sensors. To address the mapping procedures present in the SLAM context, in this article we start by
describing the well known problem of data association. Then, the mapping approaches are divided in
two main sets: metric maps, topological maps, and semantic maps.

Figure 3. Agricultural robot working place on an agricultural environment [38]. The image shows the
complexity of the mapping procedure, and the importance of the projection of an adequate system
of sensors.
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1. The data association problem: The data association in SLAM [39–41] is the process of associating
a sensed feature in a given time instant, with another one observed in a different instant, ensuring that
both correspond to the same physical point in the world scene. This procedure can constitute a problem
in SLAM, since the number of possible associations between features grow exponentially over time,
since the map becomes larger at each observation [42]. If data association is unknown, the estimation
of the posterior distribution has to consider a high density of modes, which can lead to an infeasible
computational cost. Moreover, the detection of loop closures is essentially a data association problem,
in that associations between the global map and a local map are searched to find previously visited
places by the robot.

The data association problem has been addressed in several works present in the
literature [43,44]. The most common procedure is to perform incremental maximum likelihood
association, i.e., choose the most likely association hypothesis. Other algorithms support the
multi-association hypothesis, where in cases of high association uncertainty, a feature can have
multiple associations until one of them has a higher likelihood. This, besides improving the success rate
of data association, can lead to the growth of the number hypothesis exponentially [45]. In more advanced
approaches, machine learning is used to compute data association algorithms, performing decisions for
groups of features at once [46]. In general, considering its importance, data association is a topic which is
always under research and improvement, considering new types of sensors, data, and features.

2. Metric maps: The metric representation is a structure that encodes the geometry of the
environment [11]. Metric maps can be represented in several ways, depending on the input sensor data,
and the dimension of the mapping procedure. One of the most common approaches is landmark-based
mapping procedures. In these, the environment is represented as a set of 3D landmarks, in a sparse
way. The landmarks encode relevant features of the scene, such as planes, lines or corners [47], and are
represented as unique signatures (also called descriptors). A good descriptor is crucial for the proper
performance of the mapping procedure. The more unique is the descriptor, the easier is the data
association procedure. Additionally, metric maps can represent the scene in a more structured way,
using occupancy grid maps. Typically, these maps represent the environment in 2D, and sample the
geometric space into cells with an associated probability of occupation [48].

3. Topological maps: The concept of partitioning the geometric space into local maps gained
strength in the SLAM mapping procedure. In this context, topological maps come up as a logical
solution. These algorithms represent the global map as a set of connected local maps stored in
nodes [49]. As stated by Lowry et al. [50], a topological map is conceptually a biological cognitive
map, where nodes represent possible places in the world and edges the possible paths that connect
these nodes. In the SLAM context, the routes between nodes represent the robot navigation path.
This context has the advantage of storing local maps in nodes, allowing the robot to load only the local
maps of interest at each point in time. In agriculture, this is specially interesting, since usually maps
are dense and long-term, leading to high memory consumption. The partitioning of the map allows
greater memory efficiency, in that only portions of the map memory are loaded at each instant. On the
other side, this technique can have implementation issues. For example, the robot has to be able to
associate physical places and routes to nodes and paths. Moreover, the extraction of the topological
map can also be challenging, and usually needs the definition of a metric occupancy grid map of
the environment.

4. Semantic maps: In many cases, adding semantic information to maps can enhance the quality of
the localization systems [51]. This is a whole new challenge for perception systems, that have to be able
to recognize and classify objects and places. To build a semantic map, several aspects have to be taken
into account. For example, the detail of semantic concepts is important, and depends mainly on the robot
task. If the robot wants to move from some corridor into another, the semantic classification can be as
high-level as recognizing corridors. On the other hand, if the robot is intended to harvest, the semantic
classification should be able to recognize trunks, leaves, etc. Another important concept is the definition
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of the semantic properties, since a single object can be characterized by an unlimited number of concepts.
This process is crucial for the mapping procedure, and can be viewed as a dictionary of the environment.

5. Hybrid maps: All the previously described maps can be merged and fused, creating the
so-called hybrid map architectures. For example, objects or places can be semantically characterized
and represent nodes of a topological map that holds local metric maps. For example, in [52] is proposed,
a probabilistic map representation that considers objects and doors, and classifies places using prior
information about the objects. Figure 4 shows another representation of an hybrid map, applied to an
agricultural context.

In this, the vineyard is semantically characterized as rows and corridors, in a topological map
that has paths interconnecting each node.

Figure 4. Semantic and topological map of a vineyard [53]. Nodes represent well defined places and
contain semantic information: they either represent a vineyard row or corridor. Local maps of artificial
landmarks are stored in each node. Edges encode the geometric path between nodes.

2.2. The Visual Odometry Method

VO’s ultimate goal is to localize the absolute camera pose in relation with a given initial reference
pose, as represented in Figure 5.

Contrary to the SLAM problem, VO does not maintain a map of the environment. This approach
receives a set of consecutive images, computes the relative transformation between them, and integrates
each transformation to recover the absolute camera pose. This algorithm is a particular case of structure
for motion, that solves the problem of 3D reconstruction of the environment and the camera poses
using a sequence of unordered image frames [54]. To compute the relative transformation between
images, VO is composed of a sequence of steps. Firstly, the input image is processed so that features
can be extracted from it [55]. This is done so that robust feature matching algorithms can be executed
between images. Then, matches between features are used to estimate the motion between images.
This motion estimation can be computed in several ways, such as 2D to 2D, where the features
are specified in 2D coordinates for both images. Moreover, 3D to 3D motion estimation can be
calculated, using depth information of stereo cameras, specifying the images features in the 3D
space. In some cases, bundle adjustment [56] techniques are applied to refine the local estimate of
the trajectory. This method is implemented aiming to optimize the camera parameters and the 3D
landmark parameters simultaneously.
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Figure 5. The Visual Odometry problem. Just like in wheel odometry, each relative transformation
between camera poses Tk,k−1 is integrated in order to recover the absolute camera pose Ck, regarding an
initial coordinate frame. Adapted from [13].

3. Methodology

The previous sections provided an overview of the variety of methods and solutions for robotics
localization and mapping. This work pretends to evaluate the performance of these approaches in
agricultural and forest environments. The main goal is to understand if this is still an open issue in the
scientific community, and, if so, what are the target research areas to overcome the limitations of the
science in this field. To do so, a deep literature analysis was performed. The result was the collection of
15 works on agricultural fields, and 9 on forest environments. To evaluate them, the following criteria
were considered:

• Application: Agricultural or forest application of the desired autonomous system.
• Localization approach: The methods and sensors used to localize the robot.
• Mapping approach: The methods and sensors used to map the environment.
• Accuracy: Evaluation of how accurate the robot localization is. In the ideal case the accuracy show

be less that some value (usually 20 cm [37,57]).
• Scalability: Evaluation of the capacity of the algorithm to handle large-scale paths.
• Availability: Evaluation of the possibility of the algorithm to present reliable localization right

away, without need for building prior maps of the environment.

Given the immature status of this research field, let us not consider more advanced metrics such
as recovery, updatability, or dynamicity [37]. Figure 6 shows the distribution of the years of creation of
the works collected.



Robotics 2020, 9, 97 11 of 23

Figure 6. Histogram representing the years of creation of the works collected of localization and
mapping in agriculture and forestry. The great majority of them were developed since 2011.

From this, it is possible to observe that this research field is still recent, since the majority of
works were developed since 2011. Finally, dataset collections in agriculture and forest for autonomous
driving were also searched in the literature. This resulted in the collection of 5 works. To evaluate
them, the following topics were considered:

• Description: Agricultural or forestry area where the data was collected, as well as sensor information.
• Large-scale: Whether or not the data were collected in large-scale environments, and large-scale paths.
• Long-term: Whether or not the data were collected in different seasons of the year, and different

times of the day.

It is worth noting that all these works were developed after 2016.

4. Localization and Mapping in Agriculture

Recent works approach the problem of localization and mapping in agriculture. This work
performed an intense literature review in this area. Table 1 presents a summary of the works collected
and their main characteristics.
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Table 1. Summary of the works collected on localization and mapping related to the agricultural field.

Ref. Agricultural Application Localization Approach Mapping Application Tested in Real Scenario Accuracy Scalability Availability

Freitas et al. [58,59]
(2012)

Precision agriculture in
tree fruit production

(2D) EKF-based. Wheel odometry and
laser data. Uses points and lines features
to match witha previously built map.

Offline orchard metric mapping for
artificial landmark detection.

Yes. Three experiments with
more than 1.8 km each.

Low error for flat
and dry terrains ( 0.2 m). High errors
in steep terrains (up to 6 m).

Yes. Long-term
experiments performed.

No. The method requires
a previously build map.

Duarte et al. [60]
(2015)

Autonomous navigation on
steep slope vineyards.

(2D) PF-based. Fusion of GPS,
wheel odometry, and previously
mapped landmarks.

Offline metric mapping.
Use of wireless sensors to
compute landmarks location.

Yes. However, tests were done
in an urban environment.

Beacons mapped with 1.5m of
average error. Robot pose estimation
not evaluated quantitatively.

Not tested.
No. No proper performance
without a previouly built
metric map.

Zaman et al. [61]
(2019) Precision agriculture. (2D) VO algorithm based on

a cross correlation approach. - Yes. Tested in soil, grass, concrete,
asphalt, and gravel terrains.

Normalized cumulative error of
0.08 mm for short paths.

No. System performance
degrades when incrementing
path lenght.

Yes. No need for first
passage of thealgorithm in
the agricultural field.

Habibie et al. [62]
(2017) Monitoring of ripe fruit. (2D) Use of the state-of-the-art Gmapping [15]

and Hector SLAM [14] approaches.

Combination of metric maps. Occupancy
grid map generated by the SLAM approach,
and fusion with tree/fruit detection.

No. Experiments only performed in
simulation.

Localization not quantitatively evaluated.
Accurate detection of simulated fruits,
and trees.

Not tested. Not tested.

Younse et al. [63]
(2007) Greenhouse spraying. (2D) VO algorithm. Use of Kanade-Lucas-

Tomasi (KLT) Feature Tracker. - Yes. Short-term tests in indoor environments,
and outdoor with different ground surfaces.

12.4 cm translation error for a short
path of 305 cm, and 8◦ orientation error
for a 180◦ rotation.

Not tested. In theory.

Bayar et al. [64]
(2015)

Autonomous navigation
in orchards.

(2D) Fuses wheel odometry and laser range data.
Assumes that orchards rows length is known.
Localization only relative to the rows’ lines.

- Yes. Experiments performed in several
orchards rows.

Low errors relative to the rows’ lines.
No quantitatively average values provided.

Partially. Only under the
assumption that the row
length is known, and
the localization is relative
to the rows’ lines.

No. Requires the previously
mentioned assumptions.

Le et al. [65]
(2018) General agricultural tasks.

(3D) Localization based on non-linear
optimization techniques. Uses the
Lavenberg-Marquardt algorithm.

3D LiDAR mapping. Uses edge and
planar features extracted directly from
the point cloud.

Yes. Tested both on real and simulated
scenarios.

Less than 2% translation error for a
500m trajectory.

Yes. A successful long-term
experiment was performed.
Loop closure supported.

Yes. The system is able
to perform online SLAM
without any priormap.

Cheein et al. [66]
(2011)

Autonomous navigation on
olive groves.

(2D) Extended IF-based SLAM. Uses a
laser sensor and a monocular vision
system.

Metric map composed of olive stems.
Support Vector Machine used to
detect stems, and laser data to map them.

Yes. Tests performed in a real olive scenario.
Successful reconstruction of the entire
olive. Consistent SLAM approach. Error
does not exceed 0.5m.

Yes. The method is able to
be long-term consistent
operating in the entire olive.

Yes. The system is able
to perform online SLAM
without any prior map.

Chebrolu et al. [67]
(2019)

Precision agriculture in
crop fields.

(2D) PF-based. Fuses wheel odometry with
camera visual data.

Offline mapping. Metric-semantic map
of landmarks build from aerial images.

Yes. Real experiments performed on
sugarbeet field. Maximum error of 17 cm on a >200 m path. Yes. Experiments show good

performance on long-term paths.

Partially. Only if a
previously extracted
aerial map is available.

Blok et al. [68]
(2019)

Autonomous navigation
in orchards.

(2D) PF-based: uses a laser beam model.
KF-based: uses a line-detection algorithm. - Yes. Tests on two real orchard paths. Lateral deviation errors <10 cm and

angular deviation <4◦.
Yes. Successful tests in
orchards paths in 100 m.

In theory. Does not
need any prior
mapping information.

Piyathilaka et al. [69]
(2011) General agricultural tasks. (2D) EKF-based. Fusion of a VO approach with

a stereo vision range measurement system. - Yes. Experiments performed in real
outdoor environment.

Average error of 53.84 cm on the tested
sequence.

No. High cumulative error
for long paths.

In theory. Does not
need any prior
mapping information.

Iqbal et al. [70]
Phenotyping, plant volume
and canopy height
measurement.

(2D) EKF-based. Fusion 2D laser, an IMU,
and GPS data.

2D point cloud map built by successive
registration.

No. Experiments performed in the
Gazebo simulator.

2.25 cm error on 32.5 m path, and 7.78 cm
on 38.8 m path. Not tested. Yes. Does not require

prior mapinformation.

Bietresato et al. [71] Volume reconstruction and
mapping of vegetation. (2D) Fusion of sonar, IMU and RTK GPS.

Plant volume calculation using LiDAR sensors
and optical-data to obtain normalized difference
vegetation index (NDVI) maps.

Yes. Mapping approach tested in indoor
and outdoor environments. Localization system not tested. Not tested. Yes. Does not require

prior map information.

Utstumo et al. [72] In-row weed control. (2D) EKF-based. Uses a forward facing
monocular camera and a GPS module.

Support Vector Machine (SVM) used to extract
environment features and create a spray map. No. Localization and mapping not tested. Localization system not tested. Not tested. Not tested.

Santos et al. [8]
(2020)

Autonomous navigation on
steep slope vineyards.

(2D) PF-based. Fuses wheel odometry with a
vision system.

Metric map composed of high-level
landmarks detected using Deep Learning
techniques.

Yes. One experiment done on a real vineyard. Average error of 10.12 cm over the tested
sequence. Not tested.

Yes. The approach does
not need apreviously
built map.
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Autonomous navigation is being studied in tasks like precision agriculture in tree fruit
production, greenhouse spraying; and in fields like steep slope vineyards, orchards, and olive groves.
The implementation of autonomous robotic platforms in agriculture has been growing, in particular in
tasks like weeding, seeding, disease and insect detection, crop scouting, spraying, and harvesting [73].
The localization algorithms of these works are, in their great majority, based on PFs, KFs (EKF and
IF), or VO. From all the works collected, only Le et al. [65] developed a system able to localize the
robot in 3D. This work uses a non-linear optimization technique based on the Lavenberg–Marquardt
algorithm to solve for the robot pose. From the evaluation performed, we concluded that this work is
the most suitable for autonomous navigation in agriculture, since it meets all the criteria: was tested in
the real scenario, presents a high accuracy, scalability, and availability. Cheein et al. [66], also present
a very interesting work. This is the only one based on an IF, and performs 2D localization with
accuracy, availability and scalability. It is worth noting that the majority of works use either laser
sensors, or visual sensors such as monocular or stereo camera systems. Wheel odometry is also
commonly used to give filter-based approaches the control inputs. Few works use GNSS-based
receivers, which shows the recurrent unavailability of satellite signals in agricultural environments,
and so, the necessity of the creation of GNSS-free localization and mapping algorithms. In this context,
the real time kinematic (RTK) satellite-based localization systems are rising up due to their high
accuracy. In particular, Bietresato et al. [71] use this technology, fusing it with a sonar and an IMU to
localize a robotic platform. This work is proposed in order to reconstruct the volume of plants and to
map the vegetation, using laser data and NDVI information. On the negative side, the authors do not
provide any experiments on the localization and mapping approach. VO methods tend to use only
visual data, and have the advantage being, in theory, always available, in that they do not require prior
mapping information. On the other hand, these families of localization methods are not, in general,
scalable, since they accumulate error over the time, due to the integration of relative motions between
image frames. As an example, Zaman et al. [61] propose a VO approach, tested in real scenarios
such as soil, grass, and other terrains, that presents accurate results for short paths (0.08 mm error),
but that degrades when increasing the path length. Similarly, Younse et al. [63] present a VO approach,
only tested for a path with 305 cm extension, which does not prove to have practical availability for
long-range motion types.

In terms of mapping, one can conclude that not all the methods perform this task. In particular,
VO approaches do not map the environment. Furthermore, some works use localization-only
approaches with prior information. For example, Bayar et al. [64] assume that the orchards rows
length is known, and localization is performed relatively to the rows’ lines. In other cases, mapping is
performed offline [58–60]. In this context, Freitas et al. [58,59] perform an offline orchard metric
mapping using artificial landmark detection, and use this information in the localization procedure.
In this, points and line features are detected and matched to the prior map information to perform
the robot pose estimation. From all the works collected, the one proposed by Chebrolu et al. [67]
stands out as being the only one that performs semantic mapping. This work implements an offline
mapping procedure, using aerial images to build a map of landmarks. Moreover, Santos et al. [8]
use an interesting approach of computing 2D landmark location using deep learning techniques.
In general, metric maps are used, by means of probabilistic occupancy grid maps, point clouds,
or feature-based approaches.

From this study, many conclusions can be taken. Firstly, the fact that almost all the works were
tested in real scenarios is exciting, in that it shows the ambition of researchers to actually implement
autonomous navigation in agriculture. From these, we highlight [58,59] that perform tests in real
sequences with more than 1.8 km each. In terms of accuracy, the majority of works present good
results. For example, Le et al. [65] present a system with 2% translation error for a trajectory with
approximately 500 m. Furthermore, Chebrolu et al. [67] propose a work that achieves a maximum
error of 17 cm on a sequence with a path higher than 200 m. However, besides many of the works
presenting acceptable performance, the problem of 3D localization in agriculture is still an area with
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very low research impact. Only one work focuses on this problem, which shows that much work
and development is yet to come. In particular, steep slope agricultural environments will require
localization system able to accurately estimate all the 6-DoF of the robot pose. Additionally, for robots
to operate safely in agricultural environments, longer term experiments should be carried out. This is
due to the requirement of automatizing procedures during long periods, which imposes the need of
long-term autonomous operability. In the same context, all-weather experiments are required, since the
navigation systems should work under a vast range of meteorological conditions. In the current
state-of-the-art, the majority of works focus on low- or mid-term experiments, and do not take into
account the all-weather challenge. In addition, the mapping approaches are, in general, based on metric
maps. Topological and semantic mapping are concepts almost nonexistent in this area. This also shows
that much work can be done in this area. Semantic mapping can be important in the classification
of agricultural agents, obstacle detection on these fields, etc. In this area, deep learning can have an
important role, where high-qualified deep neural networks can be trained and used to provide an
intelligent perception of the environment. All this information can be further used by human operators
for example, for monitoring tasks, detection of anomalies, and others. Moreover, topological mapping
can represent a huge advance in these area, when considering scalability. Global maps can be
partitioned in local maps in a graph-like procedure, which can solve memory issues, allowing the
robot to navigate safely during longer periods of time. Finally, not all the works present scalability
and availability, which are concepts required before others which are more complex can arise such as
recovery, updatability, or dynamicity.

5. Localization and Mapping in Forestry

Recent works approach the problem of localization and mapping in forestry. This work performed
an intensive literature review in this area. Table 2 presents a summary of the works collected and their
main characteristics.
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Table 2. Summary of the works collected on localization and mapping related to the forestry field.

Ref. Forestry Application Localization Approach Mapping Application Tested in Real Scenerio Accuracy Scalability Availability

Qian et al. [74]
(2016)

Accurate forest
stem mapping.

(2D) Fusion of GNSS/INS with
scan-match based approach solved using
the Improved Maximum Likelihood Estimation.

Metric occupancy grid map
built from laser scan data.

Yes. Real field experiments
performed.

Positioning accuracy of 13 cm for
the field data sequence.

Yes. Successful results in long-term
sequence with 800 m.

Yes. The algorithm does not
required prior map information.

Hussein et al. [75]
(2015)

Autonomous navigation
in forests.

(2D) Localization based on a scan-matching
procedure.

Metric map of trees generated by on-board
LiDAR sensors. Map matching with a
global map generated from aerial orthoimagery.

Yes. Experiments performed on real forest. Average error of <2 m for robot pose.
Partially. Long-term experiments
performed, but with considerable
errors.

No. Requires a map generation
from aerial images.

Li et al. [76]
(2020)

Autonomous harvesting
and transportation.

(2D) Map matching localization approach
based on Delaunay triangulation. 3D LiDAR-based stem mapping. Yes. Real experiment using a forestry dataset. Location accuracy of 12 cm on

the tested sequence.
Yes. Successful results in a long-term
path (200 m).

No. Requires a previously built
stem map.

Pierzchała et al. [77]
(2018)

3D forest
mapping.

(3D) Graph-based SLAM. Uses the
Levenberg-Marquardt method.

3D point cloud map generated using LiDAR
odometry, with graph optimization through
loop closure detection.

Yes. Data recorded by authors’ robot
in a forest.

SLAM system provides tree positioning
accuracy—mean error of 4.76 cm.

Yes. Successful long-term real
experiments in sequence with 130.7 m.

Yes. The method performs
online SLAM without need of
prior map.

Rossmann et al. [78]
(2013)

Autonomous navigation
in forests.

(2D) PF-based. Fusion of a laser sensor
and a GPS.

Offline generation of forest
tree map.

Yes. However, no demonstration of
results available.

Authors measure the location error
in sample points in time. They
claim to obtain mean error of 0.55 m.

Not tested. Not tested.

Miettinen et al. [79,80]
(2007) Forest harvesting. (2D Feature-based SLAM. Computed using

laser odometry.
Metric feature map, built by
fusing laser data and GPS information.

Yes. Experiments on real
outdoor environment.

Not tested, due to the
unavailability of ground truth. Not tested. No tested.

Heikki et al. [81,82]
(2013)

Stem diameter
measure.

(3D) Laser-odometry approach, fused
with an IMU.

Metric landmark map composed of stem
detections and ground estimation.

Yes. Long-term real experiment
performed (260 m). 7.1 m error for a 260 m path. No. High localization errors reported

for a long-term path.
Yes. Does not need prior
map information.

Tang et al. [83]
(2015)

Biomass estimation
of forest inventory.

(2D) Scan-matching based SLAM. Uses the
Improved Maximum Likelihood Estimation
algorithm.

Metric occupancy grid map built
using laser data.

Yes. Long-term real experiment
performed (300 m).

Obtained positioning error <32 cm in
the real world experiment.

Yes. Successful performance in
long-term experiment.

Yes. Does not need prior
map information.
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The main goals for robotics in forest environments are stem mapping, harvesting, transportation,
and biomass estimation. Similarly to the methods collected in the agricultural context, a great majority
of the developed localization systems for forest environments only compute the robot pose in 2D.
Only Pierzchała et al. [77], aiming to perform 3D mapping of a forest environment, propose a
graph-based SLAM approach, that computes 6-DoF robot pose using the Levenberg–Marquardt
algorithm. In addition, this work presents other contributions, such as built in-house datasets that
were used to test and evaluate the SLAM pipeline. Moreover, Heikki et al. [81,82] propose a 3D SLAM
algorithm where the translation components are calculated by a laser-odometry technique, and the
rotational ones using an IMU. It is worth noting that the SLAM process also estimates the drifting
bias of the yaw angle. On the negative side, this work reports high errors for long-term trajectories.
All the other works propose 2D-based SLAM algorithms. From these, we highlight [74] that, in order
to build accurate stem maps, fuses GNSS/INS with a scan-match approach solved using the improved
maximum likelihood estimation method. This work presents an accuracy of 13 cm in a real experiment
with 800 m, presenting scalability and availability, since it does not require prior mapping information.
Furthermore, Li et al. [76] propose a very innovative localization approach based on map matching with
Delaunay triangulation. Here, the Delaunay triangulation concept is used to match local observations
with previously mapped tree trunks. This is an innovation since, unlike the majority of works that use
point cloud-based matching approaches, the authors propose a topology-based method. This work
achieved an accuracy of 12 cm in a long-term path with 200 m. On the negative side, it requires a
previously built map so that it can operate. Similarly, Hussein et al. [75] propose a localization and
mapping approach that requires a prior map. The interesting innovation of this work is the creation of
a stem map using aerial orthoimagery. Thus, this approach does not require that the robot goes one
first time to the field before it can perform autonomously. Miettinen et al. [79,80] use the interesting
concept of laser odometry to localize the robot. This approach is related with VO in that it computes
the relative transformation between consecutive sensor observations. The major difference is that,
in laser odometry, a scan-matching approach is used to align consecutive observations and extract the
relative transformation matrix. Moreover, using scan-matching concepts, Tang et al. [83] propose a
2D SLAM algorithm that solves the Improved maximum likelihood estimation method to localize the
robot, with the goal of estimating the biomass forest inventory. Considering the overall collection of
works, it is worth noting that visual sensors are not so used as in agriculture. Laser range sensor and
GNSS-based receivers are the ones used in this field.

In terms of mapping, all the works perform this task, contrary to the case of agriculture. From all
the works, we highlight [77], since it performs 3D point cloud map generated using LiDAR odometry,
with graph optimization through loop closure detection. Moreover, only two works compute offline
mapping. The first, proposed by Li et al. [76], requires a prior visit to the working environment, in order
to create a global 3D stem map using a LiDAR sensor. In a more innovative way, Hussein et al. [75]
build the global map using aerial orthoimagery, which enables the navigation with prior map
information without mandatory previous visits to the working environment. In terms of mapping,
another major conclusion is that metric maps play an important role in many SLAM algorithms.
This is due to the frequent use of LiDAR sensors to build tree trunk (stem) maps. This approach is
common since stems constitute highly trustworthy landmarks to use in SLAM algorithms. In this
context, Miettinen et al. [79,80] use their SLAM algorithm not only to localize the robot, but also to
build precise stem maps, with specific information of the forest structure. In this work, during the
mapping procedure, tree diameters, positions and stand density are measured. In the same way,
Heikki et al. [81,82] propose a mapping approach where the stem diameters are measured, and a
ground model is built. This work reports a trunk diameter error of 4 cm for short range observations
(less than 8 m). Given all this, we can conclude that, in forestry, mapping seems to be more evolved,
with intense research focus on stem detection and mapping.

From this collection of works, many conclusion can be taken. After an intensive search,
only nine proper works were found, and most of them were proposed after 2013. This shows that this
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research line is still quite new, not yet developed, and has many open topics. From these topics, we can
highlight the issue of availability. From the reported works, only half of them showed the ability of
working without prior map information, which shows that online SLAM is still under-developed in
this field. Moreover, as mentioned before, 3D localization is still quite rare in forest environments.
This can deny autonomous navigation in steep forests with considerable inclinations, and different levels
of altimetry. On the other side, mapping seems a more advanced area, with some works focused on
creating 3D maps of the forests, and others developing methods for stem mapping. Even so, just like in the
agricultural field, metric maps are quite abundant. So, more advanced mapping concepts such as semantic
and topological perception of the environment are still quite under-developed. Moreover, many works
propose the detection of tree trunks to use as landmarks in the localization procedure. However, none of
them currently use deep learning concepts to detect such agents in the forest fields. Since the tree trunk
diameter measurement is one of the fields of interest in forestry, semantic segmentation can play an
important role in the future. These algorithms use neural networks to segment images or point clouds
into semantic objects, at the pixel or point level. The use of visual sensors not common in forestry is also
related to this. The implementation of visual perception algorithms can also improve the localization and
mapping procedures. On the bright side, just like in agriculture, the works were tested in real scenarios,
which shows that resources are being channeled to this research field.

6. Datasets for Localization and Mapping in Agriculture and Forestry

In order to have reliable data to develop new concepts and algorithms related with localization
and mapping in agriculture and forestry, the creation of open-source datasets is essential. Table 3
shows a collection of 5 works done in this area, all of them developed after 2016.

Chebrolu et al. [84] propose an agricultural dataset for plant classification and robotics navigation
on sugar beet fields. This work provides a variety of sensors, such as RGB-D cameras, 3D LiDAR
sensors, GPS, and wheel odometry, all calibrated extrinsically and intrinsically between each other.
The main interesting feature of this work was the recording of data during a period of three
months, which can be used to test localization and mapping approach with long-term considerations.
Kragh et al. [85] propose a collection of raw data from sensors mounted on a tractor operating in a
grass mowing scenario. This work provides precise ground-truth localization using a fusion of IMU
and GNSS-based receiver. The main limitation of this proposal is the lack of data from different times
of the day, or year. In [86] a dataset for test and evaluation of visual SLAM approaches in forests is
presented. In this, data are provided from four RGB cameras, an IMU, and a GNSS receiver, all of
them calibrated and synchronized. Data were recorded in summer and winter seasons, and different
times of the day. In [87] is presented a dataset with six sequences in soybean fields. This works has
in consideration repetitive scenes, reflection, rough terrains, and other harsh conditions. Data were
collected on two different days, but at the same period of the day. Finally, Reis et al. [88] present a
set of datasets with information from a variety of sensors, suitable for the localization and mapping
purposes. In this work, a state-of-the-art SLAM approach was tested under the different datasets
recorded in different forests. Overall, all the methods present a large-scale dataset, with long distances
travelled. In the near future, with the intense growth of deep learning models in robotic systems,
more advanced datasets should be created. In particular, sensor data can be put together with object
labelling. In this context, visual data can be provided along with landmark annotation, both at object
and pixel level. Furthermore, 3D LiDAR data can also be annotated in order to enable researchers to
train and test their own semantic segmentation models.
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Table 3. Summary of the works collected presenting datasets for use in autonomous navigation in agriculture and forestry.

Ref. Description Large-Scale Long-Term

Chebrolu et al. [84]
(2017)

Agricultural dataset for plant classification and
robotics navigation on sugar beet fields.
Provides data from RGB-D camera, 3D LiDAR
sensors, GPS, and wheel odometry. All the
sensors are calibrated extrinsically, and intrinsically.

Yes. Yes. Recorded over a period of three
months, and, on average, three times a week.

Kragh et al. [85]
(2017)

Raw sensor data from sensors mounted on a
tractor in a grass mowing scenario.
It includes stereo camera, thermal camera, web camera,
360◦ camera, LiDAR, and radar. Precise vehicle
localization obtained from fusion of IMU and GNSS.

Yes. Data recorded on a large field
with 2 ha.

No. The dataset has approximately 2 h,
all at the same day.

Ali et al. [86]
(2020)

Dataset for visual SLAM on forests.
The vehicle is equipped with four RGB cameras,
an IMU, and a GNSS receiver. Sensor data is
calibrated and synchronized.

Yes. Range of distance travelled varies
from 1.3 km to 6.48 km.

Yes. Data recorded on summer and winter conditions.
Also, different times of the day were considered.

Pire et al. [87]
(2019)

Dataset with six sequences in soybean fields.
Considers harsh conditions such as repetitive scenes,
reflection, rough terrain, etc. Contains data from
wheel odometry, IMU, stereo camera, GPS-RTK.

Yes. Total length trajectory around 2.3 km.
Partially. Data recorded in two separate
days, but in the same time of the year,
and the day.

Reis et al. [88]
(2019)

Dataset containing data from different sensors such
as 3D laser data, thermal camera, inertial units, GNSS,
and RGB camera in forest environments.

Yes. Data recorded in three different
large-scale forests. No information.
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7. Conclusions

This work proposed the analysis of the current state-of-the art of localization and mapping in
agriculture and forestry. After an intensive search, 15 works were collected related to localization and
mapping in agriculture, 9 were collected in the context of forestry, and 5 works that present datasets
for test and evaluation of these approaches were characterized. The works were characterized in
terms of their agricultural/forestry application, the localization and mapping approaches, and their
accuracy, availability and scalability. This study leads to the main conclusion that this research line is
still premature, and many research topics are still open. In particular, 3D localization is quite rare in
these environments. Furthermore, advanced mapping techniques that are now present in other areas
such as topological and semantic mapping are yet to develop in agriculture and forestry. This being
said, we believe that this area has a lot of potential to grow, and that, in the near future, many works
and innovations will arise to bridge the current faults of the state-of-the-art.
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38 CHAPTER 2. RELATED WORK

2.2 Final remarks

The article presented in this chapter consists of a deep literature review regarding

localization and mapping in agriculture and forestry. This study showed that in the

past years many works approached this research topic, which means that there is

an interest in developing new and more robust robotic solutions for agriculture and

forestry. Also, this survey article leads to the conclusion that there is still gaps in

this area, and much work yet to be developed. Specifically, 3D localization is not

approached in the majority of the reviewed works. This means that in environments

with steep inclinations or considerable altitude differentials, the algorithms are not

able to estimate the roll, pitch and elevation components of the robot’s pose. This

also means that a proper 3D reconstruction of the environment is not built since

not all the 6-DoF of the robot’s pose are known. In addition, advanced mapping

solutions such as topological or semantic are commonly not used. This thesis

formulates several solutions to tackle this state-of-the-art gaps and pushes forward

the development of robotics in agriculture.
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3 Camera to LiDAR calibration

This chapter presents the approach formulated to solve the camera-to-LiDAR

extrinsic calibration problem. This solution allows the use of both sensor modalities

in the multi-layer mapping architecture that will be presented in chapter 5.

3.1 A Camera to LiDAR calibration approach

through the optimization of atomic

transformations

During the development of this work two main sensor types were used for localization

and mapping: 3D LiDARs and cameras. As will be described in the next chapters the

3D LiDAR is the main sensor used for the metric mapping and 6-DoF localization.

Also, stereo and monocular camera systems were used to detect semantic features

in the vineyard. To be able to unify the features extracted from both sensors and

to create maps that consider all the modalities of features extracted simultaneously,

it is essential to have a precise estimation of the spatial transformation between

the sensors present in the robot. One common approach is to manually measure

the spatial relationship between all the sensors and register the homogeneous

transformation between them. This approach has the disadvantage of being manual

and presenting a considerable associated error specially in rotational components.
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For this reason, an algorithm for extrinsic calibration of cameras and 3D LiDARs

was developed and published in the Elsevier Expert Systems with Applications

journal. This paper entitled A Camera to LiDAR calibration approach through the

optimization of atomic transformations (Aguiar et al., 2021a) is presented bellow.

This work is inserted in an open-source extrinsic calibration software framework

called ATOM1 (de Oliveira et al., 2022). The main novelty of the proposed system

is the calibration of multiple sensors (N ≥ 2) simultaneously without changing

the topology of the transformation tree of the robot. Most of the state-of-the-

art algorithms solve the extrinsic calibration problem in a pairwise fashion, i.e.,

they estimate all the combinations of transformations between all the sensors to

calibrate. The proposed system calibrates all the sensors present in the robot

simultaneously in a sensor to calibration pattern manner through the optimization

of atomic transformations. ATOM is general enough to accommodate any modality

of sensor by simply designing an objective function for it.

1https://github.com/lardemua/atom

https://github.com/lardemua/atom
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Abstract

This paper proposes a camera-to-3D Light Detection And Ranging calibration framework through
the optimization of atomic transformations. The system is able to simultaneously calibrate mul-
tiple cameras with Light Detection And Ranging sensors, solving the problem of Bundle. In
comparison with the state-of-the-art, this work presents several novelties: the ability to simul-
taneously calibrate multiple cameras and LiDARs; the support for multiple sensor modalities;
the calibration through the optimization of atomic transformations, without changing the topol-
ogy of the input transformation tree; and the integration of the calibration framework within the
Robot Operating System (ROS) framework. The software pipeline allows the user to interactively
position the sensors for providing an initial estimate, to label and collect data, and visualize the
calibration procedure. To test this framework, an agricultural robot with a stereo camera and a 3D
Light Detection And Ranging sensor was used. Pairwise calibrations and a single calibration of
the three sensors were tested and evaluated. Results show that the proposed approach produces
accurate calibrations when compared to the state-of-the-art, and is robust to harsh conditions
such as inaccurate initial guesses or small amount of data used in calibration. Experiments have
shown that our optimization process can handle an angular error of approximately 20 degrees
and a translation error of 0.5 meters, for each sensor. Moreover, the proposed approach is able to
achieve state-of-the-art results even when calibrating the entire system simultaneously.

Keywords: Computer Vision, Geometric Optimization, Atomic Transformations

1. Introduction

Nowadays, autonomous robotic systems are endowed with high-quality onboard sensors of
different modalities, i.e. sensors that output different types of data, such as cameras and Light De-
tection And Ranging (LiDAR) sensors. To move autonomously while safely avoiding any kind
of obstacle, these vehicles need to perform complex tasks such as Simultaneous Localization and5

Mapping (Durrant-Whyte & Bailey, 2006) and Path Planning (Sariff & Buniyamin, 2006) which
require calibrated sensor data. The quality of the onboard sensors data is also crucial, since the
robot should have a clear perception of the environment. For example, in agriculture, the au-
tomation of tasks such as crop monitoring or harvesting is a complex challenge that requires data
of high quality sensors (dos Santos et al., 2016), such as, for example long-range 3D LiDARs.10

To perform data fusion, and take advantage of all the sensors present in the robotic system, it
Preprint submitted to Expert Systems with Applications February 13, 2023



is essential to know the spatial relationship between all sensors (Melendez-Pastor et al., 2017;
Majumder & Pratihar, 2018). To do so, the most common approach is to perform extrinsic cali-
bration, i.e., to compute the transformation between the sensors’ reference frames. The standard
approach to perform extrinsic calibration is to find associations between data incoming from15

each sensor to be calibrated. Thus, a cost function that minimizes the error between associations
is used. Most of the calibration procedures use a pattern that can be detected independently of
the sensor modality, so that data correspondences can be found. Using these concepts, camera
to 3D LiDAR extrinsic calibration have been approached in several works. A minority of works
perform calibration without using a pattern. In those, the characteristics of the environment are20

used as features to compute intrinsic and extrinsic calibration. In autonomous driving, for ex-
ample, lane detection and vanishing point tracking are common approaches (Badue et al., 2021;
de Paula et al., 2014; Álvarez et al., 2014).

The great majority of the works found in the literature follow a pairwise calibration between
a monocular camera and a 3D LiDAR, a concept introduced by Huang & Barth (2009). In this25

work, the extrinsic coefficients are computed solving a closed-form equation, and refined with
a maximum likelihood estimation. Similarly, Verma et al. (2019) use a standard chessboard to
calibrate a perspective/fisheye camera and a 3D LiDAR using a Genetic Algorithm. Wang et al.
(2017) propose a work where the corners of the pattern are automatically detected for both a
panoramic camera and a 3D LiDAR so that the calibration can be performed. For the LiDAR30

case, authors propose a detection based on the intensity of reflectance of the beams. Fremont &
Bonnifait (2008); Guindel et al. (2017a) use circle-based patterns to perform the extrinsic cali-
bration. Mirzaei et al. (2012) propose the estimation of a 3D LiDAR intrinsic parameters, as well
as the extrinsic calibration with a monocular camera, through the minimization of a non-linear
least squares cost function. The calibration is used to build photorealistic 3D reconstruction of35

indoor and outdoor scenes. Pandey et al. (2010) calibrate a 3D LiDAR with an omnidirectional
camera also using a standard planar pattern. To calibrate the system, the sensors should observe
the pattern from at least three different points of view. With this input, the extrinsic coefficients
are calculated with a non-linear optimization technique. With the same purpose, Huang & Griz-
zle (2020) use a pattern of known dimension and geometry and estimates the pattern to LiDAR40

pose automatically using a fitting algorithm.
Although all these works perform successful extrinsic calibrations between 3D range sensors

and monocular cameras, pairwise calibration is a major shortcoming since most robotic systems
present more than two sensors to be calibrated. In a system with more than two sensors, one
would have to combine multiple pairwise calibrations. The problem is that the number of the45

combinations of pairwise calibrations required grow quickly. For example, Zhou et al. (2018)
presente a system with a 3D LiDAR and a stereo camera system. However, to calibrate the
three sensors (LiDAR and two cameras), two calibrations have to be performed: LiDAR to left
camera, and LiDAR to the right camera. In the same way, with the purpose of fusing point clouds
of multiple stereo cameras, Dhall et al. (2017) use a 3D LiDAR to perform pairwise calibration50

with all the cameras in the system. Only after obtaining the transformation between the range
sensor and each camera of the stereo system, the transformation between the stereo cameras can
be found. Then the point clouds can be fused. Similarly, su Kim & Park (2019) perform six
pairwise calibrations between a 3D LiDAR and six monocular cameras mounted in an hexagonal
plate that constitute an omnidirectional camera.55

To overcome this limitation, few works exist that consider multi-sensor, multi-modal cali-
bration in a non-pairwise fashion. For example, Zuniga-Noel et al. (2019) propose a method to
estimate the extrinsic calibration between multiple sensors such as LiDARs, depth cameras and
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RGB cameras. The calibration procedure is separated in two parts: a motion-based approach that
estimates 2D extrinsic parameters and a method that uses the observation of the ground plane to60

estimate the remaining ones. It is worth noting that this framework requires the robotic platform
to be moving. Liao et al. (2017) propose a joint objective function to simultaneously calibrate
three RGB cameras with respect to an RGB-D camera. Rehder et al. (2016), propose an approach
for joint estimation of both temporal offsets and spatial transformations between sensors. This
approach is one of few that is not designed for a particular set of sensors, since its methodology65

does not rely on unique properties of specific sensors. It is able to calibrate systems containing
both cameras and LiDARs. Pradeep et al. (2014), present a joint calibration of the joint offsets
and the sensors locations for a PR2 robot. This method takes sensor uncertainty into account and
is modelled in a similar way to the bundle adjustment problem.

The two major shortcomings of the state-of-the art in extrinsic calibration are: most of the70

methods perform pairwise calibration, which can be exhaustive for a robotic system with many
sensors to be calibrated; and the majority of the works are focused on specific sensor modalities,
rather than working in a more general way. To overcome these issues, this work proposes an
extrinsic calibration framework with the following contributions:

• Support for calibration of multiple sensors (i.e. N ≥ 2);75

• The ability to handle multiple sensor modalities;

• Calibration without changing the topology of the input transformation tree;

• Integration of the system within the Robot Operating System (ROS) framework, with in-
teractive tools to collect data, set the initial estimates, and visualize the calibration.

Our previous works have focused on the calibration of intelligent vehicles. These platforms80

are often characterized by the large amount of sensors of different modalities mounted onboard.
As such, these previous works presented a methodology based on atomic transformations for
multi-sensor, multi-modal robotic systems (Guindel et al., 2017b; Oliveira et al., 2020a,b). In
this work, we extend our framework - Atomic Transformation Optimization Method (ATOM)
1 (Oliveira et al., 2020a) - to also consider the calibration of 3D LiDARs along with the other85

supported modalities. Atomic transformations are geometric transformations that are not aggre-
gated, i.e., they are indivisible. As such, this article presents the methodologies implemented
to simultaneously calibrate a 3D LiDAR sensor with multiple cameras using a Bundle Adjust-
ment optimization scheme (Agarwal et al., 2010). As our approach is not focused on a single
robotic platform, we present the calibration of a different robotic platform in comparison with90

our previous works - the agricultural robot AgRob V16 (de Aguiar et al., 2020; Santos et al.,
2019).

The remainder of this paper is organized as follows: Sec. 2 details the optimization procedure
and how it is cast as a Bundle Adjustment problem; Sec. 3 describes the ROS (Quigley et al.,
2009) calibration setup, i.e., the steps from the robotic platform configuration until the data95

collection; Sec. 4 details the experimental results; and finally, Sec. 5 provides conclusions and
future work.

1https://github.com/lardemua/atom
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2. Proposed Approach

ATOM is a calibration framework that simultaneously calibrates sensors of different modal-
ities though the optimization of atomic transformations. This concept is supported by a well-100

defined optimization pipeline, that defines a set of optimization parameters and minimizes a cost
function that supports different input modalities. This function f , which depends on the optimiza-
tion parameters Φ, is known as the objective function. Our approach minimizes f to calibrate
all the sensors of generic multi-modal robotic platforms simultaneously. In this process, the def-
inition of a tree graph which contains topological information about the relationship between105

reference frames is required. In this tree, nodes are reference frames and edges correspond to
the transformation between nodes. This data structure allows for the definition of unique paths
between the graph nodes, i.e., enables an efficient retrieval of the transformations between any
two frames in the tree. Figure 1 represents the robotic platform to be calibrated (AgRob V16)
with its respective referential frames, and the transformation tree considered for the calibration.110

(a) (b)

Figure 1: (a) AgRob V16 model and the respective referential frames represented as red-green-blue axes. (b): Transfor-
mation tree for AgRob V16 robotic platform. The majority of the frames not to be calibrated were omitted for simplicity.
Each sensor has an associated atomic transformation, denoted by the solid edges. Dashed edges denote transformations
that are not optimized (they can be static or dynamic). Each sensor has a corresponding link to which the data it collects
is attached, denoted in the figure by solid thin ellipses. Very few approaches in the literature are capable of calibrating
such a system while preserving the initial structure of the transformation graph.

The design of the transformation tree leads to the definition of the optimization parameters
to calibrate the system. An extrinsic calibration can be viewed as a pose estimation problem,
where the pose of each sensor is estimated. Thus, the set of parameters to optimize Φ, must
together define the pose of each sensor. To perform such a calibration, we propose to maintain
the initial structure of the transformation tree, calibrating only one atomic transformation per115

sensor. Since the system contains camera sensors, it is also possible to introduce the intrinsic
parameters of each camera in the set Φ. In this way, the set of parameters will be composed
of different modalities and so, there is the need to design an objective function that is able to
characterize sensors of in a multi-modal fashion.
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As previously discussed, pairwise approaches for projecting the objective function result in120

complex graphs with many combinations of relationship definitions. For every existing pair of
sensors, these relationships must be established according to the combined modality of the pair of
sensors, which leads to a problem of scalability for which there is no solution in the literature. To
solve this issue, we formulate our solution in Bundle Adjustment problem, in that the structure
of the objective function is designed in a sensor to calibration pattern paradigm. Also, for125

every collection of data, the transformation that takes the corners of the calibration pattern to
the world is optimized. In other words, the poses of the pattern are jointly estimated with the
poses of the sensors. To perform this iterative procedure, the set of optimization parameters Φ
must be initialized. The first guess for the pattern pose is obtained w.r.t. one of the cameras to
be calibrated, resulting in a transformation cami Tp, where p denotes pattern and aTb represents130

the transformation from frame b to a. As will be detailed later on, our calibration framework
allows the definition of an initial guess for the pose of each sensor and, consequently, for the
transformations to be calibrated. With this definition, it is possible to compute the pose of any
particular sensor j as an aggregate homogeneous transformation w As j , obtained from the chain
of transformations for that particular sensor present in the topological transformation graph:135

w As j =
∏

i∈R

iTi+1 =
∏

i∈K

iTi+1 · childT̂parent ·
∏

i∈L

iTi+1, (1)

where childTparent represents the transformation to be calibrated, iTi+1 for i ∈ K represent the prior
links to the frame parent, iTi+1 for i ∈ L the later to the frame child, and R is the set that contains
all the frames present in the chain of transformation of sensor j. So, to obtain the homogeneous
transformation from the pattern to the world, the following calculation is applied:

wTp = w Acamm · camm Tp , (2)

where p refers to the pattern, w states for world, and camm for the mth camera sensor. So, the140

set of parameters Φ to be optimized is composed of the transformation represented in (2) along
with the poses of each sensor to be calibrated, and, in the case of cameras, their intrinsics and
distortion parameters:

Φ =
[ cameras︷                                                            ︸︸                                                            ︷

xm=1, rm=1, im=1, dm=1, ..., xm=M , rm=M , im=M , dm=M ,

LiDARs︷                         ︸︸                         ︷
xn=1, rn=1, ..., xn=N , rn=N ,

Other modalities︷︸︸︷. . . ,

Calibration pattern︷                        ︸︸                        ︷
xk=1, rk=1, ..., xk=K , rk=K

]
,

(3)

where m refers to the mth camera to be calibrated, n states for the nth LiDAR to be calibrated,
k refers to the pattern detection of the kth collection of data, x is a translation vector [tx, ty, tz],145

r is a rotation represented thought the angle-axis parameterization [r1, r2, r3] (where the vector
r is used to represent the axis and its norm represents the angle), i is a vector with each cam-
era intrinsic parameters [cx, cy, fx, fy], and d is a vector of each camera distortion coefficients
[d0, d1, d2, d3, d4]. The intrinsic and distortion parameters of each camera can be initialized us-
ing any camera calibration toolbox, or in some cases, these parameters are also provided by the150

manufacture. The angle-axis parameterization was chosen because it has three components and
three degrees of freedom, which means that it does not introduce more sensitivity than the one
inherent to the problem itself (Hornegger & Tomasi, 1999), unlike the rotation matrix which has
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nine degrees of freedom for the also three components, or the euler angles that loose a degree of
freedom when two axis are aligned. Using angle-axis representation, we have six optimization155

parameters per sensor that represent the pose of each one, i.e., the geometric transformation that
will be calibrated. The optimization procedure, as will be explained, consists of the minimization
of an objective function by the definition of residuals that are calculated as an error (in pixels for
RGB cameras and in meters for 3D LiDARs) between the re-projected position of the calibration
pattern, and the position of the pattern detected by each sensor.160

2.1. Objective function

To be able to consider multiple modalities in the same optimization process, we propose to
structure the objective function F(Φ) as a composition of as many sub-functions fi(.) as desired
modalities. The objective function F(Φ) from (4) is minimized using a non-linear least squares
approach2. Least-squares finds a local minimum of a scalar cost function, with bounds on vari-165

ables, by having an m-dimensional real residual function on n real variables. As such, we choose
this minimization approach as its is the best fit for our problem. So, for each new modality added
to the calibration, a sub-function associated with it is designed and incorporated in F(Φ), which
allows for the minimization of the error associated with the pose of sensor of that specific modal-
ity. This is one of the reasons why the proposed approach is scalable. Thus, the optimization170

procedure can be defined as:

arg min
Φ

F(Φ) = arg min
Φ

1
2

∑

i

‖ fi({Φi})‖2, (4)

where fi(.) is the objective sub-function for the i-th sensor considering the set of k optimization
parameters {Φi}. Thus, the final cost to be minimized is computed by the sum of the squared sub-
function values for each set of optimization parameters. The value for all these sub-functions is
a vector with the residuals associated to whit re-projection of the points of the calibrated pattern.175

For our use-case, the goal is to calibrate a stereo camera system (two cameras) and a 3D LiDAR
sensor. So, the objective function is composed of the vector values of three sub-functions, two for
the cameras and one for the 3D LiDAR. Each sub-function is detailed in the next sub-sections.

2.1.1. Camera modality sub-function
When the sensors to be calibrated are cameras, their calibration is performed as a bundle180

adjustment (Agarwal et al., 2010), as described in our previous work, Oliveira et al. (2020b).
Thus, the created sub-function is based on the average geometric error corresponding to the
image distance (in pixels) between a projected point and a detected one. So, the goal of the cost
sub-function for camera sensors is to adjust the initial estimate for the intrinsic and distortion
parameters, and position of the pattern corners, in order to minimize the re-projection error fcam,185

given by:

fcam =
[
‖xc=1 − x̂c=1‖. . . , ‖xc=C − x̂c=C‖

]
, (5)

where ‖.‖ represents the Euclidean distance between two vectors, c is the index of the pattern
corners, xc denotes the ground-truth pixel coordinates of the measured points given by the pattern

2In this work we used the least-squares solver provided by SciPy: https://docs.scipy.org/doc/scipy/

reference/generated/scipy.optimize.least_squares.html.
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detection, and x̂ are the projected points, given by the relationship between a 3D point in the
world and its projection onto the image.190

To perform such calibration, 3D pattern points have to be found and re-projected onto the
image plane. For each collection of data, the camera(s) to be calibrated capture the pattern.
By knowing the real size of the pattern, and the size of each square that composes it, the 3D
coordinates of the corners can be found in the local pattern reference frame. Then, each corner
is located in the plane z = 0, since the corners are in the XoY plane of the local pattern reference195

frame. Thus, each corner in the local pattern referential frame pp is transformed to the camera
referential frame as follows:

pcam = camTw · wTp · pp. (6)

Note that, pcam and pp are homogeneous vectors of the 3D corner coordinates in each reference
frame, so that (6) is valid. Finally, to re-project each 3D corner from camera’s reference frame
pcam

c=i to the image plane, taking into account each camera intrinsic and distortion parameters, the200

pinhole camera model (Sturm, 2014) is used:

x̂c=i = K · pcam′′
c=i , (7)

where K is the matrix that contains the intrinsic parameters i and,

pcam′
c=i = pcam

c=i ·
1

zcam
=

[ xcam

zcam
,

ycam

zcam
, 1

]T
, (8)

pcam′′
c=i =

[
xcam′ · (1 + d0l2 + d1l2 + d4l6) + 2d2 · xcam′ycam′ + d3 · (l2 + 2x2

cam′ )
ycam′ · (1 + d0l2 + d1l2 + d4l6) + d2 · (l2 + 2y2

cam′ ) + 2d3 · xcam′ycam′

]
, (9)

where l =
√

( xcam
zcam

)2 + ( ycam
zcam

)2, and d j is the jth component of the distortion vector d. From (6)
to (9), it is possible to conclude that all the desired parameters to optimize are being considered:
the pattern to world transformation wTp present in (6) that can be computed as the inverse of
(2); the world to camera transformation camTw also present in (6); and finally, the intrinsic i and205

distortion parameters d considered in (7)-(9).
The use of these parameters to project the 3D corners in the image plane, together with

the minimization of the geometric re-projection error, lead to the parameter configuration that
optimize the sub-function fcam. Thus, it is expected that the re-projected points become closer
to the ground-truth corners during the optimization. Figure 2 shows the difference between the210

initial position of the pattern corners, and the final position of these same projected points, after
the optimization has been completed.

It is possible to observe that the pixels corresponding to the projection of the final position of
the points (dots in Fig. 2) almost perfectly match the ground-truth point (squares in Fig. 2).

2.1.2. 3D LiDAR sub-function215

For the case of 3D LiDARs, the sub-function flidar considers two types of residuals: orthog-
onal distance and limit points distance. To compute both, this approach also uses the calibration
pattern and, in specific, its boundary points. As will be detailed later on, our calibration frame-
work has a semi-automatic labelling procedure that allows to save, for each collection of data,
the LiDAR 3D points that are on the pattern. As in case of the camera sensor, this approach220

formulates the cost sub-function by minimizing the residuals w.r.t. some ground-truth. Here, the
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Figure 2: Difference between the initial position of the pattern corners, and the final position of these same projected
points, after the optimization has been completed. Squares denote the position of the detected pattern corners; crosses
denote the initial position of each projected corner; points denote the current position of the projected points.

ground-truth 3D points are, once again, generated in the pattern reference frame by knowing the
three dimensional structure of the pattern, such as its height and width. Thus, by knowing the
size of the pattern, the size of each pattern square, and the pattern origin (bottom left corner), the
coordinates of the boundary points defined in the local pattern’s reference frame are computed.225

It is important to note that, the size of the board between the pattern grid and the end of the
physical pattern had to be measured so that this step could be implemented. Also, as explained
before, all the calculated pattern limit points have coordinate z = 0, since the pattern’s reference
frame is in the XoY plane. After calculating the ground-truth boundary points of the pattern,
two things are required: the pattern boundary points observed by the 3D LiDAR sensor and the230

homogeneous transformation that converts 3D points from the LiDAR referential frame to the
local pattern reference frame.

Given a set of labelled 3D LiDAR cartesian points on the pattern plidar =
[
xc=i, yc=i, zc=i

]
, the

boundary points are calculated using a spherical parameterization for each 3D point. After com-
puting the spherical coordinates of each 3D LiDAR point on pattern ps,lidar =

[
rc=i, θc=i, φc=i

]
,235

two limit points are calculated considering the set of 3D LiDAR points on pattern belonging to
a given horizontal scan of the original point cloud. As the labelled set of 3D LiDAR points on
pattern is an unordered point cloud, the horizontal scans are computed by clustering the points
considering their θ value. So, points with the same θ value belong to the same horizontal scan.
Finally, to extract the two limit points per horizontal scan, the φ component maximum and mini-240

mum values of each set are computed, resulting in the two most distant points, corresponding to
points in the pattern boundaries. The result of this procedure is represented in Fig. 3.

The final step before computing the residuals that constitute the cost sub-function flidar is to
convert the set of labelled 3D LiDAR points on pattern, as well as the computed boundary points,
to the patterns’ reference frame. This is done using the homogeneous transformations computed245

8



(a) (b)

Figure 3: Two examples of the pattern boundary points extraction from LiDAR data. The colored points represent the
clustered LiDAR scans considering the spherical component θ, and the crosses represent the boundary points extracted
using the maximum and minimum values of the spherical component φ, for each cluster.

in (1) and (2):

pp = pTw · w Alidar · plidar, (10)

where pTw is the transformation matrix from the world to the pattern reference frame, and w Alidar

the transformation matrix from the world to the LiDAR sensor reference frame. Similarly to
the cameras’ case, (10) shows that the optimization parameters include the sensor pose and the
pattern pose. After this, the two residual types can be computed. The first, orthogonal distance, is250

the absolute z value of the coordinates of the projected 3D LiDAR points. As they are on patterns’
referential frame, it is intended that their z coordinate is zero. Therefore, any value different
from zero means that the optimization parameters (sensor pose and pattern pose) are not yet
correct. The second residual type is the Euclidean distance of x and y components between the
ground-truth pattern boundary points, and the LiDAR 3D points on pattern boundary calculated255

as described before. For each LiDAR point on the pattern boundary, the residual is computed
as the distance between x and y coordinates, in the calibration pattern frame, of the respective
LiDAR boundary point and the closest point that belongs to the limit of the physical board that
is being detected. This being said, the 3D LiDAR cost sub-function is as follows:

flidar =

[{∣∣∣zlidar,p
l=1

∣∣∣, ‖pboardlimit
q=1,xy − pp

q=1,xy‖
}
, . . . ,

{∣∣∣zlidar,p
l=L

∣∣∣, ‖pboardlimit
q=Q,xy − pp

q=Q,xy‖
}]
, (11)

where zlidar,p
l=i is the z coordinate of the ith 3D LiDAR point projected into the patterns’ referential260

frame, pboardlimit
q= j,xy are the x and y coordinates of the jth 3D LiDAR boundary point on the same

referential, and pp
q= j,xy are the x and y coordinates of the corresponding ground-truth boundary

point.
Figure 4 shows the ground-truth pattern boundary points representation (blue lines on the left

of Fig. 4), the calculated boundary points at the start of the calibration procedure (blue circles on265

the middle of Fig. 4), and the result of the optimization procedure with the ground-truth points
and the boundary points observed by the LiDAR aligned (right representation on Fig. 4).
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(a) (b) (c)

Figure 4: (a): calibration pattern and respective ground truth boundary points represented as blue lines; (b): misaligned
boundary points observed by the 3D LiDAR with the ground-truth points at the start of the calibration procedure; (c):
optimization result - ground-truth points and projected boundary points aligned. It is noteworthy that the orthogonal
distance aligned the z coordinate of the ground-truth pattern and 3D LiDAR points.

2.2. Normalization of multi-modal residuals

We propose a full calibration method where sensors of different modalities contribute to a
global vector residual of residuals. While the camera sub-function provides a set of residuals that270

are expressed in pixels, the LiDAR sub-function provides a set of residual expressed in meters.
This mismatch in units of measurements may display highly disparities in error magnitudes,
which could result in unwanted behaviours in the optimization processes due to differences in
scale. For example, a residual of 1 pixel has higher influence (or weight) in the optimization
path than a residual of 0.5 meters. Yet, our knowledge about the system tells us that the opposite275

should be considered. As result, the parameters that influence the residuals with higher scale will
dominate the optimization, while the other parameters are perceived to already be close to their
optimal state.

To handle the different scales in multi-model residuals in Equation 4, we employ a nor-
malization factor to the optimization. Let C = {c} be the set of existing residual classes (e.g280

C = {pixels,meters}) and c(i) ∈ C is the residual class for the ith sensor, then the optimization is
defined as

arg min
Φ

F(Φ) = arg min
Φ

1
2

∑

i

∥∥∥∥∥∥
fi({Φi})
ηc(i)

∥∥∥∥∥∥
2

, (12)

where ηc(i) is the normalization factor for residuals created by the sensor sub-function fi. Note
that the normalization factor ηc(i) is defined per residual class and not per sensor. The normal-
ization values per class are given by the arithmetic mean of the same class residuals before the285

optimization. For example, the normalization for the class pixels, with ηc(i) = ηpixels, is given by

ηpixels =
1
n

∑

j

‖ f j({Φ j})‖1 : ∀ f j ∈ {pixels} , (13)

where n is the total number of residuals that are part of the considered class and ‖.‖1 is the L1
norm. Note that the normalization factors are constant values during optimization, calculated
once with the residuals that result from the initial guess.
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3. Calibration framework290

The ROS (Quigley et al., 2009) has become the standard framework for the development of
robotic solutions. As referenced before, the proposed calibration procedure requires the creation
of a transformation tree, from which atomic transformations are optimized. For this purpose,
ROS provides a tree graph referred to as tf tree (Foote, 2013). With this tool, it is possible to
define a data structure as the one present in Fig. 1. Also, the Robot Operating System Visu-295

alization (RVIZ) tool supports additional functionalities, such as robot visualization, collision
detection, etc. In fact, this visualization procedure is interactive, in that if any transformation be-
tween two links changes, the robotic platforms and sensors affected by these links change its pose
accordingly. This interactive procedure is possible since the optimizations’ cost function always
recomputes the aggregate transformations. Therefore, a change in one atomic transformation in300

the chain affects the global sensor pose, and consequently, the error to minimize. So, if atomic
transformations change due to the calibration procedure, the tf tree will automatically adjust the
robots and sensors poses accordingly. It should be emphasized that, due to all these function-
alities, the calibration procedure should not change the structure of the tf tree. Our approach
preserves the predefined structure of the tf tree, since, during optimization, only the values of305

some atomic transformations contained in the chain are estimated, securing the topology of the
tree. To the best of our knowledge, our approach is one of few which maintains the structure of
the transformation graph before and after optimization.

Given all of the above, we state an extensive integration with ROS as a key component of
the proposed approach. The ROS calibration framework is segmented in five main components:310

configuration, initial estimate, data labelling, data collection, optimization procedure. Each will
be described in detail in the following sections.

3.1. Calibration configuration

The configuration defines the parameters which will be used throughout the calibration proce-
dure, from the definition of the sensors to be calibrated to a description of the calibration pattern.315

The proposed approach, detailed in Sec. 2, is based on the optimization of atomic transforma-
tions. These were combined through the use of the topological information contained in a tree.
The transformation tree is generated from a ROS Unified Robot Description Format (URDF) .
Additional information must be given to define which, out of the set of atomic transformations,
will be optimized during the calibration procedure. Also, a description of the calibration pattern320

must be provided. All this information is defined in a calibration configuration file.

3.2. Initial parameter estimation

Optimization procedures suffer from the known problem of local minima. This problem tends
to occur when the initial solution is far from the optimal parameter configuration, and may lead
to failure in finding adequate parameter values. To avoid this, the setup of the a plausible initial325

guess for the entire parametric optimization system is essential. Our approach supports different
modalities of parameters, as stated in (3). Thus, each modality requires a specific type of initial-
ization. For cameras intrinsic i and distortion d parameters, the initialization is performed using
any state-of-the-art camera calibration toolbox, or using the calibration provided by the manu-
facture. To initialize the transformations of sensors in general, we developed an interactive tool330

which parses the configuration URDF file and creates a 3D visualization tool for ROS interactive
marker associated with each sensor. Figure 5 shows an example of the developed tool.
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(a) (b)

Figure 5: Example of the developed interactive tool operation for AgRob V16 system. Here, the reference frames of the
cameras that compose the stereo camera system and the 3D LiDAR sensor were moved. When the user positions the
sensors in the desired pose, the initial estimate for the pose of each sensor is saved to use in calibration.

Here, we can see the user changing each sensor reference frame, dragging the respective
interactive markers. With this tool the user can move and rotate the markers relative to each
sensor. This provides a simple, interactive method to easily generate plausible first guesses for335

the poses of the sensors. Immediate visual feedback is provided to the user by the observation of
the 3D models of the several components of the robot model and how they are put together, e.g.
where each camera or LiDAR is positioned w.r.t. the vehicle. Also, for multi-sensor systems,
it is possible to observe how well the data from a pair of sensors overlap. An example of this
procedure can be watched at https://youtu.be/llg8jYCeAjk.340

Concerning the atomic transformations associated with the calibration pattern wTp present in
(2), these are initialized by defining a new branch in the transformation tree which connects the
pattern to the frame to which it is fixed. For example, for AgRob V16 case, wTp is estimated
through (2) where camm Tp is estimated solving the Perspectiva-n-Point (PnP) for the detected
pattern corners (Gao et al., 2003; Fabbri et al., 2020; Penate-Sanchez et al., 2013), and w Acamm by345

deriving its topology from the tf tree and using the initial values for each atomic transformation
in the chain.

3.3. Labeling data

The labeling of data refers to the annotation of the portions of data which captures the calibra-
tion pattern. A labeling procedure is executed for the data of each sensor, and can be automatic,350

semi-automatic or even manual in some cases. The information that is stored depends on the
modality of the sensor, but for cameras it is always the pixel coordinates of the corners observed
in the pattern.

The standard calibration pattern that is used for camera calibration is a chessboard pat-
tern. The images are labelled using one of the many available image-based chessboard detectors355

(Czyzewski, 2017). Our system is also compatible with charuco boards (Garrido-Jurado et al.,
2016). These have the advantage of being able to detect the pattern even when it is partially
occluded. Also in this case we make use of off the shelf detectors, e.g. Romero-Ramirez et al.
(2018); Hu et al. (2019).
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For the calibration of AgRob V16, a labeling algorithm for 3D LiDARs was developed. This360

method is semi-automatic and is initialized by a setup of a seed point. To label the pattern
points viewed by the 3D LiDAR, the user drags an interactive marker to a point located in the
pattern - the seed point. This constitutes the non-automatic stage of the procedure. After that, the
algorithm clusters a set of points (that are intended to belong to the pattern) using an Euclidean
distance threshold computed using the a priori known dimensions of the pattern. Despite being365

simple and fast, this approach reveals lack of precision, since it includes many outliers in the
labeling procedure. The pattern used is rectangular. Thus, the Euclidean distance threshold has
to be higher than the smaller side of the rectangle. This means that, if the pattern is close to
another object, points from this object will be labeled as pattern points. To overcome this issue,
a Random Sample Consensus (RANSAC) (Fischler & Bolles, 1981) algorithm is executed to370

fit the set of labeled points in a plane (the pattern plane), eliminating the outliers. RANSAC is
an iterative algorithm, and it is performed a maximum number of times M. To find points that
belong to the plane, the point to plane distance is computed in each iteration i for each point j as

Di j =

∣∣∣∣aix j + biy j + ciz j + di

∣∣∣∣
√

a2
i + b2

i + c2
i

(14)

where pj = [x j, y j, z j]T is the jth point on the cluster. With this, a point is considered as inlier
if its distance to the plane Di j is smaller than a given threshold Dthreshold. The final set of inliers375

corresponds to the one found in the iteration i that gives the higher number of points belonging
to the plane.

Figure 6 shows an example of the labeling procedure for cameras and 3D LiDARs proposed
in ATOM.

It is worth noting that, our approach works with partial detections, as represented in the figure.380

This interactive data labeling procedure is showcased in https://youtu.be/uNPIOCqxb5w.

(a)

(b)

Figure 6: (a): labeling image data using a charuco pattern; (b): labeling 3D LiDAR data on pattern (solid blue points)
using the semi-automatic proposed approach. Note that, our approach works with partial detections, i.e., collections of
data where the pattern is not fully detected. This figure presents an example of an partial detection for each type of
sensor. For the camera, only a portion of the corners of the pattern were detected. For the 3D LiDAR, the pattern is not
fully observable due to the low vertical resolution. Even though, our approach is able to calibrate the system with these
detections.
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3.4. Collecting data
In most robotic systems, the data coming from the sensors is streamed at different frequen-

cies. However, to compute the associations between the data of multiple sensors, temporal syn-
chronization of the sensor data is required. Of course, this only becomes an issue when calibrat-385

ing multi-sensor robotic systems. For now, the synchronization problem is solved trivially by
collecting data (and the corresponding labels) at user defined moments in which the scene has re-
mained static for a certain period of time. In static scenes, the problem of data de-synchronization
is not observable, which warrants the assumption that for each captured collection the sensor data
is “adequately” synchronized. This can be done using, for example, a tripod to held the pattern390

before collecting each snapshot of data (Rehder et al., 2016; Furgale et al., 2013). In this work,
the problem is approached in a simpler way, where the pattern is hold by the user, as shown in
Fig. 2, remaining static by sufficient amount of time to ensure the synchronization between all
the sensors.

To save the scene data captured by all the sensors in the calibration system, the user can395

do it with just two mouse clicks on the interactive ROS-based tool (on RVIZ) developed. We
refer to these recordings of data as data collections. Each one of them contains the values of
all atomic transformations that exist in the system at a given timestamp, a copy of the robot
configuration file, sensor data and labels, and high level information about each sensor, such as
the topological transformation chain, extracted from the transformation tree. This information400

is stored in a dataset file that will be read by the optimization procedure afterwards. Also, a
video showing the procedure for collecting data is provided for AgRob V16 calibration here
https://youtu.be/p7TuhSsRMcw.

It should be pointed out that, the set of collections should contain as many different poses as
possible. As such, collections should preferably have different distances and orientations w.r.t.405

the calibration pattern, so that the calibration returns more accurate results. This concern is
common to the majority of calibration procedures.

3.5. Visualizing the optimization
The immediate visualization of the calibration is essential for several reasons: it provides

the user the necessary data so that he can detect failures on the calibration, such as outlier data410

collections; it gives feedback about the cost function residuals minimization, which can serve to
detect possible local minima, and to make sure that the optimization procedure is converging.
Figure 7 shows the three main visualization features of ATOM.

Our calibration framework provides a simultaneous visualization of all the data collections, as
well as immediate feedback of the alignment between ground-truth points and labeled points for415

optimization, images with the reprojection, robot meshes, the position of the reference frames,
etc. Also, optimization graphics are provided with residuals values and the total error for each
iteration. This configuration is similar to the standard one which is used during the initial pa-
rameter estimation, the data labeling and collection, but contains a couple of key distinctions. As
mentioned above, the calibration procedure uses a dataset file which contains information about420

each of the stored collections. These collections contain data gathered in a a set of sequential
instants in time. The ROS calibration configuration publishes data from all collections simulta-
neously, as if those time instants were packed together and processed as if they had occurred all
at the same time. Collisions in topic names and reference frames are avoided by adding a col-
lection related prefix to each designation. Also, the original transformation tree is replicated for425

each collection. A video with an example of a calibration execution for AgRob V16 is provided
here https://youtu.be/HtTyTsWuMIQ.
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(a) (b)

Figure 7: (a): ROS calibration configuration - simultaneous visualization of all the collections of data and respective
alignment between ground-truth points and labeled points; (b): graphics representing the objective function minimization
- individual residuals value, and the total error vs iterations.

4. Results

To test and validate the performance of the proposed approach, an extensive evaluation pro-
cedure was developed. Our calibration framework, ATOM, was used to calibrate three configu-430

rations of the AgRob V16 sensing system. Two of them were pairwise calibrations between two
cameras of a stereo system, and a single camera and a 3D LiDAR, which we denote as ATOM
pairwise. The third was a calibration between all three sensors (two cameras and 3D LiDAR),
which we call ATOM full, where results for particular pairs of sensors are obtained using a full
calibration. In this procedure, three datasets were used, as represented in Tab. 1.435

Two of them (train-1, train-2) were used for training, i.e., to perform the calibrations, and
the third one (test-3) was used to test the calibration with specific metrics that will be detailed
later on. The datasets contain incomplete and partial collections, i.e., collections where the pat-
tern is not detected for all the sensors, and collections where the pattern is only partially visible,
respectively. This section is divided in two parts: the evaluation of ATOM’s performance against440

Table 1: Description of the datasets used for train and evaluation. Two datasets were used for training (calibration) and
one for testing (evaluation). The datasets contain incomplete collections, i.e., collections were the pattern is not detected
by at least one sensor, and partial collections, i.e., collections were the pattern is partially detected by at least one sensor.

Dataset Nr. Collections Observations
Total Incomplete Partial

train-1 42 5 38 Dataset contains incomplete collections.

train-2 56 0 24 The dataset does not contain the point cloud generated by the ZED camera.

test-3 15 0 8 Dataset with low number of collections, only used for test.
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Table 2: Summary of the methods used and evaluated in the experiments.

Method Calibration Properties
OpenCV (Bradski, 2000) pairwise reprojection error, intrinsics calibration

Stereo camera factory calibration pairwise reprojection error, intrinsics calibrations

ICP average (Besl & McKay, 1992) pairwise reprojection error, average of result of all collections

ICP best (Besl & McKay, 1992) pairwise reprojection error, best result of all collections

ATOM pairwise [this paper] pairwise reprojection error, angle-axis, intrinsics calibration

ATOM full [this paper] full calibration reprojection error, angle-axis, intrinsics calibration

state-of-the-art approaches, such as OpenCV stereo calibration (Bradski, 2000), and ICP point
cloud alignment (Besl & McKay, 1992); the characterization of ATOM w.r.t. several character-
istics of the datasets, such as the number of incomplete/partial collections, and the accuracy of
the initial guess. Table 2 makes a summary of the calibration experiments that were carried out.

OpenCV and the stereo camera factory calibration were used to get the camera-to-camera445

extrinsic calibration, and ICP was explored to get the camera-to-LiDAR calibration. This last
calibration was obtained by the alignment of the 3D LiDAR point cloud, and the 3D point cloud
provided by the stereo camera software development kit. Two versions of ICP were used as
camera-to-LiDAR extrinsic calibration: the one corresponding to the collection where the fitting
of point clouds was more accurate, and the average of the transformations obtained in all collec-450

tions. Finally, as referenced before, ATOM was calibrated both in pairwise and full modes, and
both approaches are evaluated.

4.1. Methodology

One of the key characteristics of our evaluation procedure is the use of separate datasets to
perform the calibration and generate the results. As discussed in Sec. 3, ATOM provides a data455

collection procedure, where datasets are generated and visualized on RVIZ . Datasets are com-
posed of several collections, each one containing data of all the sensors, initial atomic transfor-
mations, pattern labelled points, and other information. To evaluate our calibration framework,
two datasets where initially collected - train-1 and train-2. Then, three calibrations were exe-
cuted over each one of the datasets, two pairwise and one using all the sensors to be calibrated460

in AgRob V16 system. These calibrations generate a json file similar to the one generated at
the end of the data collection procedure, but with the calibrated atomic transformations. After
obtaining all these calibration configurations, a third dataset was recorded - test-3. It was used
to evaluate the accuracy of the calibrations obtained. Using the metrics that will be described
later on, the chain of transformations of each calibration was loaded and used to compute errors465

using the labelled data of the test dataset. In this way, possible influence of using the same data
to calibrate and test is eliminated, and a more rigorous evaluation is achieved.

Unlike ATOM, both OpenCV and ICP perform sensor-to-sensor calibration, instead of cal-
ibrating atomic transformations without changing the topology of the chain of transformations.
Thus, to evaluate these methods in the same way ATOM is evaluated, the atomic transformations470

set to be calibrated had to be recovered from the sensor-to-sensor calibrations. This problem is
formulated in Fig. 8.

Let link2 Tbase be the entire chain of transformations from the base link to the data link of
the anchored sensor, T̂ be the sensor to sensor calibration obtained, parent1 Tbase be the chain of
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Figure 8: Chain of transformations representing the generic configuration to extract an atomic transformation from a
sensor to sensor calibration. Preserving the chain of transformation of the anchored sensor, and taking into account the
sensor to sensor calibration T̂, we recover the atomic transformation child1 Tparent1 .

transformations from the base link to the parent link of the atomic transformation to be calibrated475

child1 Tparent1 , and link1 Tchild1 the chain of transformation from the atomic transformation child link,
to the non-anchored sensor data link. The entire chain of transformations relationships can be
formulated as follows:

T̂ · link2 Tbase = link1 Tchild1 · child1 Tparent1 · parent1 Tbase. (15)

So, from (15), we can extract the atomic transformation of the non-anchored sensor as follows:

child1 Tparent1 = (link1 Tchild1 )−1 · T̂ · link2 Tbase · (parent1 Tbase)−1. (16)

The advantage of this approach is that it is generic. For example, from OpenCV, a camera to480

camera metric is obtained. Thus, the procedure consists in anchoring one of the cameras, and
use the obtained transformation to recover the atomic transformation marked for calibration in the
original ATOM configuration. In the same way, ICP provides a camera to LiDAR calibration.
Once again, we anchor one of these sensors, and apply the exact same routine to extract the
non-anchored sensor atomic transformation to be calibrated. In this way, we are able to obtain a485

calibrated system without changing the initial chain topology, which allows the direct comparison
of these state-of-the-art approaches with ATOM, using exactly the same metrics. These metrics
are described in the next section.

4.2. Metrics
To evaluate the camera to camera calibration performance, the methodology used is based490

on three different metrics: the mean rotation error (rad), the mean translation error (m), and the
reprojection error (px). To compute the reprojection error, the idea is to use the calibration result
to project the detected pattern corners of one camera image into the image of the second cali-
brated camera image and compare the projected pixel coordinates with the ground truth pattern
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corners coordinates in the image of the anchored camera. To transform pixels from one camera495

into another, we start from projecting the 3D world coordinates of the pattern corners into the
image of a camera, using (6)-(7). Since the 3D pattern corners are defined in the local pattern
reference frame, they all lie in the plane z = 0. Thus, (6)-(7) can be simplified to the following:

pcam = K · camT′p · pp′ , (17)

where camT′p is a portion of the matrix camTw · wTp, without the component z of the rotation, as
follows:500

camT′p =


r11 r12 tx

r21 r22 ty
r31 r32 tz

 , (18)

and pp′ is the pattern corner, represented as a vector in its homogeneous form, without the z
component, i.e., pp′ =

[
x y 1

]T . Using the fact that the 3D coordinates of the pattern’s corners are
the same for both cameras, (17) can be applied to the two of them, so that we can find a relation
between both expressions. This resulted in the following formulation:

pcam2 = Kcam2 · cam2T′p ·
(cam1T′p

)−1 · (Kcam1)−1 · pcam1, (19)

where cam1 and cam2 refer to the cameras that were calibrated. This formulation provides the505

relationship between pixel coordinates of the pattern corners in both camera images. However,
(19) requires the camera to pattern transformation matrix for both cameras. This can be a prob-
lem since, some approaches, unlike ATOM, do not estimate the camera to pattern transformation
while performing the camera to camera calibration. In addition to this, ATOM estimates these
transformations for a training dataset. So, the usage of a test dataset to evaluate all the frame-510

works, denies the use of the estimated pattern pose from ATOM. To overcome this, the pattern
pose w.r.t. one of the cameras cam1Tp is computed using the PnP algorithm. Then, using the out-
put json file from each calibration, we recover the camera to camera transformation cam1Tcam2,
through the chain of transformations. In this manner, it is possible to determine the transforma-
tion of the other camera to the pattern, as follows:515

cam2Tp =
(cam1Tcam2

)−1 · cam1Tp. (20)

From this expression, we can derive cam2T′p and cam1T′p, and successfully project pixels from one
image into the other. With this information, the reprojection error is computed as follows:

exy = ppro jected − pexpected. (21)

From (21), the error can be decomposed in its x and y components. Also, considering the repro-
jection error for all the N collections, the root mean square error is calculted as follows:

erms =

√
1
N

∑
e2

xy. (22)

Figure 9 illustrates a resulting corner reprojection from one camera into the other using the520

ATOM full calibration.
For the calculation of the mean rotation and translation errors to evaluate the camera to cam-

era calibration, we consider the following observation: the chain of transformations from the
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Figure 9: Camera reprojection error from one camera image into the other. Squares represent the expected corner pixel
coordinates, and crosses the projected result.

base link to the pattern reference frame that passes from each one of the calibrated cameras
should be equal. This happens since the calibration pattern pose in reference with the base link is525

fixed, and any chain of transformations that link these two referentials should represent the same
spatial relationship. Thus, the difference in rotation and translation can be quantified, assessing
the inequality between the two chains of transformation. Once again, this formulation requires
the pattern pose w.r.t. each one of the cameras, that is again extracted solving the PnP problem.
With this information, we can state that530

[
baseRcam1

base tcam1
0 1

] [
cam1Rp

cam1 t p

0 1

]
=

[
baseRcam2

base tcam2
0 1

] [
cam2Rp

cam2 t p

0 1

]
. (23)

Now, we can define the rotation and translation difference as

∆R =
(baseRcam1 · cam1Rp

)−1 · baseRcam2 · cam2Rp (24)

∆t = baseRcam1 · cam1 t p + base tcam1 − baseRcam2 · cam2 t p−base tcam2 (25)

Finally, we can define the mean rotation error as

eR =
1
N

∑

i

||angle(∆Ri)||, (26)

where angle is the angle-axis representation of the rotation, and the mean translation error as

et =
1
N

∑

i

||∆ti||. (27)
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(a) (b) (c)

Figure 10: 3D LiDAR to camera reprojection error metric calculation. (a) represents the annotation procedure, where
four classes are annotated, each one representing a single side of the pattern; (b) red curves represent the approximation
of each one of the classes by a polynomial function, in order to account for the distortion in the image; (c) reprojection
error calculation - blue dots represent the 3D LiDAR pattern boundary reprojected points and yellow lines the difference
of each one of the points with the labelled ground truth.

To evaluate the 3D LiDAR to camera calibration, we used the reprojection error (px) and its
corresponding root mean square error (px) considering all the test collections N. In this case, the535

mean rotation and translation errors were not used due to the difficulty of estimating the pattern
pose w.r.t. the LiDAR sensor with precision. The process of calculating the reprojection error to
evaluate the camera to LiDAR calibration consists in three main steps:

1. Label the pixels that belong to the boundaries of the pattern in the image.
2. Reproject the pattern boundary points in the LiDAR’s referential frame (detailed in Sec.540

2.1) pboardlimit into the image.
3. Compute root mean square between labeled and projected points.

Figure 10 shows these steps.
An annotation tool was developed to perform the labelling. This tool allows the user to

manually annotate individual points corresponding to four classes, each one representing one side545

of the pattern in each image. Then, in order to account for the image distortion, we approximate
each one of the pattern sides by a polynomial, fitting the labelled points. In this step, a simple
linear regression would not suffice because images have distortion which transforms straight ines
into curves. So, a polynomial is more suitable for modeling this phenomenon. Figures 10a and
10b show these two steps. After having the annotations for all the images of the camera to be550

calibrated in the test dataset (test-3), the reprojection error is calculated. To do so, the 3D LiDAR
labelled points that belong to the pattern boundaries are reprojected into the image using (6)-(9).
So, for each collection, the error between each projected point and the closest ground truth point
belonging to one of the polynomial curves is calculated as in (21). Figure 10c shows an example
of the reprojection result and the corresponding error for each point. Considering the reprojection555

errors calculated for each one of the N collections, the root mean square error is also calculated
using (22).

It should be emphasised that, all of these metrics are publicly available, and are integrated
in the ATOM software framework. A specific package called ATOM evaluation was created and
can be easily used by the user to evaluate the calibrations performed.560

4.3. Evaluation
The evaluation procedure applies the previously described metrics to compare ATOM with

state-of-the-art calibration methods. Note that these state-of-art methods are pairwise and as
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Table 3: Performance comparison of methods for camera to camera calibration.

Method Train dataset eR (rad) et (m) ex (px) ey (px) erms (px)

OpenCV (Bradski, 2000)
train-1

Not able to calibrate due to partial pattern detections.
ATOM pairwise 0.009 0.003 0.551 ± 0.800 0.780 ± 1.090 1.049

ATOM full 0.008 0.003 0.547 ± 0.759 0.638 ± 1.034 0.974
OpenCV (Bradski, 2000)

train-2
0.006 0.003 0.582 ± 0.648 0.622 ± 0.966 0.863

ATOM pairwise 0.010 0.006 0.655 ± 1.055 0.677 ± 0.982 1.020
ATOM full 0.008 0.005 0.594 ± 0.912 0.696 ± 1.033 0.974

ZED’s factory calibration - 0.007 0.006 2.220 ± 0.765 0.486 ± 0.823 1.757

such not able to calibrate the entire system simultaneously. The comparison with ATOM, which
is a general, full calibration approach, against specialized pairwise methods is not entirely fair.565

However, since the nature of all the metrics used in the evaluation is also pairwise, it is ATOM
that is at a disadvantage in comparison with the other methods. For the camera-to-camera cal-
ibration scenario, two versions of ATOM were calibrated in two diffeernt training datasets, and
evaluated in the same test dataset. The first is a pairwise calibration between both cameras, and
the second a full calibration of the entire AgRob V16 system, with the same two cameras and570

a 3D LiDAR. It is worth noting that, the calibrations performed consider each camera intrinsic
parameters, as well as the pairwise extrinsic calibration between them. To compare ATOM with
the state of the art, the OpenCV stereo calibration toolbox (Bradski, 2000) was used to calibrate
exactly the same configuration. Additionally, the factory’s intrinsic and extrinsic calibrations
were evaluated. Table 3 summarizes all these experiments.575

Starting by the analysis of ATOM pairwise and ATOM full, we can see that both versions
present similar performances, with marginal differences with respect to all the metrics calcu-
lated. For example, for the train-1 dataset, we can see a root mean square error difference of
0.075 px and for train-2 0.046 px. Thus, we can conclude that, ATOM allows to optimize an
entire robotic system without a significant loss of performance, when comparing with a specific580

pairwise calibration between the two sensors of interest. In what concerns OpenCV, Tab. 3 shows
that, for the train-1 dataset, it is not able to calibrate. This happens since this framework requires
collections where all the pattern corners are detected, i.e., non partial detections. So, since the
majority of the collections present in this dataset are partial, OpenCV is not able to calibrate.
This is a limitation since, to accomplish a dataset without partial collections, its variety can be585

limited due to the impossibility of collecting, e.g., collections with the pattern far away from the
cameras. On the other hand, for the train-2 dataset, OpenCV achieves the smaller reprojection
root mean square error. In this, the number of partial collections is low, and OpenCV, a spe-
cialized pairwise calibrator for cameras, performs an accurate intrinsic and extrinsic calibration.
Even so, ATOM full shows errors only slightly higher than OpenCV for this dataset, showing590

that it is capable of achieving a state-of-the-art performance, even considering a non pairwise
approach. Concerning the camera factory calibration, it is clear that it presents the less accurate
calibration. This can be explained since the calibration the same for all the equipments. Finally,
to analyse the impact of the ATOM’s calibration, Fig. 11 shows the dispersion of the reprejection
error per collection, before and after calibrating with ATOM full.595

As expected, the dispersion of the error before calibrating is higher in almost all collections.
On the contrary, after calibrating the cameras with ATOM full, the dispersion drastically reduces,
with the exception of one collection (represented in brown). This collection can represent a

21



(a) (b)

Figure 11: Reprojection error dispersion for the camera to camera calibration using ATOM full configuration. Each color
represents the error associated with one individual collection. (a) is the representation of this error before calibrating
(using the initial guess), and (b) after the calibration.

Table 4: Performance comparison of methods for camera to 3D LiDAR calibration.

Method Type Train dataset ex (px) ey (px) erms (px)

ICP average (Besl & McKay, 1992) left camera - 3D LiDAR

train-1

47.210 ± 31.374 19.058 ± 28.233 44.307
ICP best (Besl & McKay, 1992) left camera - 3D LiDAR 9.111 ± 11.950 2.625 ± 7.967 10.492

ATOM pairwise right camera - 3D LiDAR 3.054 ± 4.727 1.031 ± 2.689 3.869
ATOM pairwise left camera - 3D LiDAR 3.648 ± 4.846 1.260 ± 2.869 4.101

ATOM full right camera - 3D LiDAR 3.351 ± 4.874 0.950 ± 2.279 3.811
ATOM full left camera - 3D LiDAR 3.398 ± 4.923 1.100 ± 2.602 3.942

ICP average (Besl & McKay, 1992) left camera - 3D LiDAR

train-2

- - -
ICP best (Besl & McKay, 1992) left camera - 3D LiDAR - - -

ATOM pairwise right camera - 3D LiDAR 7.574 ± 6.393 1.776 ± 3.181 6.715
ATOM pairwise left camera - 3D LiDAR 7.560 ± 5.535 1.619 ± 2.795 6.432

ATOM full right camera - 3D LiDAR 7.702 ± 5.441 1.648 ± 2.781 6.537
ATOM full left camera - 3D LiDAR 8.117 ± 5.692 1.687 ± 2.838 6.765

degenerate of data collection, due to, for example, de-synchronization of the data from from the
sensors.600

In order to evaluate the camera to LiDAR calibration, ATOM was used to calibrate both
modalities in three different manners: two ATOM pairwise versions, one between the LiDAR
and each camera, and the ATOM full version that comprises all three sensors. To compare our
approach with the state-of-the-art, ICP (Besl & McKay, 1992) was used to calibrate the left
camera and the LiDAR in two different ways: one considering the average of the calibration605

obtained in all the collections, and other considering only the collection that presents the best
alignment between the two point clouds. Note that, ICP only calibrates the left camera w.r.t.
the LiDAR since the stereo camera point cloud extracted directly using the manufacture’s API is
defined in this camera referential. Table 4 summarizes all this information.

Similarly to the camera-to-camera case, here we can verify that ATOM pairwise and ATOM610

full result in a similar calibration performance, with marginal reprojection error differences. So,
once again, this leads to the conclusion that ATOM full can be used to calibrate all the robotic
system without any significant loss of performance while evaluating calibrations between pairs
of sensors. In this set of tests, a consistent decrease of performance of all the calibration con-
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Figure 12: Point cloud projection into the left camera image using the 3D LiDAR to camera calibration. The color
represents the points depth. It is worth noting that, this procedure was done using the ATOM full calibration result, with
a collection from the test dataset, just like in all the evaluation pipeline. If the system is accuratly calibrated, changes
in point’s color, which denotes a variation of the measured range, should coincide with transitions between far and near
objects in the image.

figurations from train-1 to train-2 dataset is observed. This consistency can be caused by syn-615

chronization errors between sensors while collecting the calibration data. Looking for the ICP
performance on train-1 dataset, firstly, we can conclude that the ICP average is highly affected
by outliers, i.e., collections where the calibration fails. This can be inferred by the high standard
deviations present in the x and y reprojection error compoenents. ICP best, despite being signif-
icantly less accurate than ATOM, presents a better performance than ICP average. The overall620

bad performance of ICP can be explained by the difficulty of aligning a dense point cloud (pro-
vided by the stereo camera), and a sparse one (provided by the laser). It is worth noting that, the
train-2 dataset does not contain the stereo camera point cloud, so here ICP can not be used for
calibration. To have a visual perception of the ATOM full performance on the calibration of the
left camera and the LiDAR, Fig. 12 shows the reprojection of the LiDAR 3D points in the left625

camera image.
In this Fig., color represents the points depth. Here, the transitions of the objects can be

sharply observed, which is a good indicator for the calibration performance.

4.4. Impact of the number of collections used for training
One of the major questions in general for calibration procedures is the minimum amount of630

data required to calibrate sensors with precision. In this section we propose an evaluation of
ATOM full calibration using different numbers of training collections. The calibration of the
three combinations of sensors is evaluated for five different levels of collections used. Table 5
presents the results obtained for each configuration.

Starting by the analysis of the camera-to-camera calibration, here we can see that the in-635

crease of the number of collections leads to a increase in performance. Using a single collection,
as expected, results in higher reprojection, rotation and translation errors. While increasing the
number of training collections, the performance increases, with the best performance being ob-
served with the maximum number of collections. Looking at the performance of the calibration
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Table 5: Impact of the number of collections in ATOM’s full calibration performance. The dashed entries correspond to
results not generated since, for the camera-to-LiDAR case, the mean rotation and translation errors are not available.

Type Nr. Collections eR (rad) et (rad) ex (px) ey (px) erms (px)

camera - camera

1 0.051 0.053 8.205 ± 7.201 16.089 ± 3.346 13.534
5 0.017 0.016 3.540 ± 4.575 1.108 ± 1.449 4.233
10 0.009 0.004 1.377 ± 1.318 0.932 ± 0.991 1.645
20 0.008 0.003 0.515 ± 0.719 0.658 ± 1.056 0.976
30 0.008 0.003 0.547 ± 0.759 0.638 ± 1.034 0.974

right camera - 3D LiDAR

1 - - 4.348 ± 6.314 1.936 ± 4.431 5.487
5 - - 4.202 ± 5.179 1.144 ± 2.342 4.466
10 - - 3.305 ± 4.742 0.984 ± 2.387 3.820
20 - - 3.355 ± 4.744 1.005 ± 2.412 3.774
30 - - 3.352 ± 4.874 0.950 ± 2.279 3.811

left camera - 3D LiDAR

1 - - 5.126 ± 6.686 1.527 ± 3.435 5.566
5 - - 3.381 ± 4.447 1.058 ± 2.503 3.730
10 - - 2.937 ± 4.430 1.115 ± 2.791 3.712
20 - - 3.411 ± 4.887 1.258 ± 2.959 4.046
30 - - 3.398 ± 4.924 1.100 ± 2.602 3.942

of the LiDAR with both cameras, we can see that, as expected using a single collection also640

results in a higher reprojection error. However, in this case, this difference is not significant, and
while increasing the number of collections, the performance saturates. Thus, we can conclude
that, the increase of the number of collections has a positive impact in the final performance of
all the calibration configurations. However, the camera-to-camera calibration is more sensible to
the lower number of collections than the camera-to-LiDAR calibration.645

4.5. Impact of the number of incomplete collections used for training

The proposed calibration framework, ATOM, supports collections where the pattern is not
detected by all the sensors in the calibration system. For example, suppose that the pattern is, for
a specific collection, is viewed by the right camera and the LiDAR but not by the left camera.
The current section intends to evaluate the impact of this type of collections, and conclude if650

the the presence of incomplete collections has, or not, correlation with changes on ATOM’s
performance. Table 6 summarizes the results obtained for three sensor configurations with four
different values of incomplete collections, maintaining the same number of training collections.

ATOM can deal with incomplete collections, as long as the pattern is detected by at least one
sensor. If not, the calibration system can not compute any residual, and that collection must be655

discarded. On the other hand, if, a single sensor does not detect the pattern for a specific col-
lection, this leads to a reduction of the number of residuals used on the optimization procedure.
This being said, results do not show any correlation between the increase of the number of in-
complete collections and the performance of ATOM. So, this leads to the conclusion that ATOM
can deal with the decrease of the number of residuals (as long as sufficient number of collections660

are provided). This conclusion consistent with the one taken from Tab. 5, where it was shown
that, ATOM can calibrate accurately for a reasonable low number of collections.

4.6. Impact of the accuracy of the initial estimate

The initial estimate (or initial guess) of the calibration parameters has an impact in the out-
come of the optimization. A good initial estimate provides a sufficient approximation that allows665
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Table 6: Impact of the number of incomplete collections in ATOM full calibration performance. The dashed entries
correspond to results not generated since, for the camera-to-LiDAR case, the mean rotation and translation errors are not
available.

Type Nr. Collections eR (rad) eR (rad) ex (px) ex (px) erms (px)
Complete Incomplete

camera - camera

10 0 0.011 0.011 1.159 ± 1.479 0.848 ± 1.182 1.457
10 2 0.006 0.003 0.821 ± 0.711 0.606 ± 0.900 1.031
10 4 0.009 0.006 1.680 ± 2.001 0.784 ± 0.945 2.017
10 5 0.010 0.005 0.778 ± 0.990 0.641 ± 0.908 1.076

right camera - 3D LiDAR

10 0 - - 5.104 ± 6.517 1.370 ± 3.085 5.496
10 2 - - 3.272 ± 4.800 1.068 ± 2.634 3.920
10 4 - - 3.414 ± 4.934 1.040 ± 2.515 3.964
10 5 - - 3.734 ± 4.956 1.111 ± 2.540 4.069

left camera - 3D LiDAR

10 0 - - 5.113 ± 6.479 1.535 ± 3.430 5.576
10 2 - - 3.112 ± 4.665 1.192 ± 2.970 3.930
10 4 - - 2.995 ± 4.541 1.137 ± 2.886 3.849
10 5 - - 3.720 ± 5.012 1.274 ± 2.907 4.169

the optimization process to find the optimal solution that best represents the real calibration of
the system. In turn, a inaccurate estimate may lead the optimization process to an unrecoverable
state where it is not possible to achieve the optimal solution. This is known as the problem of
local minima.

In this section, we are interested in assessing the robustness of ATOM to the accuracy of670

the initial estimate. More specifically, the angle and distance error to the optimal state that our
method can handle and the additional execution times that result from said errors. To characterize
the robustness to the angle error, we start with the optimal angle and then add the angle error to
the the Euler components of the rotation. The sign of the error is provided by a fair binomial
sampling (Girshick et al., 2006). The tolerance to the distance error is found by sampling an675

uniform offset from the optimal positions that sits on a sphere with a radius equal to the distance
error. Because random sampling is used, we run the experiment for each error 10 times and the
reported values are the mean of the runs. By increasing the error in several steps, we can pinpoint
the error at which our optimization process will fail. Note that the error is applied to all pose
parameters that are being estimated. The results are presented in Figure 13.680

The obtained results show that our optimization process can handle an angle error of approx-
imate 20 degrees and a distance error of 0.5 meters, for each sensor. In our opinion, these errors
provide a sufficient margin of tolerance for a practical usage of our manual procedure for initial
parameter estimation, described in section 3.2. The execution times are strictly related to the
convergence of the optimization. Inside the margin of tolerance, the execution times are mostly685

constant (with some fluctuations). This means the optimization process adequately handles the
imposed error with a proper convergence.

5. Conclusions

This paper solves the problem of camera-to-LiDAR calibration using the optimization of
atomic transformations. To do so, this work formulates the calibration as a Bundle Adjustment690

problem, minimizing the reprojection error of sensors that can have different modalities. Our
approach, ATOM, provides several advantages when compared with the current state-of-the-art:
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Figure 13: Impact of the initial angle (a) and distance (b) estimation error on the optimization error and execution time.
The considered optimization error is the root means squared (RMS) error.

(i) it offers a framework to simultaneously calibrate any number of sensors; (ii) it improves the
optimization of different sensor modalities by introducing the multi-modal normalization. (iii)
it maintains the topology of the input transformation tree; (iv) it supports incomplete and partial695

collections of data, which makes the detection procedure more flexible and robust; (v) it uses
a common calibration pattern, which generalizes the approach; (vi) it has seamless integration
with ROS, setting a complete framework for camera to LIDAR calibration.

Results show that the proposed approach presents similar performance in comparison with
the state-of-the-art, even calibrating the entire robotic system simultaneously. These results700

demonstrate that ATOM can achieve the same performance of specialized methods in pairwise
calibration between specific sensors, while running a complete calibration with multiple sensors
of different modalities. Furthermore, our framework proved to be robust to inaccurate initial
guesses and small number of collections. Finally, the use of a generic calibration pattern consti-
tutes a major advance since, in the current state-of-the-art, many approaches use built in-house705

patterns.
Future work aims to test ATOM in more advanced robotic systems, with multiple 3D LiDARs.

Additionally, the problem of data synchronization while collecting data for calibration will be ad-
dressed thought the use of simple concepts such as data interpolation, and more advanced ones,
such as generative adversarial networks to generate synchronized sensor data.710

Acknowledgements

This Research was funded by National Funds through the FCT—Foundation for Science and
Technology, in the context of the project UIDB/00127/2020. André Silva Pinto de Aguiar thanks
the FCT—Foundation for Science and Technology, Portugal for the Ph.D. Grant DFA/BD/5318/2020.

References715

Agarwal, S., Snavely, N., Seitz, S. M., & Szeliski, R. (2010). Bundle adjustment in the large. In K. Daniilidis, P. Maragos,
& N. Paragios (Eds.), Computer Vision – ECCV 2010 (pp. 29–42). Berlin, Heidelberg: Springer Berlin Heidelberg.

de Aguiar, A. S. P., dos Santos, F. B. N., dos Santos, L. C. F., de Jesus Filipe, V. M., & de Sousa, A. J. M. (2020). Vine-
yard trunk detection using deep learning – an experimental device benchmark. Computers and Electronics in Agri-
culture, 175, 105535. URL: https://doi.org/10.1016/j.compag.2020.105535. doi:10.1016/j.compag.720

2020.105535.

26
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72 CHAPTER 3. CAMERA TO LIDAR CALIBRATION

3.2 Final remarks

The proposed camera-to-LiDAR calibration approach contributed with several

novelties to the state-of-the-art. The main one is the fact that the formulated

algorithm can simultaneously calibrate any number of sensors, which means that

the entire sensing system present on a robot can be calibrated at once. Another

key addition is the developed visualization framework, where the user can see the

real-time calibration status, and also position sensors to set the initial guess for the

optimization process. On the other side, this work presents two main limitations.

The first is that the output of the calibration does not provide a sensor-to-robot

transformation, which means that the transformation from the base of the robot to

at least one sensor have to be inferred in some other way. Also, the calibration

approach does not provide data synchronization which can be important when

calibrating sensors with different frame rates.
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4 Deep Learning-based semantic

vineyard perception

One of the main goals of this thesis is to explore the concept of a semantic approach

that can create maps of the crops with meaningful information in different growth

stages. For this reason, it is essential to have a semantic perception system that

can capture these natural features. In this work, it is proposed the detection of vine

trunks and grape bunches using DL concepts. Since the perception system works

on-board of robots and feeds the localization and mapping algorithms, lightweight

DL models were used in an Edge-AI manner. In this way, the object detection is

executed in dedicated hardware at high frequency.

This research line produced four different articles presented in this chapter that

demonstrate the evolution of the semantic perception approach. Each article

presents significant innovations in relation with the previous ones. The first three

approach the vine trunk detection problem and the last one the grape bunch

detection at different growth stages. As will be detailed, the work started with

a small dataset and a low amount of models running in a Tensor Processing Unit

(TPU). Then, it evolved to the exploration of a new device, with a benchmark

between them both, and a higher amount of trained and deployed models. Finally,

it resulted in a vineyard perception system supported by a novel dataset with

more than 9000 images with annotated vine trunks and 1900 with annotated grape

bunches. The main idea of this solution is to have a technology that runs in dedicated

devices without using resources of the main robot’s computer. Since the goal is to

have high frequency semantic detections, the models used are lightweight and are
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built to run in mobile or embedded devices.
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4.1 Visual trunk detection using transfer learning

and a Deep Learning-based coprocessor

The main goal for the semantic perception algorithm is to have a system running

in an embedded device that can output the detections at high frequency. Such

detections are calculated with Convolutional Neural Networks (CNN)s of adequate

complexity, the so-called lightweight DL models. One of the most popular family

of models that fulfill these requirements are the MobileNets (Howard et al., 2017).

These models can run in dedicated hardware such as TPUs and Graphical Processing

Units (GPU)s and present two hyperparameters that can be tuned to adjust

the tradeoff between latency and accuracy. The framework used, Tensorflow1,

already provides a pretrained version of these models in general datasets such

as Coco2. In this way, models can be retrained for specific datasets using a

technique called Transfer Learning (TL). This thesis uses these concepts to create

a vine trunk detector using two versions of the MobileNets. This work produced

a publicly available dataset and an article published in the IEEE Access Journal

entitled Visual Trunk Detection Using Transfer Learning and a Deep Learning-

Based Coprocessor (Aguiar et al., 2020b). The dataset is composed of 336

different vineyard images with approximately 1600 annotated vine trunks. Results

demonstrated that this approach can achieve vine trunk detection with a frame rate

of approximately 50Hz and with an overall Average Precision of 52.98%.

1https://www.tensorflow.org/
2https://cocodataset.org/

https://www.tensorflow.org/
https://cocodataset.org/
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ABSTRACT Agricultural robotics is nowadays a complex, challenging, and exciting research topic.
Some agricultural environments present harsh conditions to robotics operability. In the case of steep
slope vineyards, there are several challenges: terrain irregularities, characteristics of illumination, and
inaccuracy/unavailability of signals emitted by the Global Navigation Satellite System (GNSS). Under these
conditions, robotics navigation becomes a challenging task. To perform these tasks safely and accurately,
the extraction of reliable features or landmarks from the surrounding environment is crucial. This work
intends to solve this issue, performing accurate, cheap, and fast landmark extraction in steep slope vineyard
context. To do so, we used a single camera and an Edge Tensor Processing Unit (TPU) provided by Google’s
USB Accelerator as a small, high-performance, and low power unit suitable for image classification,
object detection, and semantic segmentation. The proposed approach performs object detection using Deep
Learning (DL)-based Neural Network (NN) models on this device to detect vine trunks. To train the
models, Transfer Learning (TL) is used on several pre-trained versions of MobileNet V1 and MobileNet
V2. A benchmark between the two models and the different pre-trained versions is performed. The models
are pre-trained in a built in-house dataset, that is publicly available containing 336 different images with
approximately 1,600 annotated vine trunks. There are considered two vineyards, one using camera images
with the conventional infrared filter and others with an infrablue filter. Results show that this configuration
allows a fast vine trunk detection, with MobileNet V2 being the most accurate retrained detector, achieving
an overall Average Precision of 52.98%. We briefly compare the proposed approach with the state-of-the-art
Tiny YOLO-V3 running on Jetson TX2, showing the outperformance of the adopted system in this work.
Additionally, it is also shown that the proposed detectors are suitable for the Localization and Mapping
problems.

INDEX TERMS Deep learning, transfer learning, convolutional neural networks, tensor processing unit.

I. INTRODUCTION
The research and development of robotic solutions for the
agriculture sector have been growing [1], [2]. The need
for automatic machines in this area is increasing since
farmers increasingly recognize its impact in agriculture [3].
Robots are now used for a variety of tasks such as planting,

The associate editor coordinating the review of this manuscript and

approving it for publication was Gianluigi Ciocca .

harvesting, environmental monitoring, supply of water and
nutrients, and others [4]. In this context, developing solutions
that allow robots to navigate safely in these environments is
essential. To do so, localizing the robotic platform in real-time
is required. In vineyards built in steep slope hills, the use of
the GNSS is, in most cases, unavailable due to signal block-
age and multi-reflection. Thus, several solutions redundant
to GNSS have been developed. In particular, Simultaneous
Localization and Mapping (SLAM) and Visual Odometry
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(VO) approaches are in many cases adopted [5]–[8]. In these
cases, to give the robot knowledge about the vineyard patterns
is a smart solution. The vine trunks can be used as land-
marks for the SLAM, and to build a vineyard map. There are
solutions to perform these tasks using range sensors [5], [9]
or camera systems [10], [11], based on traditional methods
such as Kalman Filters (KF), image processing, and others.
However, to the best of our knowledge, the use of DL [12] to
detect vine trunks is still nonexistent in the literature. The use
of this approach is interesting since it provides artificial intel-
ligence to the robot while being, in many cases, an accurate
solution. Convolutional Neural Networks (CNN) shown the
greatest performance in several contests in machine learning
and pattern recognition [13], [14]. This procedure, however,
assumes that the training and test data must be in the same
feature space, and have the same distribution [15]. However,
in some real-world scenarios, data collection can be challeng-
ing, as well as time expensive. So, learners that can be trained
with data easily collected from different domains are, in some
cases, required [16]. In other words, the learning procedure is
performed, transferring knowledge from a given task that was
already learned. This methodology is called TL [17].
While computing SLAM using a Central Processing Unit

(CPU) of a given machine, it is wiser to minimize the CPU
resources consumption. For example, the landmark detection
task can be executed in a second processing unit. In the case
of trunk detection using CNNswith DL or TL, several devices
can be used, such as Graphical Processing Units (GPU),
TPUs, Vision Processing Units (VPU), and others [18]. This
configuration allocates a dedicated device for object detec-
tion, maximizing the frame rate of the robot navigation. To
do so, the CNNs can be trained and executed using several
frameworks. One of themost popular is Tensorflow [19]. This
tool allows to create, train, and execute models that can be
transferred to heterogeneous devices. Also, this framework
supports deployment in embedded and mobile devices with
Tensorflow Mobile and Tensorflow Lite. It is possible to
convert Tensorflow models to the Lite or Mobile versions
using the framework. There are also CNNs optimized for
mobile and embedded systems such as the MobileNets [20],
and SqueezeNet [21].
This work aims to perform DL-based object detection to:

• Detect high-level visual features in vineyards (vine
trunks), in a low-power and high-performance manner;

• Present a reliable visual landmark input to SLAM sys-
tems in the vineyard context.

To do so, this work proposes an accurate, cheap, and fast
trunk detection in steep slope vineyard context. To achieve
these specifications, a single camera and an Edge TPU
are used. The Edge TPU is provided by Google’s USB
Accelerator [22]. It is a small, high-performance, and low
power unit suitable for image classification, object detec-
tion, and semantic segmentation. This device provides high-
performance ML inferencing for TensorFlow Lite models.
The proposed approach performs object detection on this

device to detect vineyard trunks, using TL. This is done using
a few pre-trained versions of MobileNet V1 and MobileNet
V2. These are CNNs developed for mobile and embedded
vision applications. A benchmark between the two models
and the different pre-trained versions is performed, both in
terms of processing time and detection precision. The models
are pre-trained in a built in-house dataset. Results show that
this configuration allows accurate and fast trunk detection,
without spending the CPU resources.When compared to Tiny
YOLO-V3 [23], the architecture proposed in this work out-
performs it both in terms of inference accuracy and runtime
performance.
The rest of the paper is described as follows. In the next

section, the related work is reviewed. Section III contains the
materials used in this work. In particular, the CNN models
used and their architecture, and the description of the Edge
TPU used. Section IV contains the approach adopted in this
work, such as the data collection method, and the training
procedure adopted. Section V presents the proposed system
results using the built in-house dataset, and the respective
analysis and discussion. Finally, the work is summarized in
Section VI.

II. RELATED WORKS
At the best of our knowledge, DL has not yet been applied
to trunk detection. Even so, image classification and object
detection based on DL techniques are widely present in the
agriculture sector. Intensive and time expensive tasks are
being replaced by automatic machines, endowed with artifi-
cial intelligence. These machines are performing operations
in the agriculture context such as plant disease detection,
weed identification, seed identification, fruit detection and
counting, obstacle detection, and others [24]–[26].
To detect tomato plant diseases and pests, Fuentes et al.

[27] reported a performance comparison between several
families of detectors combining them with different CNN
models. This work focuses on identifying the infection status,
the symptom location, patterns of the leaf, type of fungus,
and color and shape of the leaf. The results are generated and
compared with and without data augmentation. Similarly, to
detect and identify apple leaf diseases Liu et al. [28] created
a novel CNN architecture based on AlexNet. The network
was trained using 13,689 images and is used to detect four
common apple diseases. The overall accuracy of the network
is 97.62%, which consists of an improvement of 10.83%
compared with AlexNet. Barré et al. [29] propose a CNN-
based plant identification system called LeafNet. This work
aims to have a system that learns features from leaf images
capable of identifying plant species using them. The method
was tested in several datasets such as LeafSnap, Flavia, and
Foliage, outperforming hand-crafted-based systems. Potena
et al. [30] used two CNNs to perform crop and weed iden-
tification. The first, a lightweight CNN, is used to segment
images in order to extract 3D pixel projections of points that
belong to green vegetation. The second, a deeper CNN, is
used to classify these pixels to classify the crop and weed.
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This configuration allows real-time crop and weed detection
on top of an unmanned ground vehicle (UGV). Also, for weed
detection, in [31] an unsupervised data labeling approach is
proposed. This work uses unmanned aerial vehicle (UAV)
images to identify inter-row weeds that constitute the train-
ing dataset for a CNN. The network is used to detect the
crop and weeds in the images. The performance obtained
is comparable to the traditional approaches with supervised
data labeling. Ashqar et al. [32] use a CNN to classify plant
seedlings. In this work, a dataset with approximately 5,000
images with 12 plant species is used. This approach achieved
an accuracy of 99.48%. To detect different apple growth
stages in orchards, Tian et al. created an improved version
of YOLO-V3 [23]. Their architecture is prepared for varia-
tions in illumination, complex backgrounds, and overlapping
apples. The dataset uses augmented images to increase the
amount of training data. Results show that accurate and real-
time performance is achieved using high resolution images.
In this context, many works use CNNs to count fruit. For
example, in [33], two CNNs are used to count both apples
and oranges. The first extracts the candidate regions of the
image, and the second implements a counting algorithm for
each region. The performance of the approach is analyzed
using both images recorded during the day and the night.
Results show that this pipeline presents well behavior using
a limited dataset size. Similarly, Deep Count [34] proposes a
fruit counting approach. In this work, a modified version of
Inception-Resnet [35] is used. The network is trained on syn-
thetic data and evaluated on real data. Fruits are counted even
under shadow, occluded by branches, and foliage, or if there
is overlap between fruits. The method presents and accuracy
of 91% on real data, and 93% on synthetic data. CNNs can
also be applied to image segmentation, and this can be used in
agriculture. For example, in [36], roots in soil are segmented
using U-Net [37]. In this case, the labeling procedure is time
expensive. All the images pixels considered to belong to a
root, have to be manually and individually annotated. Each
image annotation takes, on average, 30 minutes. So, this
work uses 50 training images and is evaluated in 867 images.
Results show that the system produces segmentations with
higher quality than the manual annotations. In [38], DL is
used to perform obstacle detection in agricultural fields. The
obstacle is standardized and it is detected with a precision of
99.9% in row crops, and 90.8% in grass mowing.
TL applications are far more rare in the agricultural sector.

Despite this, few works in this area are reported. For instance,
in [39], a CNN is pre-trained with a large and general dataset,
with approximately 1000 classes, to initialize the weights.
Then, the network is retrained in order to detect 9 diseases
on tomatoes. A dataset with 14,828 images of tomato leaves
is used. Similarly, a TL technique is also used by Mohanty
et al. [40] to detect plant diseases. Here, a public dataset
with 54,306 images is used to retrain two CNNs, in order
to identify 26 diseases. To detect plant species, Ghazi el al.
[41] use TL on pretrained popular CNN architectures. To
increase the training dataset size and reduce the chance of

overfitting, the original data was augmented with operations
such as rotation, translation, scaling, and reflection. The sys-
tem presents an accuracy of 80%. In [42], DL and TL are
used to extract land information from UAV imagery. Firstly,
a CNN is used to exclude linear features, such as roads and
bridges. Secondly, the feature extraction procedure is used
to extract the desired information using TL. TL can also
be used to segment images. For example, in [43], semantic
segmentation is applied using a TL technique to identify
different crop types. In this work, three datasets are used
to compare the classification performance using different
retraining efforts. Training data is fully and partially labeled
at the pixel level. Results show that TL, even with partially
labeled data, presents high accuracy. Douarre el at. [44],
use TL to segment soil roots in X-Ray tomography data. To
retrain the network, simulated training data is used. Results
show that soil and root are well segmented, even with shallow
contrast between them.
Despite DL being widely used in agriculture, as described

in this section, vine trunk detection using CNNs is still a
gap of the state-of-the-art. This work proposes to fill this
gap, with a low-power and high-performance DL-based trunk
detection, suitable for real-time applications in robotics.

III. MATERIALS
In order to achieve high runtime performance in robotics nav-
igation, edge inference was chosen to perform visual detec-
tion of vine trunks. Edge inference is the use of a particular
Application Specific Integrated Circuit (ASIC) accelerator
to deploy a Neural Network (NN) based on a given training
dataset. Using this approach, the extraction of landmarks for
a SLAM problem is computed using a dedicated device and
can achieve high levels of performance with low power costs.
In this work, Google’s Edge TPUwas used. A TPU is a copro-
cessor designed by Google that is usually connected to a host
CPU. In the ideal case, the TPU device implements all the
inference operations. Otherwise, the host CPU can perform
some of them, but this will slow down the process. Using this
configuration, to perform the detection,MobileNets [20] with
Single Shot MultiBox Detector (SSD) [45] were used.

A. GOOGLE EDGE TPU
Google’s Coral USB Accelerator (Fig. 1), provides an Edge
TPU machine learning accelerator coprocessor. It is con-
nected via USB to a host computer, allowing high-speed
inference. This device is compatible with Tensorflow Lite,
a lightweight version of TensorFlow designed for mobile
and embedded devices, and can perform image classification,
object detection, and semantic segmentation. To perform such
tasks, the Edge TPU uses 8-bit quantized models. So, when
training a 32-bit float model from scratch, it has to be either
quantized using either quantization aware training or post
training quantization. The first approach simulates the effect
of 8-bit values during the training process using quantization
nodes in the NN graph. The second does not modify the
NN structure and is applied after training. However, it is
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FIGURE 1. Google Coral USB Accelerator [22].

FIGURE 2. Edge TPU model compilation scheme [46].

less accurate than the first method. Alternatively, pre-trained
models that are already quantized can be used if compatible
with the Edge TPU. The device supports a range of opera-
tions and is most likely compatible with models designed for
mobile devices, using the SSD architecture. After training the
model, the Edge TPU compiler is used to assign inference
operations to the device and the host CPU, as represented in
Fig. 2. The compiled model differs from the original Tensor-
flow Lite model in the first operation of the graph. CPU pro-
cesses the operations from the first non-supported operation
of the TPU, until the end of the graph. The inference will be
as faster as higher it is the number of operations assigned to
the Edge TPU. Table 1 the MobileNet V1 compilation results
after retraining, on this work. The table shows the supported
operations performed by the model on the Edge TPU. When
an unsupported operation is found, all the following ones are
deployed by the host CPU, represented as Custom in Tab. 1.

B. SINGLE SHOT MULTIBOX DETECTOR
To perform the vine trunk detection using the Edge TPU
coprocessor, we chose the SSD [45] architecture since it is

TABLE 1. Output of the MobileNet V1 model compiler for Edge TPU.

fully compatible with the device. To perform object detection,
this architecture uses a feed-forward CNN producing a fixed-
size collection of bounding boxes and attributing a score for
each one of them. The CNN contains convolutional feature
layers to the end of the truncated base network. These layers
allow to detect objects at multiple scales, i.e., objects of
different sizes in images with different resolutions.

C. MOBILENETS
Since in this work, a coprocessor is used to perform machine
learning inference, using models suitable for mobile and
embedded devices is a logical solution. Thus, MobileNets
[20] were chosen. This set of models provide lightweight
deep NN using depthwise separable convolutions. In other
words, the model factorizes convolutions into depthwise, and
1 × 1 convolutions called pointwise convolutions. The first
applies a single filter to the input channel, and the second
applies a 1 × 1 convolution, combining the outputs of the
first. The input of a CNN is a tensor with shapeDf ×Df ×M ,
where Df represents the input channel spatial width and
height, and M is the input depth. After the convolution, a
feature map of shapeDf ×Df ×N is obtained, where N is the
output depth. In this context, MobileNets propose two hyper-
parameters that allow the user to resize the model so that
it meets the system specifications. There hyper-parameters
are: width multiplier and resolution multiplier. The width
multiplier α is used to thin the CNN uniformly at each layer.
For a given value of α ∈ (0, 1], the number of inputs channels
M becomes αM , as well as the number of output channels
N becomes αN . Width multiplier reduces the computational
cost and the number of parameters by α2. The second hyper-
parameter, resolution multiplier ρ, is also used to reduce the
computational cost. This one is applied directly to the input
image, setting its resolution. The values of ρ ∈ (0, 1] are
chosen in order to obtain typical input image resolutions.
resolution multiplier also reduces the computational cost and
the number of parameters by ρ2.
In this work, two MobileNet versions provided by Ten-

sorFlow [19] are considered, MobileNet V1 and V2. Both
models, already trained using the COCO dataset [47], were
retrained to detect vine trunks. To analyze the impact of the
width multiplier hyper-parameter, a version of MobileNet V1
that was pre-trained with a non-default value for this param-
eter was also retrained. Table 2 indicates the models consid-
ered. The resolution multiplier is set to its default value in
all the experiments, so that the input resolution is 300 × 300.
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TABLE 2. Pretrained models to perform vine trunk detection on the Edge
TPU.

In this work, other variations of the hyper-parameters were
not tested since a TL procedure was adopted. This means
that the NNs were already trained with specific values for
the hyper-parameters, and to experiment other values with the
desired impact, they have to be trained from scratch.

IV. METHODS
In this work, TL is addressed to perform DL-based object
detection. TL main shortcoming is negative transfer, which
happens when the pre-training data contributes to negative
learning on the target application. To detect vine trunks,
several models pre-trained with the COCO dataset [47] were
retrained, and was verified that using such a vast dataset,
the target detectors retrained do not suffer from negative
transfer. In order to achieve a high-performance detector, that
visually recognizes trunks in real-time, a training procedure
over the CNNs was performed. To do so, a training dataset
was created, using our robotic platform AgRob V16 [48],
represented in Fig. 3. The dataset is publicly available at our
repository (http://vcriis01.inesctec.pt/) with
the DS_AG_39 id. It contains camera images with both an
infrared, and an infrablue filter, in two different vineyards.
After collecting the data, the trunks were manually annotated
on the images. Then, the training procedure was performed.
The main steps of this work are represented in Fig. 4, and are
detailed next.

FIGURE 3. AgRob V16 robotic platform.

A. DATA COLLECTION
To build the training dataset, two onboard cameras of our
robotic platform, AgRob V16, collected data in two different
vineyards, represented if Fig. 5. One of them is a Raspberry

FIGURE 4. High-level design of the vine trunk detection framework.
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FIGURE 5. Training data on two different vineyards, (a) and (b).

Pi camera with 640 × 480 resolution, with an infrared filter
(Fig. 5(b)). The other is a Mako G-125C camera, with a
resolution of 1292 × 964 resolution, and an infrablue filter
(Fig. 5(a)). The dataset considers 336 different images and
approximately 1,600 annotated trunks. It contains:
• Images with different resolutions.
• Two types of vine trunks, with and without foliage.
• Trunks covered by shadows.

These are challenging conditions that confer variety and
robustness to the training procedure.

B. DATA ANNOTATION
Given the training dataset, vine trunks were manually anno-
tated. For maintain consistency, on the trunks that are less
than approximately 3 meters from the robot and that belong
to the corridor where the robot is located, were manually
annotated. Figure 6 shows an example of this procedure. The
annotation procedure output is a set of bounding boxes of dif-
ferent sizes, for each image. These are represented in a .xml
file with the Pascal VOC annotation syntax, containing the

FIGURE 6. Annotation example referent to the training procedure.

label class considered, and the four corners location of each
bounding box. The annotations are also publicly available
(http://vcriis01.inesctec.pt/) with the training
images. This data is the input for the training procedure,
described below.

C. RETRAINING PROCEDURE
The training procedure aims to create an Edge TPU com-
patible model, capable of detecting the vine trunks in real-
time. To do so, Tensorflow and Tensorflow Lite were used,
as represented in Fig. 7. The first step is to serialize the
ground truth bounding boxes, so that Tensorflow can interpret
it efficiently. The data serialization is performed using the
TFRecord data type, which stores the data as a sequence
of binary strings. This constitutes the input for the CNN
retraining. This step uses the configurations present in Tab. 2,
providing the ability to recognize a trunk to the CNN. After
that, a Tensorflow model is generated, and, in order to save
themodel for posterior TL or retraining, themodel is exported
into a frozen graph. Since the Edge TPU only supports Ten-
sorFlow Lite models that are fully 8-bit quantized, the frozen
graph is then converted into such a model. Finally, in order
to assign operations to the Edge TPU device, the Tensorflow
Lite model is compiled using the procedure described in
Sec. III.

D. EVALUATION METRICS
In order to evaluate the CNN performance detecting vine
trunks, the PASCAL Visual Object Classes (VOC) Challenge
[49] was used. This method is used by many DL-based works
to evaluate CNN performance, offering a fair comparison
between the set of works present in the literature. To do so,
given an annotated ground truth bounding box Bg, and a
detected bounding box Bd , the IoU is firstly calculated as
follows

IoU =
m(Bg ∩ Bd )
m(Bg ∪ Bd )

(1)
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FIGURE 7. Training procedure flow.

wherem(x) denotes the area of x. This can be also understood,
analysing Fig. 8. So, IoU represents the quotient between the
area of overlap and the area of union between the ground
truth, and the detection bounding boxes. Using this definition,
three main concepts can be defined. For a given threshold
value t , let us define:
• True Positive (TP): IoU ≥ t , i.e., a correct detection.
• False Positive (FP): IoU≤ t , i.e., an incorrect detection.
• False Negative (FN): a ground truth is not detected.

It is worth noting that if more than one detection for a single
ground truth is computed, only the one with the highest IoU
is considered as TP, and all the others are FPs. This being
said, with these three qualifiers it is possible to define two
fundamental concepts. The first, precision p, is defined as the
total number ofTPs over all the detections. The second, recall
r , is the total number of TPs over all the ground truths. Using
these, is possible to plot a curve of the recall in function of
the precision, p(r). The evaluation considers that a suitable
detector is the one that maintains the precision high for an
increase in recall.With this consideration, the detector is eval-
uated computing the Average Precision (AP), interpolating
the obtained curve, and calculating the area below the curve.
Mathematically, this is expressed as follows

1∑
r=0

(rn+1 − rn)pinterp(rn+1) (2)

with

pinterp(rn+1) = max
r̃ ;̃r≥rn+1

p(̃r) (3)

where p(̃r) is the measured precision at recall r̃ .

V. RESULTS
In order to evaluate the trained NNs on top of Google’s
Edge TPU, a subset of the dataset previously described was
extracted for testing. From the total of 336 images on the
dataset, 45 images were used for the test procedure, with
approximately 180 vine trunks. These images were randomly
extracted from the dataset before training in order to be only

FIGURE 8. Interception over union representation.

used for validation. The performance of the three model
configurations is compared using all the evaluation data, and
the images of each vineyard individually. Thus, the global
performance of the detector is evaluated, as well as its isolated
performance in the images with both types of filters. Tiny
YOLO-V3 was trained and evaluated using exactly the same
training and testing data, respectively. So, a brief comparison
is performed between this model running on Jetson TX2
and the proposed system on this work. Additionally, this
Sec. shows an application of the proposed detectors to a
Localization and Mapping system.

A. DETECTION PERFORMANCE
Using the metrics described on Sec. IV, and the test set
of images, the detectors were evaluated. Figure 9 shows an
example of a detection, provided by MobileNet V1, with
α = 1.0, for both vineyards. The green bounding boxes
represent the ground truth, and the red ones, the detections.
Figures [10-12] represent the precision × recall curves

p(r), for all the considered configurations: the three retrained
models, either with the IoU threshold t equals to 0.5 and 0.65,
under the three evaluation sets. Table 3 summarizes theAP for
all the configurations.
To evaluate the runtime performance of each detector, they

were profiled using the high resolution clock from chrono
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FIGURE 9. A result example for the two different vineyards, (a) and (b).
The red boxes represent the detections, and the green ones the ground
truth.

present in the std library. This measure consists of the time
that the detector takes to return the resultant bounding boxes,
since it receives the input image. Table 4 shows the obtained
results for each detector.
To compare the proposed system with a state-of-the-art

model, Tiny YOLO-V3 was training with the built in-house
dataset and evaluated over the same 45 images using an
IoU equals to 0.5. Table 5 summarizes the results obtained
with this configuration, both in terms of AP and runtime
performance.

B. DISCUSSION
By analysis of Tab. 3, several conclusion can be extracted.
Both for the global set of images, and the infrared filtered
ones, MobileNet V2 is the best detector. For t = 0.5, the
difference to the other detectors is significant. With t = 0.65,
this margin tends to attenuate. On the infrablue filtered set
of images, MobileNetV1 (α = 1.0) is, not by far, the best

FIGURE 10. Interpolated AP pinterp results using all the training data and
a IoU threshold of (a) 0.5 and (b) 0.65.

detector. Despite this, the three detectors behave very sim-
ilarly on this set of images. Comparing the performance of
the detectors on the two filtered set of images, the conclusion
is that the infrablue is, in general, more challenging. Except
for MobileNet V1 (α = 0.75), the other detectors behave
better on the set with vineyard images using the conventional
infrared filter. Obviously, increasing the IoU threshold t leads
to a decrease in the average precision, as verified in all the
studied cases. Globally, MobileNet V2 is the detector that
presents the best performance, providing an AP of 52.98%
on the global set of images, 62.95% on the infrared filtered
images, and finally, 41.33% on the infrablue filtered ones,
for a width multiplier t = 0.5. Comparing these results with
the ones present in Tab. 5, it is visible that Tiny YOLO-V3
presents a lower AP than all the proposed configurations for
the same value of t , showing an overall AP of 31.32%.
In terms of inference runtime performance, Tab. 4 shows

the average inference per image for all the detectors, in mil-
liseconds. These results were generated, taking into account
all the evaluation images considered, computing the average
inference time of each detector in all of them. They show
that MobileNet V1 (α = 0.75) is the fastest detector with
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FIGURE 11. Interpolated AP pinterp results using the infrared training
images and a IoU threshold of (a) 0.5 and (b) 0.65.

20.5326 ms average inference per image, which corresponds
to 48.7030 frames per second. MobileNet V1 (α = 1.0),
is slower than the previous one, but faster than MobileNet
V2. The first achieves an average inference time of 21.1853
ms, which corresponds to 47.2025 frames per second. The
second, MobileNet V2, presents 23.8238 ms of average
inference time, and, consequently, 41.9748 frames per sec-
ond. Thus, MobileNet V1 (α = 0.75) can process 5 more
images per second than MobileNet V2. Despite this, it is
notorious that all the detectors being executed on top of
the Edge TPU present high performance, being suitable for
real-time usage. The architecture of this TPU, dedicated
explicitly to processing CNNs, revealed to process DL-based
object detectors with time performances that can be used
in any visual SLAM system. The loop frequency of SLAM
is, in most cases, not higher than 20 frames per second.
Our detectors achieved time performances that can process
more than twice this number of frames per second. Table 5
presents the average runtime performance of Tiny YOLO-V3
on top of Jetson TX2, resulting in an average inference
time per image of 54.20 milliseconds. This result corre-
sponds to a frame rate of 18.45 frames per second, which

FIGURE 12. Interpolated AP pinterp results using the infrablue training
images and a IoU threshold of (a) 0.5 and (b) 0.65.

TABLE 3. Summary of the detector performance.

leads to the conclusion that the MobileNets run more than
twice as fast over the Edge TPU than YOLO on top of the
Jetson TX2.
Globally, the main conclusions that can be taken from this

analisys are:
• MobileNet V2 is the most accurate detector, from the set
of three detectors analyzed.

• MobileNet V1 (α = 0.75) is the fastest detector, but
globally the least accurate one.

• Tiny YOLO-V3 is shows lower AP and lower runtime
performance running on top of Jetson TX2 than the
MobileNets on the Edge TPU.

These conclusions confirm the a-priori knowledge about
the detectors and their hyper-parameters. MobileNet V2 is
an improvement to the first version of the MobileNets,
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TABLE 4. Runtime performance (ms) of the different retraining configurations performed.

TABLE 5. Tiny YOLO-V3 AP and runtime performance results for an IoU equals to 0.5.

FIGURE 13. (a) Disparity map constructed using a stereo camera system
and (b) vine trunk detections projected on it with the respective depth
information.

introducing new features to the original architecture. Thus,
the improvement in comparison to the first version was
expected. Also, the behavior of the MobileNets with the vari-
ation of the width multiplier hyper-parameter, was verified.
With α = 0.75, MobileNet V1 is, in general, less accurate
but faster than using a higher value for α. Additionally,
Tiny YOLO-V3, a lightweight version of YOLO-V3, showed
an overall lower performance than the proposed configura-
tions on this work, even being executed in a much high-
cost device. The optimized architecture of the Edge TPU
for CNN models suitable for embedded devices leads to
a much higher frame rate and a more effective inference
performance.

FIGURE 14. 2D vine trunk mapping using the proposed detectors.

The state-of-the-art does not currently provide any work
that detects vine trunks on images using NNs. This work
presents a solution to this problem using a device that is yet
not popular in the literature. This solution has strong and
weak points, depending on the application that uses its final
results. It can be concluded that:

• The AP results obtained were not as high as many DL
works present in the literature. However, in this work
was used a low-cost and low-power device, that uses
lightweight and 8-bit quantized models - MobileNets.
This leads to least accurate inference results but, at
the same time, inference is performed with low power
consumption, at high frame rate, with much less costs
than works that use, for example, powerful GPUs.

As referenced before, the desired application for the proposed
detector of this work is SLAM. In steep slope vineyards,
GNSS-based signals such as the Global Positioning System
(GPS) are not always available. So, redundant solutions to
GPS have to be developed. The solution proposed in this
work can be suitable for such an application. The navigation
stack where the detector will be included imposes a minimum
frame rate of 10 frames per second. This condition is ensured,
as demonstrated before. Additionally, the detections can be
used both on mapping and localization tasks, considering, for
example, a stereo camera system. Figure 13 represents the
application of the proposed detector on such a system. Using
both cameras it is possible to compute a disparity map, as
represented in Fig. 13(a), that provides depth information.
Thus, the detections on the original stereo images can be
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projected on this map. The depth of each trunk is calculated
computing the median of the depth of all points inside each
bounding box. Figure 13(b) represents the bounding boxes
projection and the depth calculation for each one. Using the
computed depths, and the implicit bearing information, it is
possible to calculate the position of each trunk on the world,
with a given standard deviation. This information can be fur-
ther used both for the mapping and localization procedures.
Figure 14 shows an example of a vineyard corridor map
build using this information and real data from the robotic
platform. The robot trajectory is represented in red. It is worth
noting that this procedure does not consider yet a procedure
to remove outliers.

VI. CONCLUSION
The SLAM problem is still an intensive research topic. The
primary step of any SLAM method is to extract reliable
features from the surrounding environment. In the context of
steep slope vineyards, the vine trunks can constitute these
features. In this work, a real-time DL-based approach to
compute the visual detection of vine trunks is proposed.
The Edge TPU provided by Google’s USB Accelerator is
used, performing TL to develop reliable trunk detectors.
Two versions of the MobileNets were retrained, taking into
consideration their hyper-parameters. The retraining process
was performed using a built in-house dataset, that is pub-
licly available. It contains 336 different images with approx-
imately 1,600 annotated trunks and images belonging to two
different vineyards. One of them presents camera images
with the conventional infrared filter, and the images with
an infrablue filter. Results show that our system achieves
real-time vine trunk detection. Compared with the state-of-
the-art model Tiny YOLO-V3 running on Jetson TX2, the
configurations proposed in this work achieve higher inference
accuracy and runtime performance. MobileNet V2 revealed
to be the most accurate model.
In future work, the vine dataset will be increased both in

size and in variability. To do so, the objectives are: to collect
data relative to different vines, to add thermal camera images
to the dataset, and to augment all the images, performing
operations such as rotation, translation, rescaling, etc. Also,
it is planned to retrain another kind of models to perform vine
trunk detection, such as VggNet, ResNet, InceptionNet, etc.
Similarly, it is intended to train NNs from scratch in order
to be able to vary the hyper-parameters. Finally, DL-based
semantic segmentation will be considered in order to extract
the exact shape of each trunk and eliminate the back-
ground pixels that are present on the bounding boxes of our
detectors.
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92 CHAPTER 4. DEEP LEARNING-BASED SEMANTIC VINEYARD PERCEPTION

4.2 Vineyard trunk detection using deep learning

- An experimental device benchmark

The preliminary work presented in Section 4.1 opened an interesting research topic:

the development of a fast and reliable semantic perception system that runs in

dedicated hardware. This section presents the continuation of this research line

with an article published in the Computers and Electronics in Agriculture Journal

entitled Vineyard trunk detection using deep learning – An experimental device

benchmark (de Aguiar et al., 2020). In this work, the device used in the previous

article - Google’s USB Accelerator TPU - is benchmarked against the NVIDIA’s

Jetson Nano GPU. With the same dataset, seven different models were retrained,

deployed in both devices, and evaluated. In addition to the MobileNets already

presented in the last article, this work also explored the Inception model (Szegedy

et al., 2015) and a lightweight version of the YOLO model (Redmon et al., 2015).

Both devices are compared considering their compatibility, i.e., the amount of models

supported; the floating-point support, i.e., the ability to work with floats of 64 bits

in addition to 8-bit integers; the overall average precision of the models deployed;

their runtime performance; and finally, the amount of time spent to load the models

to the embedded hardware. This critical analysis provides a fair benchmark and can

be used by the scientific community to make a more informed choice when working

with DL models in dedicated hardware.
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Abstract

Research and development in mobile robotics are continuously growing. The ability of a human-
made machine to navigate safely in a given environment is a challenging task. In agricultural
environments, robot navigation can achieve high levels of complexity due to the harsh conditions
that they present. Thus, the presence of a reliable map where the robot can localize itself is
crucial, and feature extraction becomes a vital step of the navigation process. In this work, the
feature extraction issue in the vineyard context is solved using Deep Learning to detect high-level
features - the vine trunks. An experimental performance benchmark between two devices is per-
formed: NVIDIA’s Jetson Nano and Google’s USB Accelerator. Several models were retrained
and deployed on both devices, using a Transfer Learning approach. Specifically, MobileNets, In-
ception, and lite version of You Only Look Once are used to detect vine trunks in real-time. The
models were retrained in a built in-house dataset, that is publicly available. The training dataset
contains approximately 1,600 annotated vine trunks in 336 different images. Results show that
NVIDIA’s Jetson Nano provides compatibility with a wider variety of Deep Learning architec-
tures, while Google’s USB Accelerator is limited to a unique family of architectures to perform
object detection. On the other hand, the Google device showed an overall Average precision
higher than Jetson Nano, with a better runtime performance. The best result obtained in this
work was an average precision of 52.98% with a runtime performance of 23.14 milliseconds per
image, for MobileNet-V2. Recent experiments showed that the detectors are suitable for the use
in the Localization and Mapping context.

Keywords: Deep Learning, Object Detection, Agricultural Robots

1. Introduction

The Oporto vineyards, Fig. 1, are located in the Douro Demarched Region, the oldest con-
trolled winemaking region in the world, a UNESCO heritage place [1]. These vineyards are built
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Figure 1: Typical steep slope vineyard in the Douro’s region.

in steep slope hills, which brings several challenges to the development of robotic solutions in
this context. The characteristics of the hill cause signal blockage that decreases the accuracy of5

signals emitted by the Global Navigation Satellite System (GNSS), making unreliable the use
of, for example, the Global Positioning System (GPS). Also, the terrain highly characterized by
irregularities leads to high inaccuracy of sensors like wheel odometry and Inertial Measurement
Units (IMU)s [2].

The vast extension of the vineyard and the challenging conditions that they present lead to10

an increasing need for the substitution of human labor by automatic and autonomous machines.
These machines can be used to perform operations such as planting, harvesting, environmental
monitoring, supply of water and nutrients [3] and have the potential to transform and have a sig-
nificant impact in many agricultural economic sectors [4]. For mobile robots, the capability of
autonomously navigating in steep slope vineyards has a mandatory requirement: real-time local-15

ization. In order for a robot to navigate safely in the vineyard, it needs to be able to localize itself.
Feature-based localization is one of the most common approaches to do so [5, 6, 7]. However, the
extraction of reliable and persistent features in an outdoor environment is a challenging task. In
the vineyard context, it makes sense to provide the robot with the ability to recognize vine trunks
as high-level features to use in the localization and mapping process. The robot can be endowed20

with camera systems and artificial intelligence to learn what a trunk is. This image recognition
capability can also be used for management and supervision purposes when combined with data
analysis [8, 9]. To performe such tasks, Deep Learning (DL)-based object detection [10] can
be used. DL [11, 12] allows a machine to learn to classify, detect, and segment objects using a
given training dataset. Convolutional Neural Networks (CNN) are widely used to perform such25

a task. They showed the highest levels of performance in several contests in machine learning
and pattern recognition [13]. Despite this, training a CNN from scratch, and obtaining accurate
results while deploying it on a real scenario, assumes that both training and test data must be
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Application Images on dataset Performance

[31] Detect apple flowers 588 AP of 97.20% and F1 score of 92.10%
[32] Detect and classify crop species 31,147 AP of 92.79%

[33] MangoYOLO(s) Detect mango fruits in orchards 1,300 AP of 98.60% and F1 score of 96.70%
MangoYOLO(pt) AP of 98.30% and F1 score of 96.80%

[34] Detect apples in orchards 4,800 F1 score of 81.70%
[35] Detect fruit in orchards 2,268 F1 score of 90.40% for apples, 90.80% for mangoes and 77.50% for almonds
[36] Detect sweet pepper and rock melon 122 F1 score of 83.80%
[37] Detect strawberries 150 F1 score of 74.40%
[38] Detect pest 177 AP of 93.10%
[39] Detect flying insects 12,000 Counting accuracy of 93.71%
[40] Detect an obstacle 437 Precision of 99.9% and recall of 36.7% in row crops, and precision of 90.8% and a recall of 28.1% in mowing grass.

Table 1: Summary of the current state-of-the-art on DL-based object detection in agriculture.

in the same feature space, and have the same distribution [14]. However, in some real-world
scenarios, data collection can be challenging and time-expensive. To overcome this limitation,30

learners can be trained with data easily collected from different domains [15, 16, 17]. In other
words, the learning procedure can be performed transferring knowledge from a given task that
was already learned, and the training procedure can focus on a subset of layers of the CNN. This
methodology is called Transfer Learning (TL) [18].

In this work, the feature extraction problem in the vineyard context is addressed using TL35

to detect vine trunks. To do so, CNNs models based in the Single Shot Multibox (SSD) [19],
Pooling Pyramid Network (PPN) [20], and SSDLite [21] architectures are considered, such as
several versions of the MobileNets [22], with slighly variations on the hyper-parameters. Also,
a version of Inception [23] built on top of SSD was considered. Finally, a lite version of YOLO
- Tiny YOLO-V3 [24, 25] - was trained and tested. Two low-cost devices are used to perform40

real-time inference: Google’s USB Accelerator [26] and NVIDIA’s Jetson Nano [27]. An exper-
imental benchmark between the two devices is performed, using a built in-house dataset that is
publicly available (http://vcriis01.inesctec.pt - DS AG 39). The devices are compared
considering the Average Precision (AP) of trunk detection resultant from the deployment of the
models in each one, and the respective inference time.45

The rest of the paper is described as follows. In the state-of-the-art, the related work is re-
viewed. Section 3 provides some basic information about the DL-based concepts and tools used
in this work. Section 4 describes the two devices used in this work to perform trunk detection.
Section 5 contains the methodology adopted, such as the data collection method, the training
procedure, and the inference approaches. Section 6 presents the proposed system results us-50

ing the built in-house dataset, and the respective analysis and discussion. Finally, the work is
summarized in Section 7.

2. Related Work

Image classification and object detection based on DL techniques are widely present in the
agriculture sector. Intensive and time expensive tasks are being replaced by automatic machines,55

endowed with artificial intelligence. These machines are performing operations in the agriculture
context such as plant disease detection, weed identification, seed identification, fruit detection
and counting, obstacle detection, and others [28, 29, 30]. Table 1 provides a summary of DL-
based object detection works in the agricultural field.

From Tab. 1, several conclusions can be extracted. The majority of works focus on fruit60

detection, mainly in orchards. Relatively to these works, the most common application is fruit
counting. Additionally, a minority of the state-of-the-art focuses on insect detection for pest
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identification, and, also, obstacle detection. Overall, the majority of works present high perfor-
mance. Even with significantly different dataset sizes, in general, the works achieve AP or F1
scores higher than 80%.65

Dias et al. [31] fine-tune a pre-trained CNN to detect apple flowers. This work uses data
augmentation to quadruple the original dataset size. To evaluate the proposed DL-based de-
tector, both Precision vs Recall (PR) and the F1 score were used. This way, both the optimal
performance of the method through F1 score, and the expected performance across a range of
decision thresholds through Average Precision (AP) are evaluated. This work achieves a F1 score70

of 92.1% and a AP of 97.2%. CropDeep [32] proposes the largest dataset from all the analysed
works, with 31,147 images of crop species with a total of 31 different classes. The authors train
and test several state-of-the-art models for object detection. For example, for ResNet [41] they
achieved a medium AP of 92.79%. In [33] several state-of-the-art DL architectures are trained to
detect mango fruits in orchards. With the same purpose, the authors propose a new architecture75

based on YOLO, called MangoYOLO. From this architecture, two models were created, differing
on the weights initialization. The first, MangoYOLO(s), was trained from scratch, while the sec-
ond, MangoYOLO(pt), was pre-trained on the COCO dataset [42]. The training set is composed
of 11,820 fruits. MangoYOLO(s) achieves an F1 score of 96.7% and an AP of 98.6%, while
MangoYOLO(pt) results in an F1 score of 96.8% and an AP of 98.3%. To detect apples during80

different growth stages in orchards, Tian et al. [34] proposed an improvement to the state-of-the-
art model YOLO-V3 [24]. The dataset used is composed of high-resolution images of apples
in three different growth stages. The method achieved an F1 score of 81.7% for the training
set containing three types of growth stages. Similarly, [35] proposes the use of state-of-the-art
architecture Faster R-CNN [43] for fruit detection in orchards, including mangoes, almonds, and85

apples. In the first stage, the architecture was used without any modification, using TL. In the
second stage, in order to improve fruit detection in images with a larger number of fruits, a mod-
ification was proposed to the raw architecture. Using all the training data, the authors obtained
an F1 score of 90.4% for apples, 90.8% for mangoes and 77.5% for almonds. DeepFruits [36]
proposes a DL-based fruit detector fine-tuning the state architecture Faster-RCNN. The VGG-1690

[44] model, previously trained using ImageNet [45], is adapted through the use of a dataset with
RGB and Near-Infrared (NIR) images and three classes named background, sweet pepper, and
rock melon. As the best result, the authors obtained an F1 score of 83.8%. L*a*b*Fruits [37]
combines a visual processing approach with one-stage DL networks to detect strawberries. The
entire dataset is constituted by 890 ripe strawberries and 3329 unripe strawberries. While testing,95

the authors consider that a detection is correct when the Interception over Union (IoU) is at least
0.5. Results show that this work obtained an F1 score of 74.4% for RGB images considering
both classes.

To detect and count pest in images, [38] is proposed. To test the proposed pipeline, the
authors use the Interception-Over-Minimum (IOMin) concept with a threshold level of 0.5. Two100

different evaluation metrics were used: miss rate vs false positives per image (FPPI) and AP, in
order to focus on the trade-off between reducing miss detections and reducing false positives.
The best result achieved from this work is 93.1% for AP and 9.9% for miss rate vs FPPI. Also
in this context, Zhong et al. [39] detect, count and classify 6 types of flying insects for pest
control in the agricultural context. The detection pipeline uses a single class and is built using105

state-of-the-art YOLO architecture pre-trained on ImageNet. The evaluation is performed using
the counting accuracy, defined as the ratio of a correctly detected number to the total number of
detected flying insects. The final counting accuracy obtained by YOLO was 93.71%.

For obstacle detection, [40] proposes the fine-tune of a state-of-the-art CNN for detection
4



of a specific object. The detector was evaluated in row crops context, obtaining a precision of110

99.9% and recall of 36.7%, and in mowing grass, obtaining a precision of 90.8% and a recall of
28.1%.

3. Deep Learning Background

This work uses two sets of models based on the SSD architecture [19] to detect vine trunks,
the MobileNets [22], and Inception-V2 [23]. Tiny YOLO-V3 [24, 25] is also used to perform115

this task. This section presents an overview of the SSD-based architectures and the all the type
of models used.

3.1. Single Shot Multibox

SSD, Fig. 2, is based on a feed-forward CNN that detects objects producing a fixed number
of bounding boxes and scores. This architecture is build upon a NN based on a given standard

Figure 2: SSD architecture [19].

120

architecture. Its main modules are:

• Convolutional feature layers that decrease progressively in size, detecting objects at mul-
tiple scales.

• Convolutional filters represented on top of Fig. 2, that produce a fixed number of detection
predictions.125

• A set of bounding boxes associated with each feature map cell.

These characteristics allow to detect objects at multiple scales, i.e., objects of different sizes in
images with different resolutions.

3.2. Single Shot Multibox Lite

SSDLite was proposed by Sandler et al. together with MobileNet-V2 [21], being based on130

the design of MobileNets. This architecture, as the name suggests, is a lighter version of the
original SSD. The conventional convolutions present in the SSD architecture are replaced by
separable convolutions. These ones split full convolutional operations into two separable layers.
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The first, called depthwise convolution, applies a single convolution to each image channel. The
second, a 1 × 1 convolution called pointwise convolution, builds new features computing linear135

combinations of the input image channels. This design revealed to be much more computation-
ally efficient, highly reducing the CNN size. These characteristics are directly oriented to mobile
and embedded devices.

3.3. Pooling Pyramid Network

PPN [20], similarly to SSDLite, is a reduced size version of SSD. The architecture was140

designed in order to run faster than SSD, maintaining similar detection performance. This ar-
chitecture uses a backbone model as a base, as well as SSD. Also, to stabilize prediction scores,
PPN uses a shared box predictor across different feature maps of different scales. Thus, this
predictor takes into account all the training data, instead of independently using a portion of the
training data for each predictor, as SSD does. Also, PPN uses max pooling operations to shrink145

the feature map down to 1 × 1. This operation does not have any addition and multiplication
operations, and so is very fast. On the other hand, SSD uses the convolution operation to extract
layers from the base network, and build the feature maps.

3.4. MobileNets

Google’s USB Accelerator is fully compatible with 8-bit quantized MobileNets. Thus, in150

this work, several versions and variations of this DL-based model category are used. This set of
models provide lightweight deep NN using depthwise separable convolutions. In other words,
the model factorizes convolutions into depthwise, and 1 × 1 convolutions called pointwise con-
volutions. The first applies a single filter to the input channel, and the second applies a 1 × 1
convolution, combining the outputs of the first. The input of the CNN is a tensor with shape155

D f × D f × M, where D f represents the input channel spatial width and height, and M is the
input depth. After the convolution, a feature map of shape D f × D f × N is obtained, where N is
the output depth. In this context, these families of models use two hyper-parameters that allow
the user to resize the model so that it meets the system requirements. These hyper-parameters
are: width multiplier α, and resolution multiplier ρ. The first is used to reduce the size of the160

CNN uniformly at each layer. For a given value of α ∈ (0, 1], the number of inputs channels M
becomes αM, as well as the number of output channels N becomes αN. Width multiplier reduces
the computational cost and the number of parameters by α2. The second hyper-parameter, ρ, is
also used to reduce the computational cost. This one is applied directly to the input image, setting
its resolution. The values of ρ ∈ (0, 1] are chosen in order to obtain typical input image resolu-165

tions. Similarly to the width multiplier, the resolution multiplier also reduces the computational
cost and the number of parameters by ρ2. So, both parameters are different ways of reducing the
model size and computational cost. When combined, the effects on the final model can be even
more significant.

3.5. Inception170

Ioffe et al. [46] proposed the primary version of Inception. This model design is based on the
premise that the desired object to classify or detect can present several sizes on different images.
This leads to the difficulty of choosing the right kernel size. To overcome this issue, Inception
proposes three different convolutional filter sizes - 1 × 1, 3 × 3, and 5 × 5. Additionally, the
NN model also computes max pooling. The output of all these operations is then concatenated,175

constituting the result of the respective Inception module.
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Inception-V2 was developed in order to reduce the computational complexity of the original
version. This is done by factorizing the convolution operations. For example, a 5 × 5 convolution
is factorized into two 3 × 3 convolutions, improving runtime performance. In the same way, a
m × m convolution can be factorized into a combination of 1 ×m and m× 1 convolutions.180

3.6. You Only Look Once
YOLO [47] is based on the Fully Convolution Neural Network (FCNN) architecture idea,

that processes the input image once, returning its output prediction. This model divides the input
image into a grid with S ×S cells. Each cell that contains the center of an object is responsible for
detecting it, producing a maximum of two bounding boxes and considering only one class. Each185

bounding box present in a given cell is associated with a score that reflects how confident the
model is that the object lies inside the box, and how accurate it is predicting the object position.
The model itself is composed of 24 convolutional layers followed by two fully connected layers.
To improve the model, several versions of the original one were created. In particular, Tiny
YOLO-V3 is a lite version of an enhanced version of YOLO, that allows increasing the inference190

frame rate, with a lower computational cost. In other words, this model provides a proper balance
between accuracy and inference speed, overcoming the slower inference performance of YOLO-
V3.

4. Experimental Devices

In this work, two types of devices are used to perform real-time trunk detection. The first,195

Google’s USB Accelerator, uses an Edge TPU to compute inference. The second, NVIDIA’s
Jetson Nano, uses its own GPU to do so.

4.1. Google USB Accelerator
Google’s Coral USB Accelerator (Fig. 3), provides an Edge TPU machine learning accel-

erator coprocessor. It is connected via USB to a host computer, allowing high-speed inference.200

This device is compatible with Tensorflow Lite, a lightweight version of TensorFlow designed
for mobile and embedded devices, and can perform image classification, object detection, and
semantic segmentation. To perform such tasks, the Edge TPU uses 8-bit quantized models. So,

Figure 3: Google Coral USB Accelerator [26].

when training a 32-bit float model, it has to be quantized using either quantization aware training
7



or post training quantization [48]. The first approach simulates the effect of 8-bit values during205

the training process using quantization nodes in the NN graph. The second does not modify the
NN structure and is applied after training. However, it is less accurate than the first method.
Alternatively, pre-trained models that are already quantized can be used if compatible with the
Edge TPU. The device supports a range of operations and is most likely compatible with models
designed for mobile devices, using the SSD architecture. After training the model, the Edge TPU210

compiler is used to assign inference operations to the device and the host CPU, as represented in
Fig. 4. The compiled model differs from the original Tensorflow Lite model in the first operation

Figure 4: Edge TPU model compilation scheme [49].

of the graph. CPU processes the operations from the first non-supported operation of the TPU,
until the end of the graph. The inference will be as faster as higher it is the number of operations
assigned to the Edge TPU.215

4.2. NVIDIA Jetson Nano
Jetson Nano Developer Kit (Fig. 5), provides a 128-core NVIDIA Maxwell @ 921MHz

GPU, capable of computing image classification, object detection, semantic segmentation, and
speech processing. This device is compatible with the most popular machine learning frame-
works, including TensorFlow. Additionally, Jetson Nano is compatible with an accelerator library220

called TensorRT. This Software Development Kit (SDK) allows high-performance DL inference
and is compatible with TensorFlow and other common frameworks. The main focus of this tool
is to optimize already trained NNs for a given purpose efficiently. To do so, TensorRT allows
compressing the network after training. Also, this SDK optimizes the kernel selection and nor-
malizes and converts the model to a desired precision (32 or 16 floating-point (FP32/FP16), and225

8 integer (INT8)) in order to improve latency, efficiency, and throughput.

5. Methods

In order to create a reliable vine trunk detector, in a first stage, a dataset was created using
our robotic platform AgRob V16 [50], represented in Fig. 6. This dataset contains images cap-
tured in two different vineyards, each one with a camera with different characteristics. After data230
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Figure 5: Jetson Nano Development Kit [27].

Figure 6: AgRob V16 robotic platform.

collection, the vine trunks were manually annotated using a graphical tool and converted to the
Pascal VOC format [51]. The dataset containing the training images and the respective annota-
tions is publicly available at our repository (http://vcriis01.inesctec.pt/ - DS AG 39).

5.1. Data Collection

As referenced before, two onboard cameras belonging to our robotic platform collected data235

in two different vineyards. Representative images of both vines can be observed at Fig. 7. One
of the cameras is from Raspberry Pi and possesses a 640 × 480 resolution, and a conventional
infrared filter (Fig. 7 at the right). The other is a Mako G-125C camera, with a resolution of
1292 × 964 resolution, and an infrablue filter (Fig. 7 at the left). The dataset is constituted by
336 different images and approximately 1,600 annotated trunks. It contains:240

• Images with two different resolutions.
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Figure 7: Images of the training data correspondent to the two different vineyards, and respective annotations.

• Two types of vine trunks, one with foliage, and other without.

• Trunks covered by shadows.

These conditions confer variety to the training procedure, and consequently, robustness to the
inference final result.245

5.2. Data Annotation

Given the training dataset, the perceptible vine trunks were manually annotated on the im-
ages. Figure 7 shows an example of an image of each vine with the respective annotations.
The output from this procedure is a set of bounding boxes with different sizes, for each image.
These are represented in a .xml file with the Pascal VOC annotation syntax, containing the label250

class considered, and the four corners location of each bounding box. The annotations are also
publicly available (http://vcriis01.inesctec.pt/) together with the training images. This
data is the input for the training procedure, described below.

5.3. Training Procedure

In the training procedure, two different frameworks were used. One was Tensorflow, where255

all the MobileNets and the Inception models were trained. On the other side, YOLO has its own
training framework, also denominated YOLO. All the models used were pre-trained using the
COCO dataset [42].

Figure 8 demonstrates the step-by-step Tensorflow training procedure. This training flow
converts raw bounding boxes annotations into the final models suitable for both the USB Ac-260

celerator and Jetson Nano. As referenced before, TL was used in order to retrain all the NN
models used. To do so, firstly, the bounding boxes data was serialized into the TFRecord data
type. This process stores data as a sequence of binary streams, allowing Tensorflow to interpret
data in a more efficient manner. After retraining the models, in order to save them for poste-
rior TL or retraining, they are exported into frozen graphs. These graphs can be exported for265

both devices used. For Google’s USB Accelerator, the graph is converted to Tensorflow Lite
and then compiled, as described in Sec. 3. If the pre-trained model is not 8-bit quantized, post
training quantization is used to quantize it. For NVIDIA’s Jetson Nano, the frozen graph was
optimized and converted to TensorRT using 16-bit floating point precision. Table 2 shows all the

10
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Figure 8: Tensorflow-based training procedure flow.

Model Version Architecture α Resolution
MobileNet 1 SSD 1 300 × 300
MobileNet 1 SSD 0.75 300 × 300
MobileNet 1 PPN 1 640 × 640
MobileNet 2 SSD 1 300 × 300
MobileNet 2 SSDLite 1 300 × 300
Inception 2 SSD 1 300 × 300

Table 2: Tensorflow-based trained models.

models considered, with their respective variations. It is worth noting that two equal versions270

of MobileNet-V1 were retrained using different α values, in order to analyse the impact of this
hyper-parameter.

For Tiny YOLO-V3, the pre-trained weights were also used as well as YOLO’s own training
framework. This training procedure is quite more straightforward, requiring only the pre-trained
model, raw images, and bounding boxes as input, and no post-processing over the trained model.275

6. Results

To evaluate the considered models in both USB Accelerator and Jetson Nano, a test subset
containing 45 images and approximately 180 vine trunks was extracted from the training dataset.
To evaluate and compare all the detectors in both devices, a state-of-the-art metric was used.
Also, the runtime performance of the models on top of each device was measured.280

6.1. Evaluation Metric

The PASCAL Visual Object Classes (VOC) Challenge [51] was used to evaluate the perfor-
mance of the considered models, both on Google’s USB Accelerator, and NVIDIA’s Jetson Nano.
This method is widely used to evaluated DL-based models performing object detection, being a
fair approach to compare the performance of different models resulting from different works.285

Pascal VOC calculates the Average Precision (AP) as follows. Given an annotated ground truth
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bounding box Bg, and a detected bounding box Bd, the Intersection over Union (IoU) is computed
using the following equation

IoU =
m(Bg ∩ Bd)
m(Bg ∪ Bd)

(1)

where m(x) denotes the area of x. Figure 9, shows a graphical representation of this concept. So,

��

��

��

��

IoU =

Figure 9: Interception over union representation.

IoU represents the quotient between the area of overlap and the area of union between the ground290

truth, and the detection bounding boxes. Using this definition, for a given threshold value t, three
main concepts can be defined:

• True Positive (TP): IoU ≥ t, i.e., a correct detection.

• False Positive (FP): IoU ≤ t, i.e., an incorrect detection.

• False Negative (FN): a ground truth is not detected.295

It is worth noting that if more than one detection for a single ground truth is computed, only
the one with the highest IoU is considered as TP, and all the others are FPs. This being said,
with these three qualifiers it is possible to define two fundamental concepts. The first, precision
p, is defined as the total number of TPs over all the detections. The second, recall r, is the
total number of TPs over all the ground truths. Using these, it is possible to plot a curve of300

the recall in function of the precision, p(r). The evaluation considers that a suitable detector is
the one that maintains the precision high for an increase in recall. With this consideration, the
detector is evaluated computing the Average Precision (AP), interpolating the obtained curve,
and calculating the area below the curve. Mathematically, this is expressed as follows

1∑

r=0

(rn+1 − rn)pinterp(rn+1) (2)

with305

pinterp(rn+1) = max
r̃;̃r≥rn+1

p(̃r) (3)

where p(̃r) is the measured precision at recall r̃.
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For the sake of completeness, this work also evaluates the models using the F1 score. This
score is the harmonic mean between the precision p and recall r, and can be calculated as follows

F1 = 2
p · r
p + r

(4)

6.2. Detection Performance
After training all the considered models, they were applied to the test dataset. Figure 10310

demonstrates an example of SSD MobileNet-V2 on both vineyards. For the Localization and

Figure 10: An example of SSD MobileNet-V2 inferece on both vineyards.

Mapping purposes, the main interest is to find the presence of vine trunks in the image so that,
then, using for example depth sensors, the 3D location of each can be extracted. So, in this work,
we are not only interested in highly precise detections, but also in medium precise ones. Thus,
using the metric previously described, a IoU threshold t equals to 0.5 was considered. In this315

way, the recall × precision curves were computed, and are represented on Fig. 11. Interpolating
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Figure 11: Recall × precision curves of the models considered on (left) Google’s USB Accelerator and (right) NVIDIA’s
Jetson Nano.

the curves, and calculating the area bellow them, the AP was computed for each model in each
13



device. Additionally, using Eq. 4 the F1 score can also be computed for each model in each
device. Table 3 summarizes this information, presenting also the runtime performance of each
configuration. To evaluate the runtime performance of each model in each one of the devices, all

Model α Resolution Google USB Accelerator NVIDIA Jetson Nano
AP (%) F1 (%) Runtime (ms) AP (%) F1 (%) Runtime (ms)

SSD MobileNet-V1 1 300 × 300 49.74 61.00 21.18 41.39 57.00 56.83
SSD MobileNet-V1 0.75 300 × 300 39.78 50.00 20.21 21.95 23.00 47.40
PPN MobileNet-V1 1 640 × 640 23.17 34.00 21.83 20.38 34.00 53.23
SSD MobileNet-V2 1 300 × 300 52.98 59.00 23.14 40.08 53.00 62.84

SSDLite MobileNet-V2 1 300 × 300 23.64 42.00 23.83 10.78 25.00 65.26
SSD Inception-V2 1 300 × 300 46.10 61.00 359.64 9.45 19.00 73.71

Tiny YOLO-V3 - 416 × 416 - - - 32.56 51.00 100.2

Table 3: AP (%), F1 score and average inference time per imgage (ms) obtained from the models considered using
Google’s USB Accelerator and NVIDIA’s Jetson Nano.

320

the inference configurations were profiled using the high resolution clock from chrono present
in the std library. Table 3 contains the results of the profiling.

6.3. Discussion

By analysis of Fig. 11 and Tab. 3, it is visible that Tiny YOLO-V3 is only supported on
NVIDIA’s Jetson Nano. In fact, besides Tiny YOLO-V3, only SSD-based models are used (PPN325

and SSDLite are derivations of SSD) in this work. This is due to the incompatibility of differ-
ent architectures such as Faster R-CNN [43], R-FCN [52], Mask R-CNN [53], and others, with
Google USB Accelerator for object detection. This is a disadvantage in comparison with Jetson
Nano, that supports a wider variety of architectures, and, consequently, models. Additionally,
to perform inference on NVIDIA’s Jetson Nano, quantization is not required. Inference is sup-330

ported using both floating-point and integer precision on this device. On the contrary, the USB
Accelerator only supports 8-bit quantized models. Despite this, Tab. 3 shows that Google’s USB
Accelerator has higher AP than Jetson Nano in all the SSD-based models. Starting from the same
trained model, both devices optimize and convert it to better perform on each computational en-
vironment. The USB Accelerator converts the model to Tensorflow Lite and then compiles it,335

while Jetson Nano uses TensorRT to do so. Results show that the optimizations performed in
the context of the USB Accelerator lead to a higher inference AP anf F1 score. Table 3 shows
that, for example, SSD MobileNet-V1 presents an overall AP of 49.74% and F1 score of 0.61
on the USB Accelerator and AP of 41.39% and F1 score of 57% on Jetson Nano. Similarly,
SSD MobileNet-V2 has higher AP on the first device than on the second, being 52.98% on the340

USB Accelerator, the higher AP obtained considering all the models in both devices. For SSD
Inception-V2, the difference is quite significant, leading to the conclusion that TensorRT failed
to optimize the model for Jetson Nano. On the Google USB Accelerator, this model achieves an
F1 score of 61%, quite higher than the 19% score obtained on the Jetson Nano.

In terms of inference time, Tab. 3 also shows that generally, Google’s USB Accelerator per-345

forms trunk detection at a higher frame rate than NVIDIA’s Jetson Nano. For the MobileNets, the
Google device has an average inference time per image in the range of 20.21-23.83 milliseconds,
while the NVIDIA device has a runtime performance in the range of 47.40-65.26 milliseconds.
This means that, for the MobileNets, the USB Accelerator is more than two times faster than
Jetson Nano. Only for SSD Inception-V2, Jetson Nano is faster. This is due to two main reasons:350
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the Inception-V2 model is much larger than the MobileNets, and the USB Accelerator is com-
patible with a lower number of operations of this model. Thus, when compiling it for the Edge
TPU, these non-supported operations are assigned to the host CPU, which leads to an average
inference time per image of 359.64 milliseconds. Another important runtime consideration is the
loading model time. Our experience showed that the USB Accelerator loads all the models much355

faster than Jetson Nano.
In a final note about the MobileNets, results show that the decrease of the hyper-parameter

width multiplier leads to lower inference AP and F1 score and higher frame rate, as expected.
Also, the PPN architecture confirmed to be a lighter version of the SSD, allowing the use of a
higher resolution with no costs on the runtime performance. However, even using a much higher360

input image resolution, the model that used this architecture has shown an AP much lower than
models that use the SSD architecture with lower resolutions. SSDLite MobileNet-V2, a lighter
version of SSD MobileNet-V2 resulted, in this specific case, in a much least precise model, not
showing any advantage in terms of runtime performance.

To summarize the comparison of both devices, Tab. 4 shows the pros and cons of each device365

on the topics addressed in this work. The ”+” denotes for a positive behavior, and ”-” for a

Google USB Accelerator NVIDIA Jetson Nano

Compatibilitty - +

Floating-point support - +

Overall AP + -
Runtime performance + -

Time spent loading the models + -

Table 4: Summary of the pros and cons of each device.

negative/worse behavior or an unsupported feature.

6.4. Detector Application
This work presents the first DL-based approach to detect vine trunks, that can be used in Lo-

calization and Mapping. Comparing with many state-of-the-art detectors for other applications,370

the ones proposed in this work presents lower AP and F1 score. However, in contrast with many
works that use powerful GPUs, low cost and low power devices are used in this work. The mod-
els are 8-bit quantized on Google’s Edge TPU and present 16-bit precision on Jetson Nano. This
limits the inference performance in terms of detection AP. Even so, the detectors can be used
in the Localization and Mapping procedures. Firstly, they perform inference at high frame rate.375

The navigation stack present on Agrob V16 (Fig. 6) imposes a minimum frame rate of ten frames
per second. This condition is ensured, as demonstrated before. The stack uses a stereo camera
system and builds a disparity map. In the context of the proposed work, recent experiments using
Agrob V16 and deploying MobileNet-V1 on the vineyard in real-time shown that the proposed
detectors can be used to extract vine trunks depth information using the disparity map. Figure 12380

shows an example of these experiments. The detections on the stereo images are projected into
the disparity map. Calculating the median of all depths inside each bounding box results in the
depth of each trunk, if the trunk occupies the majority of the region inside of the box. This result
can be used to construct a map of the vineyard and, consequently, to localize the robot inside this
map.385
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Figure 12: Vine trunk depth estimation using the proposed detectors.

7. Conclusion

This work addresses the problem of feature extraction on steep slope vineyards for robotics
localization and mapping. In this context, a reliable solution is required to detect vine trunks
location on images. This work proposes the use of two different devices to do so: Google’s
USB Accelerator and NVIDIA’s Jetson Nano. Seven different models were trained and deployed390

in these two devices. The performance of each one was analyzed both in terms of AP and
runtime performance. Results showed that NVIDIA’s Jetson Nano supports a wider variety of
architectures and models than the USB Accelerator, that is limited to SSD-based architectures.
On the other hand, for SSD-based models, Google’s USB Accelerator provides higher AP and
better runtime performance. In the best case, for SSD MobileNet-V2 on the USB Accelerator,395

an average precision of 52.98% and approximately 49 frames per second were obtained. Recent
experiments demonstrate that, even so using these low cost devices, the proposed detectors can
be used in Localization and Mapping.

In future work, the training dataset will be extended to use images from other vineyards,
also considering thermal images. Also, a state-of-the-art DL-based model will be modified and400

adapted to perform better detecting vine trunks. Finally, DL-based semantic segmentation will
be considered in order to segment the region occupied by the trunks.
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112 CHAPTER 4. DEEP LEARNING-BASED SEMANTIC VINEYARD PERCEPTION

4.3 Bringing semantics to the vineyard - An

approach on Deep Learning-based vine trunk

detection

The two articles previously presented in Chapter 4 are a basis that sustains the

research work to explore the final proposed perception solution for vine trunks.

This section shows how this work was leveraged to build this solution. The article

presented in this section was published in the MDPI Agriculture Journal and is

entitled Bringing Semantics to the Vineyard: An Approach on Deep Learning-

Based Vine Trunk Detection (Aguiar et al., 2021d). In comparison with the

proposed previous works, this article presents a novel publicly available dataset

called VineSet recognized by the ROS Agriculture community3 as “A Large Vine

Trunk Image Collection and Annotation using the Pascal VOC format”. VineSet was

built through an intense data collection procedure and posterior annotation, being

composed of more than 900 original images. This dataset was further extended

using augmentation techniques to a total of 9481 images. The new data collection

procedure and the consequent dataset extension were essential to the increase of the

DL models’ performance. Using the same family of models, the average precision

increased more than 30% with VineSet in relation with the previous works. In

addition, results showed that the trained models are general enough to be used in

other environments for trunk detection such as forests and orchards. Finally, this

work also extends the previous works by using both TL and models trained from

scratch and comparing their performances.

3http://wiki.ros.org/agriculture

http://wiki.ros.org/agriculture
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Abstract: The development of robotic solutions in unstructured environments brings several chal-
lenges, mainly in developing safe and reliable navigation solutions. Agricultural environments are
particularly unstructured and, therefore, challenging to the implementation of robotics. An example
of this is the mountain vineyards, built-in steep slope hills, which are characterized by satellite signal
blockage, terrain irregularities, harsh ground inclinations, and others. All of these factors impose
the implementation of precise and reliable navigation algorithms, so that robots can operate safely.
This work proposes the detection of semantic natural landmarks that are to be used in Simultaneous
Localization and Mapping algorithms. Thus, Deep Learning models were trained and deployed to
detect vine trunks. As significant contributions, we made available a novel vine trunk dataset, called
VineSet, which was constituted by more than 9000 images and respective annotations for each trunk.
VineSet was used to train state-of-the-art Single Shot Multibox Detector models. Additionally, we
deployed these models in an Edge-AI fashion and achieve high frame rate execution. Finally, an
assisted annotation tool was proposed to make the process of dataset building easier and improve
models incrementally. The experiments show that our trained models can detect trunks with an
Average Precision up to 84.16% and our assisted annotation tool facilitates the annotation process,
even in other areas of agriculture, such as orchards and forests. Additional experiments were per-
formed, where the impact of the amount of training data and the comparison between using Transfer
Learning and training from scratch were evaluated. In these cases, some theoretical assumptions
were verified.

Keywords: deep learning; trunk detection; agriculture; autonomous navigation

1. Introduction

The development of robotic solutions in unstructured environments brings several
challenges, mainly in developing safe and reliable navigation solutions. Agricultural envi-
ronments are particularly unstructured and, therefore, challenging to the implementation
of robotics. The Douro vineyards (Figure 1) are a great example of this.

These are located in the Douro Demarched Region, the oldest controlled winemaking
region in the world, a UNESCO heritage place [1], and they are built in steep slope hills.
The hill’s characteristics cause signal blockage that decreases the accuracy of signals thtat
are emitted by the Global Navigation Satellite System (GNSS), which makes the use of,
for example, the standard Global Positioning System (GPS), unreliable. Additionally,
the terrain that is highly characterized by irregularities leads to the high inaccuracy of
sensors, like wheel odometry and Inertial Measurement Units (IMU)s [2].
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Figure 1. Typical steep slope vineyard in the Douro’s region. The Douro Demarched region (41º 06′

06′′ N 7º47′56′′ W) extends for many Portugal cities, such as Mesão Frio, Peso da Régua, Santa Marta
de Penaguião, Vila Real, and others.

The vast extension of the vineyards and their challenging conditions lead to an increas-
ing need for human labor substitution by automatic and autonomous machines. These
machines can be used to perform operations, such as planting, harvesting, monitoring,
supply of water, and nutrients [3]. Moreover, they can transform and have a significant
impact on many agricultural economic sectors [4]. For mobile robots, the capability of
autonomously navigating in steep slope vineyards has a mandatory requirement: real-time
localization. For a robot to navigate safely in the vineyard, it needs to be able to localize
itself. Feature-based localization is one of the most common approaches to do so [5–7].
However, the extraction of reliable and persistent features in an outdoor environment is a
challenging task. The vineyard context makes sense to provide the robot with the ability
to recognize vine trunks as high-level features to use in the localization and mapping
processes. The robot can be endowed with camera systems and artificial intelligence to
learn what a trunk is. Moreover, the application of robotics in these tasks can have impact
in the agricultural economic sector [4]. However, real-time localization is an essential re-
quiremen in implementing mobile robotics in agriculture. Usually, in steep slope vineyards,
the localization approaches should work in the absence of satellite-based systems. Thus,
the implementation of these algorithms is a challenging task, due to the characteristic
unstructured scenes that compose these environments [8]. In this context, natural features
can be used as landmarks in the localization procedure [5–7]. In the vineyard, vine trunks
can be used to this effect, allowing for localizing the robot and simultaneously creating a
semantic map of the environment. Thus, the robotic platform should be capable to perceive
the scene and recognize these features. In other words, the robot has a semantic perception
of the environment.In order to perform such tasks, Deep Learning (DL)-based object detec-
tion [9] can be used. DL [10,11] allows for a machine to learn to classify, detect, and segment
objects using a given training dataset. Convolutional Neural Networks (CNN)s are widely
used to perform such a task. They showed the highest performance levels in several
contests in machine learning and pattern recognition [12]. Despite this, training a CNN
from scratch, and obtaining accurate results while deploying it on a real scenario, assumes
that both training and test data must be in the same feature space, and they have the same
distribution [13]. However, in some real-world scenarios, data collection can be challenging
and time-expensive. In order to overcome this limitation, learners can be trained with data
easily collected from different domains [14–16]. In other words, the learning procedure
can be performed, transferring knowledge from a given task that was already learned,
and the training procedure can focus on a subset of layers of the CNN. This methodology
is called Transfer Learning (TL) [17]. Image classification and object detection based on
DL techniques are widely present in the agriculture sector, endowing machines with the
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capability to perform operations in the agriculture context, such as plant disease detection,
weed identification, seed identification, fruit detection and counting, obstacle detection,
and others [18–20].

Given all of the above, this work proposes using DL algorithms to detect vine trunks
in a fast and precise way and while considering Edge-AI concepts. The main goal is to
compute reliable semantic landmarks to use in Simultaneous Localization and Mapping
(SLAM) pipelines of agricultural robots. In the current state-of-the-art, DL’s use to detect
tree trunks is still an area quite under developed, as described in Table 1. Badeka et al. [21]
propose a DL-based approach to detect vine trunks. The authors developed a dataset with
899 vineyard images and trained two different architectures: faster regions-convolutional
neural network (Faster R-CNN) [22] and You Only Look Once version (YOLO) [23]. The
results show that, in the best case, this work achieved an Average Precision (AP) of 72.3%
and an execution time performance of 29.6 ms. The remaining state-of-the-art approaches
use conventional image processing and range-based techniques in order to detect tree
trunks in agricultural contexts.

Table 1. Summary of the current state-of-the-art regarding tree trunk detection in agricultural contexts.

Reference Approach Performance

Badeka et al. [21]
Deep Learning-based vine trunk
detection. Uses Faster R-CNN and
two YOLO versions.

Average Precision of 73.2% and
execution time of 29.6 ms.

Lamprecht et al. [24]

Detection based on Airbone Laser
Scanning. Uses a Crown Base
Height estimation and 3D
clustering to isolate laser points
on tree trunks.

Detection rate of 75% and overall
accuracy of 84%.

Shalal et al. [25]

Orchard tree detection using a
camera and a laser sensor. Based
on image segmentation and data
fusion techniques.

Average rate of detection
confidence of 82.2%.

Xue et al. [26]

Uses a camera and a laser sensor
to detect and measure the trunk
width. Algorithm based on data
fusion and decision with
Dempster-Shafer theory.

Trunk width measurement with
error rates from 6% to 16.7%.

Juman et al. [27]

Ground removal by colour space
combination and segmentation
and trunk detection using the
Viola-Jones detector.

Detection rate of 97.8%.

Bargoti et al. [28]

Implements a Hough
transformation to extract trunk
candidates, and uses pixelwise
classification to update their
likelihood of being a tree trunk.

87–96% accuracy during the
preharvest season, and 99%
accuracy during the
flowering season.

Colmenero-Martinez et al. [29] Uses an infrared sensor to detect
tree trunks. Detection rate of 91%.

For example, Lamprecht et al. [24] use Airbone Laser Scanning to detect tree trunks.
The authors studied their approach in an area of 109 trees and achieved an overall accuracy
of 84%. Aiming to build a map of the orchard that is to be used in the mobile robotics
context, Shalal et al. [25] use a camera and range sensor to detect trunks. This work
uses image segmentation and data fusion techniques. Xue et al. [26] use a camera and
laser sensor to detect and measure the trunk width. The experiments were conducted on
120 trees and 40 images, resulting in an error rate of 6% to 16.7%. Juman et al. [27] combine
a ground removal technique with the Viola–Jones algorithm to detect trunks. This work
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is proposed in order to perform autonomous navigation in oil-palm plantations, and it
achieves a detection rate of 97.8%. Bargoti et al. [28] propose the detection of tree trunks
in structured apple orchards. The authors implement a Hough transform to extract trunk
candidates, and use pixelwise classification to update their detection likelihood.

In other agricultural contexts, DL is highly present in the detection of natural agents.
Fruit detection in orchards ishe most common application. Moreover, some works focus on
obstacle and insect detection, as well as pest identification. The majority of works focus
on fruit detection, mainly in orchards. Relative to these works, fruit counting is the most
common application. Additionally, a minority of the state-of-the-art focuses on insect
detection for pest identification and obstacle detection. Overall, most of the works present
high performance with Average Precision (AP) or F1 scores higher than 80%. Table 2
provides a summary of these works.

Table 2. Summary of the current state-of-the-art on Deep Learning (DL)-based object detection
in agriculture.

Reference Application Performance

Dias et al. [30] Detect apple flowers. AP of 97.20% and F1 score
of 92.10%.

Zheng et al. [31] Detect and classify crop species. AP of 92.79%.

Koirala et al. [32] Detect mango fruit. AP of 98.60% and F1 score
of 96.70%.

Tian et al. [33] Detect apples in orchards. F1 score of 81.70%.

Bargoti and Underwood [34] Detect fruit in orchards.
F1 score of 90.40% for apples,
90.80% for mangoes and 77.50%
for almonds.

Sa et al. [35] Detect sweet pepper and
rock melon F1 score of 83.80%.

Kirk et al. [36] Detect ripe soft fruits. F1 score of 74.40%.

Li et al. [37]
Detect and count oil palm trees
from high-resolution remote
sensing images.

Maximum overall detection
accuracy of 99% and counting
error less than 4% for each
considered region.

Ding and Taylor [38] Detect pest. AP of 93.10%.

Zhong et al. [39] Detect flying insects. Counting accuracy of 93.71%.

Steen et al. [40] Detect an obstacle.

Precision of 99.9% and recall of
36.7% in row crops, and precision
of 90.8% and a recall of 28.1% in
mowing grass.

Dias et al. [30] implement a technique for apple flower identification, which is robust
to changes in illumination and clutter. The authors use a pre-trained CNN and Transfer
Learning concepts to create the detector. Data augmentation is applied to the original
collected images to increase the dataset size. The results show that this work achieves an F1
score of 92.1% and an AP of 97.2%. In the context of mango fruit detection, Koirala et al. [32]
compared the performance of six state-of-the-art DL architectures. Additionally, the authors
proposed MangoYOLO, a new architecture based YOLO [23], which was specifically created
for mango fruit detection. As a best result, MangoYOLO performed with an AP of 98.60%.
Zheng et al. [31] propose a large dataset for species classification and detection, called
CropDeep. The dataset contains more than 30,000 images of 31 different classes. The au-
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thors train state-of-the-art DL models to verify its validity, such as Resnet [41], where they
obtained an AP of 92.79%.

Besides object detection, DL in agriculture can also be used to infer specific character-
istics of the natural agents. For example, Li et al. [37] propose a DL framework to detect
and count oil palm trees from high-resolution remote sensing images. The main goals
of this work are to predict yield of palm oil and monitor the growth stage of palm trees.
Tian et al. [33] implemented an improvement to the YOLO-V3 [42] model to estimate apples
yield and their grown stages. The authors consider a variety of challenging conditions, such
as overlapping apples, leaves, and branches; illumination variation; and, complex back-
grounds. The experiments performed proved that, for a training dataset with three different
growth stages, this approach has an F1 score of 81.7%. Bargoti and Underwood [34] use the
standard Faster R-CNN architecture [22] to detect several types of fruits in orchards, such
as apples, mangoes, and almonds. In this work, the authors explore the amount of data that
are required to capture the variability of the agriculture environment, as well as the gain of
using data augmentation techniques. Overall, this work was performed with high precision,
resulting in an F1 score higher than 90%. Additionally, Sa et al. [35] propose a fruit detec-
tion system called DeepFruits while using the Faster R-CNN architecture. The proposed
detectors are integrated in the software pipeline of an agricultural robot to estimate yield
and automate the harvesting process. The results demonstrated that this work achieves an
F1 score of 83.8% while detecting sweet pepper and rock-melon. To detect ripe soft fruits,
Kirk et al. [36] propose a detector implemented as a combination of a conventional com-
puter vision algorithm and a DL-based approach. The authors build a dataset with images
captured over two months in the agricultural environment to test their implementation.
The performed experiments show that this algorithm achieves an F1 score of 74.4%.

In addition to fruit detection, DL is also used in other relevant agriculture scenarios.
The safety of machines and operators is essential in these environments. In this context,
obstacle detection plays a major role ensuring the safety of the operations performed in
agriculture. To pursue this goal, Steen et al. [40] use a CNN to detect an object type in
row crops and grass mowing. The detector is able to detect the object with high precision,
without detecting false positives, such as persons or other objects. Finally, insect and pest
identification is also an important research area for the agriculture sector to avoid plant
diseases. Zhong et al. [39] implemented a fast and accurate flying insect detection and
counting. To do so, the YOLO [23] model is used in the detection stage, and an Support
Vector Machine (SVM) in the counting stage. The detection pipeling supports six types of
insects, and it performs with a counting accuracy of 93.71%. Ding and Taylor [38] create a
CNN model to detect and count pest. The experiments show that the model is fast and
precise (AP of 93.1%), and that it can be easily used to detect other kinds of pest.

Our previous works [43,44] focused on the usage and benchmark of low-power devices
to deploy DL models while using a low quantity of training data. In this paper, the se-
mantic vineyard perception problem is extended with the following main contributions
and innovations:

• A novel DL-oriented dataset for vine trunk detection called VineSet, publicly available
(http://vcriis01.inesctec.pt/datasets/DataSet/VineSet.zip) and recognized by the
ROS Agriculture community (http://wiki.ros.org/agriculture) as “A Large Vine
Trunk Image Collection and Annotation using the Pascal VOC format”.

• A way of extending the dataset size using data augmentation techniques.
• The train, benchmark, and characterization of state-of-the-art Single Shot Multibox

Detector (SSD) [45] models for vine trunk detection using the VineSet.
• Real-time deployment of the models using a Tensor Processing Unit (TPU).
• An automatic annotation tool for datasets of trunks in agricultural contexts.

The rest of the paper is described, as follows. Section 3 contains the methodology
adopted, such as the data collection and augmentation methods, the training procedure,
and the inference approaches. Section 4 presents the proposed system results while using
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the VineSet dataset and the respective analysis, characterization, and discussion. Finally,
Section 5 summarizes the work.

2. Background

This work uses two sets of models based on the SSD architecture [45] to detect vine
trunks, the MobileNets [46], and Inception-V2 [47]. The SSD architecture and the derived
models are briefly described in this section.

2.1. Single Shot Multibox

SSD, Figure 2, is based on a feed-forward CNN that detects objects producing a fixed
number of bounding boxes and scores.

Figure 2. Single Shot Multibox architecture [45].

This architecture is built upon a Neural Network (NN) that is based on a given
standard architecture. Its main modules are:

• Convolutional feature layers that decrease progressively in size, detecting objects at
multiple scales.

• Convolutional filters that are represented on the top of Figure 2 produce a fixed
number of detection predictions.

• A set of bounding boxes associated with each feature map cell.

These characteristics allow to detect objects at multiple scales, i.e., objects of different
sizes in the images with different resolutions.

2.2. MobileNets

This set of models provide lightweight Deep Neural Networks (NNs) while using
depthwise separable convolutions. In other words, the model factorizes convolutions
into depthwise and 1 × 1 convolutions, called pointwise convolutions. The first applies a
single filter to the input channel, and the second applies a 1 × 1 convolution, combining
the outputs of the first. The CNN input is a tensor with shape D f × D f ×M, where D f
represents the input channel spatial width and height, and M is the input depth. After
the convolution, a feature map of shape D f × D f × N is obtained, where N is the output
depth. In this context, these model families use two hyper-parameters that allow the user
to resize the model in order to meet the system requirements. These hyper-parameters are:
width multiplier α and resolution multiplier ρ. The first is used to reduce the size of the
CNN uniformly at each layer. For a given value of α ∈ (0, 1], the number of input channels
M becomes αM, as well as the number of output channels N becomes αN. The width
multiplier reduces the computational cost and number of parameters by α2. The second
hyper-parameter, ρ, is also used to reduce the computational cost. This one is applied
directly to the input image, setting its resolution. The ρ ∈ (0, 1] values are chosen to obtain
typical input image resolutions. Similarly to the width multiplier, the resolution multiplier
also reduces the computational cost and the number of parameters by ρ2. Accordingly,
both of the parameters are different ways of reducing the model size and computational
cost. When combined, the effects on the final model can be even more significant.
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2.3. Inception

Szegedy et al. [48] proposed the primary version of Inception. This model design is
based on the premise that the desired object to classify or detect can present several sizes
on different images. This leads to the difficulty of choosing the right kernel size. Inception
proposes three different convolutional filter sizes to overcome this issue: 1 × 1, 3 × 3,
and 5 × 5. Additionally, the NN model also computes max pooling. The output of all these
operations is then concatenated, constituting the result of the respective Inception module.

Inception-V2 was developed to reduce the computational complexity of the original
version. This is done by factorizing the convolution operations. For example, a 5 × 5
convolution is factorized into two 3 × 3 convolutions, improving the runtime perfor-
mance. Similarly, an m×m convolution can be factorized into a combination of 1 ×m and
m× 1 convolutions.

3. Materials and Methods

The reliable semantic perception of an agricultural environment by a robot is a task that
requires several development steps, as well as high amounts of learning data. In this work,
a large collection of data in several vineyard contexts is proposed. This innovation created
the VineSet, a dataset with RGB images of four different vineyards, and thermal images of
a single one, containing the annotations for each image. The proposed dataset is available
(http://vcriis01.inesctec.pt/datasets/DataSet/VineSet.zip) and it was recognized by the
ROS Agriculture community (http://wiki.ros.org/agriculture) as “A Large Vine Trunk
Image Collection and Annotation using the Pascal VOC format”. In addition, our pipeline
supports a variety of augmentation operations that allow for extending the original dataset.
The augmentation procedure automatically generates the annotations for the augmented
images. With this information, state-of-the-art SSD models are trained using the Tensorflow
(https://www.tensorflow.org/) API and then deployed in an Edge-AI manner. Figure 3
represents the main steps performed until real-time vine trunk detection.

Figure 3. High-level design of the vine trunk detection framework. The procedure starts with the
data acquisition in real-world vineyards, followed by the manual vine trunk annotation. The VineSet
is extended using data augmentation techniques to increase the dataset size. Finally, the Neural
Networks are trained and deployed in a Edge-AI manner, using dedicated hardware.

In addition to this vine trunk detection pipeline, an assisted labelling framework is
also proposed. A DL model is used to automatically annotate an input dataset and provide
the annotations in a standard format. The user can then load the annotations and manually
annotate the remaining objects not detected by the DL model, as detailed in Section 3.5.
In terms of cost, we propose a cost-effective solution that requires two main hardware
components: a standard RGB camera (https://www.raspberrypi.org/products/raspberry-
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pi-high-quality-camera/) (<70€), and a low-cost TPU device (https://coral.ai/products/
accelerator) (<60€). The devices must be plugged to a central processing unit, such as a
microprocessor or a standard computer. This being said, the proposed solution is affordable
for small/medium farmers, and it can have an impact in the improvement of the semantic
perception systems in vineyards.

3.1. Data Acquisition

In order to acquire images in real vineyard scenarios, we used our robotic platform
AgRob V16 [49], which is represented in Figure 4.

Figure 4. The AgRob V16 robotic platform recording data in one of the vineyards that compose
the VineSet.

This robot contains a frontal stereo RGB camera and a frontal thermal camera. To col-
lect the image data, the robot travelled along the vineyard corridors of four different
vineyards, and then recorded video streams saved in the ROSBag file format. In one of
the vineyards, the thermal camera was activated, and also recorded video to the same file
format. After all, the acquisition on the field, the ROSBag files were processed, and im-
age frames were extracted from them at a fixed frame-rate, which resulted in a total of
952 vineyard images. Figure 5 shows an example of each type of image collected.

From this, one can see that the dataset presents considerable data variability. In fact,
the VineSet contains images that were collected at different stages of the year that capture
different characteristics of the vineyards imposed by the temporal offset. Additionally,
it presents images of vineyards with and without foliage and with different levels of
luminosity. Finally, the presence of thermal vineyard images adds the notion of temperature
to the dataset, which can improve the learning procedure.
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(a) (b)

(c) (d) (e)

Figure 5. The five categories of vineyard images that compose the VineSet. (a–d) Four of them
are from different Portugal Vineyards and (e) the other represents the set of thermal images of the
vineyard present in Figure 5a.

3.2. Data Annotation

Given the training dataset, the perceptible vine trunks were manually annotated on
the images. Figure 6 shows an image example of each vine with the respective annotations.

(a) (b)

Figure 6. The result of the annotation process for trunk detection in two different vineyards repre-
sented in (a,b). The green dots represent the extremes of the annotated bounding boxes that contain
the vineyard trunks.

The output from this procedure is a set of bounding boxes with different sizes for
each image. These are represented in a .xml file with the Pascal VOC annotation format,
containing the label class that is considered and the four corners location of each bounding
box. It is worth noting that the annotations are a fundamental part of the VineSet dataset,
since they represent trunk’s location in the object detection learning procedure.

3.3. Data Augmentation

Even though DL outperforms most traditional Machine Learning (ML) methods in
terms of precision and real-time application [18], one of the biggest challenges is to over-
come overfitting. This frequent ML problem consists of modelling the data too well, only
learning the expected output for each input instead of learning the input data’s general
distribution. Additionally, conditions, such as variation of sunlight illumination during the
day or the outdoor environment terrain, may affect performance. In order to avoid over-
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fitting and the network generalization, data augmentation is a usual method to enhance
data variability for training by enlarging the dataset using label-preserving transforma-
tions. Thus, to increase the VineSet’s diversity and robustness, the collected images were
pre-processed with the augmentation techniques presented in Table 3, and VineSet was
extended to 9481 images.

Table 3. Description of the augmentation operations used to expand the original collection of data.

Augmentation Operation Description

Rotation Rotates the image by 15, −15 and 45 degrees.

Translation Translates the image by −30% to +30% on x- and y-axis.

Scale Scales the image to a value of 50 to 150% of their original size.

Flipping Mirrors the image horizontally.

Multiply Multiplies all pixels in an image with a random value sampled once per
image, which can be used to make images lighter or darker.

Hue and saturation
Increases or decreases hue and saturation by random values. This
operation first transforms images to HSV colourspace, then adds random
values to the H and S channels, and afterwards converts back to RGB.

Gaussian noise Adds noise sampled from Gaussian distributions element-wise to images.

Random combination Applies a random combination of three of the previous operations.

As described, the VineSet is extended by applying operations on the original images,
such as rotation, translation, scaling, flipping, multiplication, saturation, and the addition
of noise sampled from a Gaussian distribution. In addition, a random combination of
three of the previous operations is also supported. This highly increases the number of
combinations of operations possible and, consequently, increases the extended dataset
variability. Figure 7 represents an example of an application of the augmentation operations
to a single image.

(a) Original (b) Translation (c) Multiply

(d) Hue/Saturation (e) Horizontal Flip (f) Rotation

Figure 7. Cont.
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(g) Rotation (h) Gaussian Noise (i) Combination 3

Figure 7. Set of several augmentation operations that were applied to VineSet, such as translation,
multiplication, hue and saturation, flip, rotation, Gaussian noise, and, finally, a random combination
of three of the previously mentioned operations.

3.4. Training Procedure

The Edge-AI-based deployment of NNs is performed while using a TPU. This hard-
ware device is provided by Google and requires models that were trained using the
Tensorflow [50] API. Tensorflow is an open-source end-to-end framework for machine
learning and DL that provides tools, libraries, and models. With this tool, the implementa-
tion of DL applications can be built in a more straightforward, comprehensive, and flexible
way. In the Edge-AI context, Tensorflow provides a tool, called Tensorflow Lite, which
is device-oriented. Using Tensorflow Lite, the trained models can be transformed to be
compatible with edge-based hardware. In this work, this tool is used for two main ends:

1. the full quantization of models to 8-bit precision; and,
2. compilation of the model to the TPU context.

Step 1. consists of converting the training models from 32-bit to 8-bit precision, since
the TPU device can only deploy fully quantized models. The second step is a fundamental
part of the process. In this, the model is compiled to the TPU context. In other words,
the DL model operations are allocated to the device. The unsupported operations remain
allocated to the host device, usually a CPU. Thus, the higher the number of allocated
operations to the edge device, the faster the inference procedure will be. With this in
mind, the model selection is crucial for the reliable operation of the detectors. For the
object detection task, the SSD is the most appropriate, and one specific set of models was
particularly implemented for edge- and embedded-based applications: the MobileNets [46].
In this work, SSD MobileNet-V1 and SSD MobileNet-V2 were both trained and deployed,
as well as the SSD Inception-V2 model [47]. The three models were benchmarked and
characterized by evaluating the dataset size and comparing the inference performance
between training them from scratch and using Transfer Learning.

3.5. Assisted Labelling Tool

Training a DL model involves several steps, one of the most important of which is data
annotation. Generally, this step is a long process, and the time that is spent depends on
several factors, such as the total number of images that the dataset has the number of classes
and the ease of manually identifying the bounding box that corresponds to each class.
Thus, this work proposes creating an assisted labelling procedure that uses AI to help the
annotation process in the detection of trunks in the vineyards. Figure 8 represents the
layout of the created application.

In this way, a comprehensive and user-friendly python notebook was developed.
The procedure of this new solution consists of using an online platform, Google Colabora-
tory (https://colab.research.google.com), so that the user can save his machine’s resources.
This tool provides a DL model that is trained for detecting vine trunks, and also capable of
detecting trunks in other contexts such as orchards or forests. Accordingly, an essential
factor for automating this process is the use of the DL model. Taking the results obtained in
Section 4 into account, the SSD MobileNet-V1 trained with VineSet was the model chosen
for the detection of trunks in the images introduced in this tool. The assisted labelling
procedure uses this model to pre-process the user dataset, automatically annotating the
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detected trunks, saving the annotations in the Pascal VOC format. The user can then load
the automatic annotations and complete them manually. This tool reduces the percentage
of annotations taken manually, significantly reducing the time that it takes to insert labels
into relatively large datasets. It is worth noting that this procedure is iterative, in the way
that the user can improve DL-based object detection models performance, by iteratively
annotating objects that the model fails to recognize.

Figure 8. The assisted labelling tool interface.

4. Results

This section evaluates the semantic vineyard perception captured by on-board sensors
while using Edge-AI technologies. The evaluation considers the vine trunk detection
precision and inference time performance.

4.1. Methodology

A subset of the entire dataset was used for test purposes and not employed in the
training procedures in order to test and evaluate the models. The test set selection is
randomly generated, picking 10% of the VineSet images. In this work, two train datasets
were used. This was done to evaluate the impact of the training dataset size on the
detectors performance. Thus, the original VineSet dataset and a small subset of it with 336
non-augmented images were used. The evaluation approach is described in Section 4.2.
In addition, the inference time per image was measured for each model deployed in the
TPU, while considering the average inference time for all the images present in the test
dataset. Finally, the assisted labelling procedure is evaluated when considering three
experiments: the first in a vineyard not present in the VineSet dataset, other in forest
images, and a final one in a hazelnut orchard. The labelling was assisted in these three
scenarios, and the time that was saved in the annotation procedure was measured for each
of them.

4.2. Object Detection Metrics

The PASCAL VOC Challenge [51] was used to evaluate the considered model’s per-
formance on Google’s USB Accelerator. Most of DL-based works use AP to evaluate their
models, as shown in Section 1. Thus, the use of this metric simplifies the comparison
between state-of-the-art approaches. In order to compute the AP, Pascal VOC starts by
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calculating the Intersection over Union (IoU). Given an annotated ground truth bounding
box Bg, and a detected bounding box Bd, the IoU is computed, as follows:

IoU =
m(Bg ∩ Bd)

m(Bg ∪ Bd)
(1)

where m(x) denotes the area of x. Figure 9, shows a graphical representation of this concept.

��

��

��

��

IoU =

Figure 9. Interception over union representation.

Thus, IoU represents the quotient between the overlap area and the union area between
the ground truth and bounding boxes’ detection. Using this definition, for a given threshold
value t, three main concepts can be defined:

• True Positive (TP): IoU ≥ t, i.e., a correct detection.
• False Positive (FP): IoU ≤ t, i.e., an incorrect detection.
• False Negative (FN): a ground truth is not detected.

In the case that multiple detections for a single annotation (or ground truth) are
computed, this metric only considers as TP the one that presents the higher IoU value. All
of the other detections are marked as FPs. Subsequently, to compute the model AP, two
concepts are defined. The first, precision p, is defined as the total number of TPs over all
the detections. The second, recall r, is the total number of TPs over all the ground truths.
With these two concepts, AP is calculated as a combination of precision and recall. In other
words, the AP is the average value of the precision vs recall curve p(r) for r ∈ [0, 1]. The
evaluation considers that a suitable detector is the one that maintains the precision high for
an increase in recall. Mathematically, this is expressedm as follows

1

∑
r=0

(rn+1 − rn)pinterp(rn+1) (2)

with
pinterp(rn+1) = max

r̃;̃r≥rn+1
p(r̃) (3)

where p(r̃) is the measured precision at recall r̃.
This work also evaluates the models while using the F1 score. This score is the

harmonic mean between the precision p and recall r, and it can be calculated as follows:

F1 = 2
p · r

p + r
(4)

4.3. Detectors Performance

In this work, in order to evaluate the models performance, we consider an IoU
threshold of 0.50, since we are interested in detecting trunks with high and medium
precision to use as landmarks for Simultaneous Localization and Mapping in agriculture.
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Additionally, trunks are non-uniform agents that present inclination and perturbations.
Thus, a detection can still be valid and precise, even if it does not exactly match the
annotation. Table 4 summarizes the models’ performance in terms of precision and F1 score.

Table 4. AP (%) and F1 Scores of the trained models. The three models were trained while using a
small subset of the VineSet, and VineSet itself. In addition, using VineSet, three experiments were
performed for each model. The performance of each one was compared using Transfer Learning (by
fine-tuning) and training them from scratch with two different numbers of training epochs.

M del Train Dataset

Fine-Tuning From Scratch From Scratch

50 k 50 k 100 k

AP (%) F1 AP (%) F1 AP (%) F1

SSD MobileNet-V1
Small subset

49.74 0.610 - - - -
SSD MobileNet-V2 52.98 0.590 - - - -
SSD Inception-V2 46.10 0.610 - - - -

SSD MobileNet-V1
VineSet

84.16 0.841 68.44 0.685 85.93 0.834
SSD MobileNet-V2 83.01 0.808 60.44 0.639 83.70 0.812
SSD Inception-V2 75.78 0.848 58.05 0.658 76.77 0.849

When considering the trained models with VineSet using Transfer Learning (fine-
tuning), we achieved a maximum AP of 84.16%, corresponding to SSD MobileNet-V1.
This proves that the VineSet dataset can be successfully used to train models to detect
vine trunks, even while considering lightweight model, such as the MobileNets. SSD
MobileNet-V2 achieves a similar precision (83.01%), which is expected, since both models
have similar architectures. The SSD Inception-V2 presents a lower precision (75.78%),
but the higher F1 score (0.848). This means that this model is the one that has the best
balance between precision and recall. Figure 10 shows an example of three detections using
the SSD MobileNet-V1.

In terms of inference time, from Table 5 several conclusions can be taken.
The edge TPU device is built with a specific architecture that is optimized to deploy

DL models. If the models are compatible with it, then it is expected that the inference
runs at high frame rate. From the experiments performed, the MobileNets achieved an
average inference time of 21.18 ms and 23.14 ms. In terms of frequency, this is equivalent
to approximately 50 frames per second. This means that the edge TPU can process approxi-
mately 50 images and output the desired detections in one second. For SSD Inception-V2,
the processing rate is slower. The edge device has an average inference time of 359.64 ms
for this device. This can be explained by two main reasons. Firstly, the MobileNets use
depthwise separable convolution, while Inception uses standard convolution, which results
in fewer parameters on MobileNet when compared to Inception. Secondly, the first set of
models is more oriented to edge devices. Thus, in the compilation process for the TPU,
a higher number of operations is allocated to it. On the opposite side, the SSD Inception-V2
allocates more operations to the host CPU, due to the non-compatibility of some of them.
These two factors lead to the decrease of the inference time performance.

Table 5. Inference time per image (ms) of each trained model deployed on the edge TPU device.

Model Inference Time per Image (ms)

SSD MobileNet-V1 21.18
SSD MobileNet-V2 23.14
SSD Inception-V2 359.64



Agriculture 2021, 11, 131 15 of 20

(a) (b)

(c)

Figure 10. Detection results in (a,b) two RGB images from different vineyards and (c) one thermal
image using Single Shot Multibox Detector (SSD) MobileNet-V1 trained with VineSet.

4.4. Impact of the Dataset Size on the Detection Performance

In order to evaluate the training dataset size impact in the final models’ performance,
we trained them using a small subset of the VineSet. Table 4 summarizes all of the obtained
results in terms of AP and F1 score. As expected, the models that were trained with lower
amounts of data present lower precision. The lower variability of data leads to a lower
learning capability and, consequently, to a lower inference performance. In this context,
we verified a decay of 34.42% of AP for SSD MobileNet-V1, 30.03 for SSD MobileNet-V2,
and 29.68% for SSD Inception-V2. Thus, the decrease in the training dataset size has
a significant impact on the models performance. This proves the high importance of
considering a considerable amount of data with variability when dealing with DL models.

4.5. Comparison of Transfer Learning against Training from Scratch

One of the main questions of developers while training and deploying DL models is
to fine-tune a pre-trained model or to train it from scratch. When using Transfer Learning,
the model uses some of the pre-trained weights and restores other ones. Thus, the starting
point on Transfer Learning is one step ahead when comparing training the same model
from scratch. In the last case, all of the weights have to be learned, leading to a longer
learning process. To test this, we train the three models from scratch using two epoch values
(50,000 and 100,000). From Table 4, we can verify that, for models that are trained from
scratch to achieve similar performance as compared with the ones fine-tuned, the number
of training epochs has to be doubled. From Figure 11, this is also visible.

Here, it is possible to verify that the training loss for the fine-tuned models converges
faster. Additionally, the validation loss has a more precise starting point for these models,
as visible from Figure 11c,d. Thus, these experiments proved the theoretical assumptions
that were made.



Agriculture 2021, 11, 131 16 of 20

(a) Fine-tuning train loss (b) Scratch train loss

(c) Fine-tuning validation loss (d) Scratch validation loss

Figure 11. Train and validation loss of SSD MobileNet-V1 using 50,000 epochs and considering
Transfer Learning and training from scratch.

4.6. Assisted Labelling Procedure

Several factors were analyzed in comparison with manual annotation in order to
assess the performance of our assisted labelling procedure. Specifically, the average time to
manually label a trunk was measured over several experiments, and it was concluded that,
on average, the time spent per trunk annotation is 5 s. Thus, once this value is established,
the total time that is spent on several images can also be estimated. The time spent on
assisted annotation was calculated from the percentage of annotations made automatically,
and the percentage of annotations made manually. In this way, the total time that is spent
by the tool is calculated through the time spent by the automatic annotation plus the offset
created by the missing annotations. Table 6 summarizes the results.

Table 6. Assisted labelling procedure evaluation.

Dataset Number of Images Number of Trunks Automatic
Annotations (%)

Average Time with
Assisted Labelling (min)

Average Time without
Assisted Labelling (min)

Other vineyards 11 75 72.32 1.74 6.35
Hazelnut orchard 20 139 48.34 5.99 11.58

Forest 264 1647 28.05 101.97 137.25

These experiments used the proposed assisted annotation procedure to automatically
annotate the images from other vineyards, but also from an orchard, and a forest. The
results estimate that the automatic annotation tool can reduce the average labelling time
from 6.35 min. to 1.74 min for vineyards. In orchards, the tool annotates 48.34% of the
trunks and, in forests, 28.05%. This means that only the remaining set of trunks have to be
annotated by the user. The tool can be iterative improved by updating the back-end DL
model with user’s annotations. Figure 12 shows the result of the automatic annotation in
three different contexts.
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(a) Hazelnut orchard environment. (b) Forest environment.

(c) Vineyard environment.

Figure 12. Automatic annotations in different areas of agriculture.

4.7. Discussion

The experiments performed revealed several takeaways. With a wide variety of
data, lightweight DL models can be used for detection purposes in agricultural contexts.
With these models, Edge-AI-based devices can be used to perform high-performance
inference. As discussed, one of the most important factors to build successful detectors
is to provide sufficient amounts of varied learning data. Additionally, using models that
already have a learning history can accelerate the learning procedure, thus saving resources
and time.

In comparison with the state-of-the-art, our approach outperforms the work that was
proposed by Badeka et al. [21] that achieved an AP of 73.2% using DL models to detect vine
trunks. Other approaches use conventional image processing techniques, or data fusion, to
achieve the same goal. In particular, Lamprecht et al. [24] uses a 3D clustering procedure
to isolate laser points on tree trunks, achieving an overall accuracy of 84%. Shalal et al. [25]
fuse a camera with a laser sensor to detect orchard trunks with a detection confidence of
82.2%. Our approach achieves similar results using less resources, presenting extremely
high inference rates. Regarding the works that use DL in other agricultural contexts, our
approach presents a state-of-the-art performance (AP higher than 80%) and promotes DL
concepts in vineyard contexts. We think that these concepts have extreme importance in
agricultural robotics and that, shortly, they will be usually approached to the detriment
of more conventional image processing techniques. In comparison with our work, some
works present higher precision rates, such as Dias et al. [31], Zheng et al. [31], and Koirala
et al. [32]. In relation with these, our work uses simpler DL models with less operations and
being less computationally expensive. Even so, this paper can still present a state-of-the-art
performance, with the advantage of running at high frame rates.

The major drawback faced while implementing the proposed techniques was the high
amount of time and resources spent during the annotation process. This led to the creation
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of the automatic annotation tool, so that, in the future, we can spend less time in this step.
Looking to the future, one of the most important steps will be to develop models and
acquire data, so that robots can also have this level of perception during the night. In most
agricultural sectors, robots can be employed to autonomously perform several tasks during
this period. Consequently, they should also have the ability to detect objects and natural
agents at night.

5. Conclusions

In this work, DL is used to detect semantic features in vineyards. Single Shot Multibox
detectors are trained while using a novel built in-house dataset, the VineSet. The models are
converted to an edge TPU context and then deployed in this hardware device. Additionally,
an assisted annotation tool is proposed to ease the dataset creation procedure. The results
show that our detectors present an AP up to 84.16% and an F1 score up to 0.848. The
MobileNets are executed in the edge TPU at a high frame rate, with an average inference
time per image up to 23.14 ms. Additionally, from the characterization performed, two
main conclusions can be made: the amount of training data has a significant impact on the
detectors’ performance; and, the number of training epochs has to be double in order for a
detector trained from scratch achieve a similar performance of the one fine-tuned. Finally,
the annotation tool proved to help in the annotation process, being capable of automatically
annotating trunks in other agricultural contexts, such as orchards and forests.

In future work, we aim to project and implement a DL model from scratch in order to
detect vine trunks. Additionally, we will integrate the proposed models in a Simultaneous
Localization and Mapping stack as landmark extractors.
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4.4 Grape Bunch Detection at Different Growth

Stages Using Deep Learning Quantized

Models

After the research and exploration of the vine trunk detection system, and to have

a more complete semantic vineyard perception, this thesis focused on grape bunch

detection. This work was published in the MDPI Agronomy Journal and is entitled

Grape Bunch Detection at Different Growth Stages Using Deep Learning Quantized

Models (Aguiar et al., 2021c). In the same way as the proposed previous works, this

approach uses lightweight models executed on an embedded device that is placed on-

board our robotic platforms. One of the main novelties of this work is the availability

of a public dataset containing 1929 images of vineyard canopies and the respective

annotations. This data was collected mounting a monocular camera in a robotic arm

pointing to the canopy during several robotic trajectories. The other main novelty of

this work is the data acquisition and semantic perception considering different grape

bunch growth stages. The data collection was performed in two different temporal

samples capturing the grape bunches right after the bloom and in an intermediate

growth stage. Since this perception system is intended to feed 3D mapping systems,

this will allow semantic SLAM approaches (such as VineSLAM) to create maps of

the vineyard considering a temporal dimension. Maps of different vineyard stages

can then be analysed and compared by specialists. One straightforward application

should be yield estimation. Results show that the developed detectors are robust to

different illumination conditions and partial occluded grape bunches.
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Abstract: The agricultural sector plays a fundamental role in our society, where it is increasingly im-
portant to automate processes, which can generate beneficial impacts in the productivity and quality
of products. Perception and computer vision approaches can be fundamental in the implementation
of robotics in agriculture. In particular, deep learning can be used for image classification or object
detection, endowing machines with the capability to perform operations in the agriculture context.
In this work, deep learning was used for the detection of grape bunches in vineyards considering
different growth stages: the early stage just after the bloom and the medium stage where the grape
bunches present an intermediate development. Two state-of-the-art single-shot multibox models
were trained, quantized, and deployed in a low-cost and low-power hardware device, a Tensor
Processing Unit. The training input was a novel and publicly available dataset proposed in this
work. This dataset contains 1929 images and respective annotations of grape bunches at two different
growth stages, captured by different cameras in several illumination conditions. The models were
benchmarked and characterized considering the variation of two different parameters: the confidence
score and the intersection over union threshold. The results showed that the deployed models could
detect grape bunches in images with a medium average precision up to 66.96%. Since this approach
uses low resources, a low-cost and low-power hardware device that requires simplified models with 8
bit quantization, the obtained performance was satisfactory. Experiments also demonstrated that the
models performed better in identifying grape bunches at the medium growth stage, in comparison
with grape bunches present in the vineyard after the bloom, since the second class represents smaller
grape bunches, with a color and texture more similar to the surrounding foliage, which complicates
their detection.

Keywords: deep learning; grape bunch detection; agriculture

1. Introduction

The agricultural sector plays a fundamental role in our society. Thus, research, de-
velopment, and innovation should be promoted and implemented in the vast range of
areas connected to agriculture. In this context, it is increasingly important to automatize
processes in agricultural environments, which can generate beneficial impacts in the pro-
ductivity and quality of products, minimizing the environmental impacts and production
costs [1,2]. In particular, vineyards occupy large terrain extensions, which make human
labor, many times, intense. Vineyards such as the ones located for example in the Douro
Demarched Region, the oldest controlled wine-making region in the world, a UNESCO her-
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Agronomy 2021, 11, 1890 2 of 23

itage place [3], are located along hills presenting harsh inclinations. In these environments,
the automatization of processes becomes more challenging, as well as more necessary.
Perception algorithms can be important to provide visual data processed to be further ana-
lyzed by specialists. These algorithms can be deployed onboard robots to provide detailed
and large-scale information of the agricultural environments [4]. Perception applied to
fruit detection can be a valuable resource. The automatic detection of fruits at early stages
can be used to predict the yield estimation [5]. More advanced approaches should be able
to detect fruits at different growth stages. With this, agronomists can analyze the data and
collect information about, for example, the crop evolution over time.

In the past few years, Deep Learning (DL) has had a huge impact in the development
of perception and computer vision algorithms [6]. This concept can be applied for object
detection in images, which can be used for fruit detection in agriculture. Convolutional
Neural Networks (CNNs) are widely used to perform such a task. They have shown
the highest performance levels in several contests in machine learning and pattern recog-
nition [7]. Image classification and object detection based on DL techniques are widely
present in the agriculture sector, endowing machines with the capability to perform opera-
tions in the agriculture context such as plant disease detection, weed identification, seed
identification, fruit detection and counting, and obstacle detection, among others [8–10]. In
particular, in recent years, CNNs have been increasingly incorporated into plant phenotyp-
ing concepts. They have been very successful in modeling complicated systems, owing to
their ability to distinguish patterns and extract regularities from data. Examples further
extend to variety identification in seeds [11] and in intact plants by using leaves [12]. The
presence of these techniques in real applications leads the state-of-the-art to develop more
computationally efficient models and specific hardware to deploy such models. These
low-cost and low-power hardware devices promote fast and efficient model inference and
allow the deployment of DL in robotic platforms. This concept is usually known as Edge
Artificial Intelligence (Edge-AI) [13].

Our previous works focused on the detection of vine trunks [14–16] and tomatoes
in greenhouses [17]. This work intends to solve the problem of automatically detecting
grape bunches in images considering different growth stages, so that more intelligent and
advanced tasks can be performed by robots such as: harvesting, yield estimation, fruit
picking, semantic mapping of cultures, and others. In particular, the motivation of this
work is oriented toward several applications in the agricultural sector. The grape bunch
detection can be used by Simultaneous Localization and Mapping (SLAM) systems to
build precise semantic maps of the environment providing the detailed 3D location of the
fruits on crops. This can be used to build prescription maps of the vineyards, which can
optimize, for example, the application of fertilizers, seeds, or sprayers in different regions
of the agricultural environment. In addition, considering the detection of grape bunches at
different growth stages can be useful to track the evolution of the crop. Specialists in the
agricultural sector can use the detection at the early growth stages for early yield estimation
and then compare with the actual yield of the vineyard at more advanced growth stages.

One of the main features of this work is the use of cameras operating in the visible
portion of the electromagnetic spectrum (400–700 nm). In this way, it is possible to im-
plement an affordable solution without the requirement of trained personnel [18]. In the
current state-of-the-art, however, not only a specific orientation of the object of interest in
relation to the camera is required, but also defined illumination conditions, which limit the
applicability to controlled-light environments [19]. The method presented in this paper is
independent of the ambient light environment, making this solution cost-effective, portable
(thus, in situ), and rapid. Thus, the contributions of the proposed approach are threefold:

• A publicly available dataset (https://doi.org/10.5281/zenodo.5114142) (accessed on
23 August 2021) containing 1929 images and annotations of grape bunches at different
growth stages, captured by different cameras in several illumination conditions;

• A benchmark of Deep Learning (DL) quantized models for grape bunch detection at
different growth stages;
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• The deployment of the models in a low-cost and low-power hardware embedded device.

To sum up, this work innovates the state-of-the-art by proposing the first publicly
available dataset containing images and annotations of grape bunches at different growth
stages. In addition, this work proposes the benchmarking between 8 bit quantized models
and their deployment in a dedicated hardware, which still is an underdeveloped area in
the literature.

The rest of the paper is organized as follows. Section 2 presents the current state-of-
the-art on DL-based object detection in agriculture and the current techniques for grape
bunch, grape flower, and grape berry detection. Section 3 describes the proposed approach
for grape bunch detection. Section 4 summarizes the obtained results. Finally, Section 5
presents the main conclusions of this work.

2. Related Work

The use of DL is present in several agricultural areas and contexts. In particular, this
approach is often used for the detection of natural features in the cultures. Fruit detection
and counting in orchards are the most common applications. Moreover, some works focus
on obstacle and insect detection, as well as pest identification. Dias et al. [20] implemented
a technique for apple flower identification, which is robust to changes in illumination
and clutter. The authors used a pretrained CNN and Transfer Learning (TL) concepts to
create the detector. In the context of mango fruit detection, Koirala et al. [21] compared
the performance of six state-of-the-art DL techniques and proposed MangoYOLO, a new
architecture based on YOLO [22]. Zeng et al. [23] proposed a large dataset for species
classification and detection, called CropDeep. The dataset contains more than 30,000
images of 31 different classes. Bargoti and Underwood [24] used the standard Faster
R-CNN architecture [25] to detect several types of fruits in orchards, such as apples,
mangoes, and almonds. Additionally, Sa et al. [26] proposed a fruit detection system
called DeepFruits while using the Faster R-CNN architecture. The proposed detectors
were integrated in the software pipeline of an agricultural robot to estimate yield and
automate the harvesting process. To detect ripe soft fruits, Kirk et al. [27] proposed a
detector implemented as a combination of a conventional computer vision algorithm and a
DL-based approach.

In vineyards, several works have tackled the problem of grape detection in images
using computer vision approaches. Either DL-based or more traditional implementations
are used to detect, segment, or track these natural features such as grape bunches, grape
flowers, or single berries. Table 1 presents an overview of the current state-of-the-art
in this area.
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Table 1. Summary of the current state-of-the-art of Deep-Learning (DL)-based grape detection.

Reference Application Performance

Liu et al. [28] (2018) Automated grape flower counting to determine potential yields at early stages. Accuracy of 84.3% for flower estimation.

Diago et al. [29] (2014) Assessment of flower number per inflorescence in grapevine. Precision exceeding 90.0%.

Palacios et al. [30] (2020) Estimation of the number of flowers at the bloom. F1 score of 73.0% for individual flower detection.

Pérez-Zavala et al. [31] (2018) Grape bunch detection for automating grapevine growth monitoring, spraying, leaf thinning, and harvesting tasks. AP of 88.6% and Average Recall (AR) of 80.3%.

Reis et al. [32] (2012) Support harvesting procedures by grape bunch detection. 97.0% and 91.0% correct classifications for red and white grapes.

Liu and Whitty et al. [33] (2015) Precise yield estimation in vineyards by detecting bunches of red grapes in images. Accuracy of 88.0% and recall of 91.6%.

Cecotti et al. [34] (2020) Study of the best CNN architecture to detect grapes in images. Accuracy of 99.0% for both red and white grapes.

Santos et al. [35] (2020) Infer the crop state for yield prediction, precision agriculture, and automated harvesting. F1 score of 91.0% for instance grape segmentation.

Xiong et al. [36] (2018) Develop a technology for night-time fruit picking using artificial illumination. Accuracy of 91.7% for green grape detection.

Kangune et al. [37] (2019) Grape ripeness estimation. Classification accuracy of 79.5% between ripened and unripened grapes.

Aquino et al. [38] (2015) Early yield prediction and flower estimation in vineyards. Precision and recall were 83.4% and 85.0%.
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Concerning the yield estimation of grapes at early growth stages, several works
approached the problem with the implementation of grape flower detectors. Liu et al. [28]
proposed a detection algorithm based on the extraction of texture information from images
to access the location of visible grape flowers. Diago et al. [29] aimed to assess the flower
number per inflorescence in grapevine. In this work, the grape bunches were placed over
uniform backgrounds and were separated from each other by the application of a threshold.
Palacios et al. [30] presented a DL-based approach where the region of interest containing
aggregations of flowers was extracted using a semantic segmentation architecture. For
the detection of grape bunches at more advanced growth stages, Pérez-Zavala et al. [31]
clustered pixels into grape bunches using shape and texture information from images.
This work used conventional approaches such as local binary pattern descriptors, but also
machine-learning-based such as support vector machine classifiers. More focused on DL,
Cecotti et al. [34] studied the best CNN architecture to deploy in agricultural environments.
In this context, the authors tested several architectures for the detection of two types of
grapes in images. The results showed that Resnet [39] was the best architecture, reaching
an accuracy of 99.0%.

The proposed work relates to the state-of-the-art in the way that it uses DL techniques
to detect grape bunches in images. However, this paper proposes the novelty of making
publicly available (https://doi.org/10.5281/zenodo.5114142) a dataset (accessed on 21
August 2021) with 1929 vineyard images. The dataset contains images of grape bunches
at different growth stages, with variations of illumination and different resolutions. This
dataset is more realistic than the state-of-the-art because grapes are inserted on the canopy,
so not very visible. The grape bunch annotations are also provided so that the scientific
community can directly use the dataset for training DL models. In addition, this work
benchmarks state-of-the-art DL models for grape bunch detection at different growth stages
and deploys them in a low-cost and low-power embedded device. This requirement is
important since our main goal was to have this solution running on our robotic platform
(Figure 1).

Figure 1. Agricultural robot used to collect visual data with onboard cameras pointing to the canopy.
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Thus, power consumption was taken into consideration so that the grape detection
solution required as little power as possible, and robot autonomy was not highly affected
by it. With this low-power solution, the robot would operate autonomously for a longer
time without needing to charge. On the other hand, high-power solutions can decrease the
autonomy time of the platforms, which is essential for long-term operations. In addition,
since this was intended to be a solution that runs online on the robot, runtime requirements
were important, so that the detection could be performed in a time-effective manner. In
this way, mobile agricultural robots could perform tasks dependent on the grape detection
algorithm in an online fashion. For example, SLAM algorithms that usually run at a high
frequency could use the grape detections to build prescription maps that could be used for
later processing and other agricultural applications. Furthermore, harvesting procedures
require the correct location of the grape bunches in relation to the robotic arm that is
moving. Thus, it was essential to have a high detection frequency to have a precise location
of the grapes with reference to the arm gripper.

3. Deep-Learning-Based Grape Bunch Detection

The semantic perception of agricultural environments is increasingly important for
the development of intelligent and autonomous robotic solutions capable of performing
agricultural tasks. Robots should be able to understand their surroundings. For example,
to develop autonomous fruit picking, robots should know how to distinguish fruits from the
other natural agents and calculate their position with precision. Furthermore, Simultaneous
Localization and Mapping (SLAM) approaches can use semantic information to build maps
with meaningful information for agricultural analysis. In this context, this work focused on
the detection of grape bunches at different growth stages in images. A monocular visual
setup was mounted on an agricultural robot (Figure 1) pointing to the vineyard canopy
during several trials. Using this, different states of the crop were captured along different
stages of the year, so that the robot could detect grape bunches at different growth stages.
From the data collection until the autonomous vineyard perception, three main steps were
carried out as represented in Figure 2:

• Data collection: video data recorded by cameras mounted on top of an agricultural
robotic platform; image extraction and storage from videos in order to build the input
dataset;

• Dataset generation: image annotation by drawing bounding boxes around grape
bunches in images considering two different classes; image augmentation by the
application of several operations to the images and annotations to increase the dataset
size and avoid overfitting when training the DL models; image splitting of the image
size, to avoid losing resolution due to the image resize operation performed by the
models to their kernel size (in this case, 300 × 300 px, with three channels);

• Model training and deployment: training and quantization of the DL models to deploy
them in a low-cost and low-power embedded device with the main goal of performing
time-effective grape bunch detection in images.
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Figure 2. High-level workflow of the proposed system. The first step is data collection, where images are extracted and
stored from videos recorded by onboard cameras. Then, the dataset is generated by the grape bunch annotation; data
augmentation is performed to increase the dataset size; the images are split to improve the training performance. Finally,
the models are trained, then quantized and compiled so that they can be deployed in a lightweight embedded device.

The following sections describe each step carefully.

3.1. Data Collection

This work proposes a novel dataset for grape bunch detection considering different
growth stages. To build the dataset, several experiments were carried out considering
different stages of the vineyard. To capture the data, the robot platform represented in
Figure 1 was used.

This platform was equipped with two monocular RGB cameras mounted on the
anthropomorphic manipulator pointing to the vineyard canopy during all the experiments.
The cameras used to build the proposed dataset were the QG Raspberry Pi—Sony IMX477
and the OAK-D color camera.

To gather visual information and to be able to follow the evolution of the vineyard
crop, the robot traveled the same path several times, in different stages of the vineyard. For
this reason, the data collected presented variation of the illumination conditions, the visual
perspective of the canopy, and the fruit growth stage. At an early stage, the robot captured
the vineyard in a premature grape bunch stage, as represented in Figure 3a. At this stage,
the grape bunches were captured right after the bloom. Thus, the grape berries had a light
green color and a diameter of approximately 0.5 cm. In the next experiments, the grape
bunches were captured at a medium growth stage, as is visible in Figure 3b. At this stage,
the grape bunches were in an intermediate development stage, with a regular green color
and a diameter of approximately 1.2 cm.

The data collection procedure was tackled in three different steps: video recording,
image extraction, and image storage. Firstly, the robot recorded video sequences of the vine-
yard canopy in the ROSBag format. Then, to obtain the set of images for each experiment,
the videos were sampled with a period of one second. This process had as the output a set
of images per experiment that was then stored for the later processing. The data collection
procedure generated 1929 original vineyard images considering different growth stages.
It is worth noting that raw images were used, i.e., no calibration nor rectification were
performed during the data collection procedure. Thus, it was expected that the models also
received unrectified images during the inference procedure.
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(a)

(b)

Figure 3. Two images of the proposed publicly available dataset considering (a) an early and (b) a
medium grape bunch growth stage.

3.2. Dataset Generation

To use the data collected to train the DL models, a dataset generation procedure
was carried out. Since we used a supervised learning approach, the models required the
annotation of each input image. Each annotation consisted of a bounding box around
each object that represented its area, position, and class. To annotate all the original
1929 collected images, the Pascal VOC format [40] was used due to its compatibility with
the framework used for training (Tensorflow) and its simplicity. The annotation was
carried out in a manual manner using two different software frameworks: CVAT [41],
which is collaborative and thus allows the simultaneous annotation between multiple
users, and LabelImg [42], which is an offline annotation tool. In the annotation procedure,
two classes were considered for grape bunches, given that two different growth stages
were captured during the experiments: tiny-grape-bunch, representing grape bunches
at an early stage; and medium-grape-bunch, representing the same feature at a medium
growth stage.

After having the entire dataset annotated, the amount of data used for training was
increased using data augmentation. In past experiments, image augmentation was revealed
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to be an essential step when compared to the use of only the original dataset images, due
to the increase in the dataset size and variability and the reduction of overfitting during
the models’ training. For these reasons, this technique is widely used in the literature
to improve models’ performance [43]. When dealing with images, data augmentation
consists of applying a set of operations to each image so that several images with slight
modifications can be extracted from a single one. Thus, this approach generates synthetic
data from the original data and can increase the variability of the datasets. In this work,
five operations were applied to each original image:

1. Rotation;
2. Translation;
3. Scale;
4. Flipping;
5. Multiplication.

Since for the rotation operation two values were applied to each image, the dataset
increased 7 times, for a total of 13,503 images. Table 2 details the augmentation operations
performed.

Table 2. Description of the augmentation operations used to expand the original collection of data.

Augmentation Operation Description

Rotation Rotates the image by +30 and −30 degrees.

Translation Translates the image by −30% to +30% on the x- and y-axis.

Scale Scales the image to a value of 50 to 150% of their original size.

Flipping Mirrors the image horizontally.

Multiply Multiplies all pixels in an image with a random value sampled once per image,
which can be used to make images lighter or darker.

In Figure 4 are represented the set of operations performed on an original image.
Finally, the last step of the dataset generation procedure was the image splitting. As

referenced before, this work used lightweight models and deployed them in a low-cost and
low-power embedded device, in an Edge-AI manner. Thus, the models trained can only
process small images during the training procedure. In particular, the pretrained models
SSD MobileNet-V1 [44] and SSD Inception-V2 [45] resized the input images to 300 × 300
px. In this case, if the dataset contained high-resolution images, many important data
would be lost in this resizing process. To avoid this, in this work, the augmented dataset
was extended by splitting the images into the input sizes of the trained CNN. From our
past experience, this technique highly improves models’ performance, especially when
using high-resolution images. Without splitting these images, they would be resized to a
lower resolution, and a significant amount of data would be lost in this process. On the
contrary, if we split high-resolution images, no resize operation would performed by the
DL model when performing image inference, and then all the data collected would be
used. As represented in Figure 5, for an image with a resolution of 1920 × 1080 px, 40 other
images were generated with a resolution of 300 × 300 px.
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(a) Original (b) Flipped

(c) Scaled (d) Rotated 30 degrees

(e) Rotated -30 degrees (f) Multiplied

(g) Translated

Figure 4. Set of augmentation operations applied to a single image to extend the original dataset.

Table 3 contains the information about the number of annotated objects per class in the
three different stages of the dataset: original images, augmented images, and split images.

Table 3. Number of annotated objects per class. The original dataset contains 1929 images with
two different classes. To increase the dataset size, several augmentation operations were applied,
increasing the number of images to 13,503. Finally, the images were split, and the final dataset was
composed of 302,252 images.

Class # of Objects # of Objects in Augmented Images # of Objects in Split Images

tiny_grape_bunch 2497 13,393 25,349

medium_grape_bunch 4292 25,189 51,272
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Figure 5. Split of a collected image to a 300 × 300 px resolution. The original image with a resolution
of 1920 × 1080 px generated 40 split images considering an overlapping ratio of 20%.

In this process, an overlap of 20% between image patches was considered. By doing
this, the models did not need to resize the input image, and no information was lost.
Considering this operation, the dataset size increased to 302,252 images of 300 × 300 px.

It is worth noting that, during the two preprocessing operations where the dataset size
was increased, the grape bunch annotations of both classes were automatically generated
considering the original annotations. During the augmentation procedures, the operations
were applied both to the images and the annotations. Similarly, the annotations were also
split, together with the images.

3.3. Models’ Training and Deployment

The final step to perform grape bunch detection considering different growth stages
was the models’ training and deployment. To achieve full compatibility with the hardware
device used to deploy the models, only quantized models could be considered. Due to
the higher number of compatible operations of Single-Shot Multibox (SSD) models [46]
with the hardware device in comparison to other architectures, in this work, only this
type of model was used. Thus, in this work, only SSD models were explored due to
the constraints imposed by the hardware device used, Google’s Tensor Processing Unit
(TPU)—https://coral.ai/products/accelerator/ (accessed on 25 August 2021). Due to the
same cause, the models were quantized to 8 bit precision. Google’s Coral USB Accelerator
provides an Edge TPU machine learning accelerator coprocessor. It is connected via USB
to a host computer, allowing high-speed inference. This device is capable of performing
four trillion operations per second (TOPS) and two TOPS per watt. It is connected to
the host computed by USB requiring 5 V and 500 mA. To achieve the proposed goal—
grape bunch detection considering different growth stages—two models were used and
benchmarked: SSD MobileNet-V1 [44] and SSD Inception-V2 [45]. The models are briefly
described bellow.

SSD MobileNet-V1:
This model is one of the most popular among the state-of-the-art models designed

to run on low-power and low-cost embedded devices. One of its main novelties is the
use of depthwise separable convolutions. This concept is achieved by factorization of
standard convolutions into depthwise and 1 × 1 convolutions denominated pointwise
convolutions. The outputs of both convolution types are then combined. The input of the
CNN is a tensor with shape D f × D f ×M, where D f represents the input channel spatial
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width and height, and M is the input depth. After the convolution, a feature map of shape
D f × D f × N is obtained, where N is the output depth. Thus, the model contained two
hyperparameters that the user can tune in order to optimize the CNN performance. The
first, width multiplier α, can be used to decrease the model size uniformly at each layer by
a factor of α2. This was performed by multiplying the number of both the input and output
channels by this constant. The second hyperparameter, resolution multiplier ρ, was also
used to reduce the computational cost of the model by a factor of ρ2 by changing the input
image resolution accordingly. Both parameters can be used simultaneously to achieve a
balance between performance and inference time.

SSD Inception-V2:
Ioffe et al. [45] developed the original approach of Inception. The design of the

model is supported by the fact that each object present in a different image can present
different sizes. With this assumption, the choice if the CNN kernel size becomes difficult.
To overcome this, the authors developed the model with three convolutional filter sizes of
−1× 1, 3× 3, and 5× 5. The results from the operations performed by the three filter were
then concatenated, which resulted in the output of the network. SSD Inception-V2 was
developed in order to reduce the computational complexity of the original version. This
goal was achieved using factorization over the convolution operations. For example, a 5 ×
5 convolution was factorized into two 3 × 3 convolutions, improving runtime performance.
In the same way, a m×m convolution can be factorized into a combination of 1 × m and
m × 1 convolutions.

To train and deploy these two models, they were downloaded from the Tensor-
flow model zoo (https://github.com/tensorflow/models/blob/master/research/object_
detection/g3doc/tf1_detection_zoo.md, accessed on 24 August 2021). The versions con-
sidered were already pretrained on the COCO dataset [47]. To fine-tune the pretrained
models, the Tensorflow [48] framework was used due to its compatibility with the TPU
device used for inference. Tensorflow, a machine learning system that operates at a large
scale and in heterogeneous environments, is one of the most used frameworks in the
state-of-the-art. It is compatible with multiple hardware architectures such as CPUs, GPUs,
and TPUs. In addition, this framework provides a version dedicated to on-device machine
learning, Tensorflow Lite. This platform supports Android and iOS devices, embedded
Linux, and microcontrollers. It uses hardware acceleration and model optimization to
deploy high-performance models. In this work, Tensorflow Lite was used to deploy the
models in the TPU embedded device.

Given all of the above, the models were trained considering the set of steps represented
in Figure 6.

Figure 6. Steps to train and deploy a pretrained model into Google’s Coral USB Accelerator (TPU).

The input of the workflow was a pretrained model on the COCO dataset. The models
were then fine-tuned using quantization-aware training [49] in order to convert them to 8
bit precision. This technique allowed reducing the models accuracy drop while converting
from float to 8 bit precision. When the train was complete, the resultant binary files
were combined in a single file containing only the useful information for inference. This
procedure is called freezing, which produces a frozen graph. After this, since the hardware
device used (TPU) supports only the lighter version of Tensorflow, the frozen graph was
converted to Tensorflow Lite. Finally, the Tensorflow Lite model was compiled to the TPU.
This compilation procedure was essential since it assigned operations either to the host
CPU or to the TPU device. At the first point in the graph where an unsupported operation
for the TPU occurs, the compiler separates the graph into two parts. The first is executed
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on the TPU, while the second is assigned to the host CPU. It is worth noting that the higher
the number of operations assigned to the TPU, the faster the inference procedure will be.
Thus, it is essential that models with a high level of compatibility be used.

Finally, after having the models prepared, they were deployed on the TPU device to
perform grape bunch detection. As referenced before, the original images on the dataset
were split to match the models’ input channels’ size. Thus, to perform inference, we
performed exactly the same operation to ensure that the data characteristics learned by the
model matched the ones received for object detection. This means that each input image
was split into a fixed number of overlapping tiles, and the model performed inference on
each tile. After this, the results obtained for each tile were combined in order to compute
the bounding box detections on the original image. Nonoverlapping bounding boxes
were directly mapped onto the original image without any further operation. For the
ones that overlapped between tiles, nonmaximum suppression [50] was used to suppress
the overlapping bounding boxes for the same objects. Figure 7 shows the effects of this
algorithm on the final inference result of the model SSD MobileNet-V1.

(a) Before nonmaximum suppression.

(b) After nonmaximum suppression.

Figure 7. Impact of nonmaximum suppression on the final inference result.
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4. Results

This section describes the experiments performed to test the proposed approach.
Firstly, the metrics used to evaluate the system are presented. Then, an evaluation is
performed of the entire approach. Finally, an overall discussion of the obtained results is
carried out.

4.1. Methodology

The evaluation performed used state-of-the-art metrics to evaluate the DL models
deployed. In this work, seven different metrics were used: precision, recall, F1 score,
precision × recall curve, AP, medium AP (mAP), and inference time. To calculate these
metrics, the following set of concepts was used:

• Interception over Union (IoU): a measure based on the Jaccard index that calculates
the overlap between two bounding boxes using the ground truth and the predicted
bounding boxes;

• True Positive (TP): a valid detection, i.e., IoU ≥ threshold;
• False Positive (FP): an invalid detection, i.e., IoU < threshold;
• False Negative (FN): a ground truth bounding box not detected.

Given all of the above, the metrics were calculated as follows:

• Precision: defined as the ability of a given model to detect only relevant objects,
precision is calculated as the percentage of TP and is given by:

Precision =
TP

TP + FP
; (1)

• Recall: defined as the ability of a given model to find all the ground truth bounding
boxes, recall is calculated as the percentage of TP detected divided by all the ground
truths and is given by:

Recall =
TP

TP + FN
; (2)

• F1 score: defined as the harmonic mean between precision and recall, F1 score
is given by:

2 · precision · recall
precision + recall

; (3)

• Precision × recall curve: a curve plotted for each object class that shows the tradeoff
between precision and recall;

• AP: calculated as the area under the precision × recall curve. A high area represents
both high precision and recall;

• mAP: calculated as the mean AP for all the object classes;
• Inference time: defined in this work as the amount of time that a model takes to

process a tile or an image, on average.

In this work, the previously described metrics were used to evaluate both SSD
MobileNet-V1 and SSD Inception-V2. In addition, the models were characterized by
changing two parameters: the detection confidence and the IoU thresholds. Some visual
results were also present to demonstrate the system robustness to occluded objects and
variations in illumination conditions. To perform a fair evaluation of the DL models,
the input dataset was divided into three groups: training, test, and evaluation. The larger
one, the training set, was used to train the DL models. The test set was used to perform
the evaluation of the models during the training by Tensorflow. The evaluation set was
exclusively used to test the models by computing the metrics described above.

4.2. Evaluation

This work used quantized models to detect grape bunches at different growth stages.
To evaluate these models, they were characterized by changing the confidence threshold
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and the IoU parameter. Table 4 shows the detection performance of SSD MobileNet-V1 and
SSD Inception-V2 for three values of the confidence: 30%, 50%, and 70%.

Table 4. Grape bunch detection performance considering an IoU of 50% and a variation of the
confidence threshold for three different values.

Model Confidence (%) Class Precision (%) Recall (%) F1 Score (%) AP (%) mAP (%)

SSD MobileNet-V1 30 tiny-grape-bunch 17.38 61.72 27.12 40.38 44.93
medium-grape-bunch 28.53 66.44 39.92 49.48

SSD Inception-V2 30 tiny-grape-bunch 35.81 44.88 39.83 26.95 28.32
medium-grape-bunch 64.62 37.59 47.53 29.68

SSD MobileNet-V1 50 tiny-grape-bunch 49.28 50.44 49.85 36.29 42.47
medium-grape-bunch 45.59 64.26 53.34 48.64

SSD Inception-V2 50 tiny-grape-bunch 51.36 30.57 38.33 20.50 22.48
medium-grape-bunch 70.86 29.90 42.06 24.45

SSD MobileNet-V1 70 tiny-grape-bunch 78.12 11.85 20.58 9.86 22.45
medium-grape-bunch 71.95 41.99 53.03 35.04

SSD Inception-V2 70 tiny-grape-bunch 67.17 12.05 20.44 9.30 12.19
medium-grape-bunch 79.12 17.46 28.60 15.08

This table shows the effect of varying the confidence threshold. In particular, it is
visible that when the confidence score increased, the precision also increased. This was
due to the elimination of low-confidence detections. Thus, if we considered only the
high-confidence detections, the model would be more suitable to detect only relevant
objects, which would lead to an increase of the precision. On the contrary, when the
confidence threshold increased, the number of TP decreased, which led to a decrease of
the recall. Comparing both models, one can see that SSD Inception-V2 presented a higher
precision than SSD MobileNet-V1 for all confidence scores, but a lower recall. This led to
the conclusion that Inception presented a high rate of TP from all the detections, but a low
rate of TP considering the ground truths. Overall, SSD MobileNet-V1 outperformed the
Inception model, presenting a higher F1 score, AP, and mAP. This model achieved, as the
best result, a mAP of 44.93% for a confidence score of 30%. Figure 8 shows the precision ×
recall curves for both models considering the two classes and a confidence score of 50%.

Once again, this figure shows that SSD MobileNet-V1 outperformed the Inception
model. Comparing the models performance detecting objects of both classes, we verified
that detecting grape bunches at an early stage (tiny-grape-bunch) was more challenging
than at an intermediate growth stage (medium-grape-bunch). The first class represented
smaller grape bunches, with a color and texture more similar to the surrounding foliage,
which complicated their detection. SSD MobileNet-V1 presented a AP of 40.38% detecting
grape bunches at an early growth stage and 49.48% at an intermediate growth stage. Finally,
Figure 9 shows the impact of the confidence score on the detections for a single image.
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(a) tiny-grape-bunch

(b) medium-grape-bunch

Figure 8. Precision × recall curves for both models and both classes considering a confidence score
of 50% and an IoU of 50%.

One can verify that this parameter can be used to eliminate FPs that usually present
low-confidence scores.

Table 5 presents the detection performance considering a variation of the IoU evalua-
tion parameter.

This characterization was performed since different values for the overlap between
detections and ground truths can give more information about the models’ performance.
For example, lower IoU values would consider detections that, besides not corresponding
exactly to the location of the ground truths, represent annotated objects that were actually
detected. To evaluate this, three values for the IoU parameter were considered: 20%,
40%, and 60%. Once again, one can verify that the SSD Inception-V2 model presented
a higher precision. For an IoU value of 20%, this model had a precision of 92.57% de-
tecting grape bunches at an intermediate growth stage. This is a satisfactory result since
it means that 92.57% of the detections were TPs. On the other side, SSD MobileNet-V1
presented high recall levels. For an IoU of 20%, it achieved a recall of 87.01% for the class
medium-grape-bunch. For higher IoU values, the performance of both models decreased.
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This was expected since, for example, for an IoU of 60%, the detections that did not overlap
more than 60% with the ground truths were considered as FPs, which led to a decrease in
performance. Overall, the best result was achieved by SSD MobileNet-V1, which performed
with a mAP of 66.96% for an IoU of 20%.

(a) (b)

(c) (d)

Figure 9. Impact of the confidence score on the final detection results. Blue bounding boxes represent
the ground truth and the red ones the SSD MobileNet-V1 detections considering a confidence score
of (a,c) 20% and (b,d) 50%.

Table 5. Grape bunch detection performance considering a confidence of 50% and a variation of the
IoU threshold for three different values.

Model IoU (%) Class Precision (%) Recall (%) F1 Score (%) AP (%) mAP (%)

SSD MobileNet-V1 20 tiny-grape-bunch 63.73 65.22 64.47 56.87 66.96
medium-grape-bunch 61.72 87.01 72.22 77.05

SSD Inception-V2 20 tiny-grape-bunch 71.90 42.80 53.66 36.42 37.22
medium-grape-bunch 92.57 39.06 54.94 38.01

SSD MobileNet-V1 40 tiny-grape-bunch 57.17 58.51 57.83 47.01 55.78
medium-grape-bunch 54.96 77.47 64.30 64.55

SSD Inception-V2 40 tiny-grape-bunch 64.25 38.24 47.95 30.50 31.98
medium-grape-bunch 85.14 35.93 50.53 33.45

SSD MobileNet-V1 60 tiny-grape-bunch 37.54 38.41 37.97 22.39 24.79
medium-grape-bunch 32.17 45.34 37.64 27.19

SSD Inception-V2 60 tiny-grape-bunch 33.38 19.87 24.91 8.72 9.79
medium-grape-bunch 45.78 19.32 27.17 10.85

As referenced before, the models were deployed in a low-cost and low-power embed-
ded device, a TPU. It was intended that these models run in a time-effective manner to be
integrated in more complex systems such as harvesting and spraying procedures. Thus,
evaluating the runtime performance of both models was important in the context of this
work. Table 6 shows the inference time results for both models.
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Table 6. Runtime performance of both models.

Model Inference Time per Tile (ms) Inference Time per Image (ms)

SSD MobileNet-V1 6.29 93.12

SSD Inception-V2 26.07 385.69

In this table, the performances per tile and per image are both described. The inference
time per tile was also considered in this evaluation since it represents the time that each
model would take to process an entire image if the input images were not split. The
inference times were measured for each evaluation image, and the final value considered
was the average for all images. The results showed that the SSD MobileNet-V1 was more
than four-times faster than the Inception model. This was due to the simpler architecture of
MobileNets in relation to Inception, and the higher compatibility of MobileNet compared
with Inception. This model can process a single tile in 6.29 ms and an entire split image
in 93.12 ms. This proved both the high performance of the model, but also that the TPU
hardware device used was capable of deploying models in a very efficient way, even
considering low-power costs.

This approach was intended to be robust to different light conditions since the robot
would operate at different times of the day and stages of the year. Because of this reason,
the built dataset considered several light conditions, and the models were trained to be
robust to them. Furthermore, the dataset considered occluded grape bunches so that the
models could also detect not fully visible grape bunches. To demonstrate these challenging
conditions present in the proposed dataset, Figures 10 and 11 present an overview of
the performance of SSD MobileNet-V1 considering occlusions in the grape bunches and
variation in the illumination conditions.

For the models to be able to accommodate these conditions, the annotation procedure
was crucial. In this process, the decision to consider occluded objects was made. Several
times, the annotation of an occluded object was complex since there was the need to
consider parts of other objects inside the bounding box corresponding to the occluded
object. Figure 10 shows that occluded objects were taken into consideration during the
annotation procedure and that the models were able to identify these objects in the images.
Regarding the variations of the illumination conditions, one of the key steps to accomplish
this goal was the capture of visual data during different days and stages of the year. To
build the proposed dataset, the robot represented in Figure 1 was taken four times to the
vineyard in order to capture the crop state in different conditions. The visit dates were 11
May 2021, 27 May 2021, 23 June 2021, and 26 July 2021.

On each day, images were recorded both in the morning and during the evening to
account for multiple light conditions. In May, grape bunches at an early growth stage were
captured, while in June and July, the intermediate growth stage was present in the vineyard.
After recording all these data, the annotation process was once again essential since during
the annotation, the objects were present under different light conditions. Figure 11 shows
the different levels of illumination captured during the field visits performed. This figure
proves that the models were able to detect grape bunches at different growth stages in
these conditions.
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(a)

(b)

Figure 10. Detection of grape bunches (a) in early, and (b) intermediate growth stages considering
occlusions caused by the dense foliage present in the vineyard. Blue bounding boxes represent the
ground truth and the red ones the detections.

4.3. Discussion

This work proposed a novel dataset for grape bunch detection at different growth
stages. Two state-of-the-art models were used to perform this detection. Due to the require-
ment of a time-effective, low-power, and low-cost detection, this work used lightweight
models that were quantized to be deployed in an embedded device. Quantization was
used to reduce the size of the DL models and improve runtime performance by taking
advantage of high throughput integer instructions. However, quantization can reduce the
detection performance of DL models. Wu et al. [51] showed that the error rates increase
when the model size decreases by quantization. In this work, this decrease in detection
performance was accepted due to the high gain in runtime performance. In comparison
with state-of-the-art works such as the one proposed by Palacios et al. [30], which detected
grape flower at the bloom with an F1 score of 73.0%, this work presented a lower detection
performance. On the other hand, the tradeoff between detection performance and runtime
performance was extremely satisfactory since, especially for SSD MobileNet-V1, the model
could perform with a mAP up to 66.96%, performing the detection at a rate higher than
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10 Hz per image. In addition, the models were able to detect grape bunches at different
stages, considering occlusions and variations in illumination conditions. Since the pro-
posed dataset is publicly available, we believe that it has potential to be used in the future
by the scientific community to train more complex and nonquantized DL models in order
to achieve higher detection performances for applications without runtime restrictions.
Furthermore, the proposed system can be adopted in future works and applications since
it is cost-effective, portable, low-power, and independent of light conditions. The solution
is modular and can be placed in any robotic platform, meaning that the price of the mod-
ule is completely independent of the platform where it is placed. For applications that
require higher levels of detection precision and that are not dependent on a time-effective
solution, more complex models can be trained with the proposed dataset. Some works
may also propose new DL-based architectures or modify state-of-the-art models to better
suit the application purposes. For example, Taheri-Garavand et al. [11] proposed a mod-
ification to the VGG16 model to identify chickpea varieties by using seed images in the
visible spectrum, and Nasiri et al. [12] proposed a similar approach to automate grapevine
cultivar identification.

One of the main goals of this work was to achieve a low-power solution. The device
used operates at high inference rate with a requirement of 5 V and 500 mA. This result was
aligned with the state-of-the-art works that proposed advanced solutions for object detec-
tion using accelerator devices. Kaarmukilan et al. [52] used Movidius Neural Compute
Stick 2, which similar to the TPU used in this work, is connected to the host device by USB
and is capable of 4 TOPS with a 1.5 W power consumption. Dinelli et al. [53] compared
several field-programmable gate array families by Xilinx and Intel for object detection.
From all the evaluated devices, the authors achieved a minimum power consumption of
0.969 W and a maximum power consumption of 4.010 W.

(a) (b)

(c) (d)

Figure 11. Demonstration of the differences in illumination captured by the proposed dataset and
the corresponding ability of the models to deal with it. Each image (a–d) represents a different light
condition. Blue bounding boxes represent the ground truth and the red ones the detections.

5. Conclusions

This work approached the problem of detecting grape bunches at different growth
stages by cameras mounted onboard mobile robots. A novel dataset with 1929 images
and respective annotations was proposed considering different stages of grape bunches,
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constructed by visiting a vineyard four different times to record the data. To achieve
time-effective, low-cost, and low-power grape bunch detection, two models were trained,
quantized, and deployed in an embedded device. The results showed that the tradeoff
between detection and runtime performance was satisfactory. SSD MobileNet-V1 achieved
the best results, with a maximum detection performance of 66.96% and a runtime average
cycle of 6.29 ms and 93.12 ms per tile and image, respectively.

In future work, we would like to extend the dataset to consider more grape bunch
growth stages. Since our robotic platform was intended to run also at night, we will also
consider including vineyard images captured at night using artificial illumination. Further-
more, we would like to test the proposed system in vineyards that were not considered
in this work, to evaluate if the models are robust to different scenarios. Additionally,
the proposed dataset could be extended to consider grape bunches of these different
vineyards.
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4.5 Final remarks

The four articles presented in this chapter deeply approached the semantic

perception problem using DL models. The problem of deploying the models in

dedicated hardware was analysed, and two devices were benchmarked. The dataset

was gradually increased and was achieved a solution that can detect vine trunks

and grape bunches in different growth stages recurring to a dedicated device. In the

future, this approach can be extended to other agricultural or forest environments.

This will allow the dataset to increase in size and variability, being suitable for the

use of more researchers and in different applications. Also, it will allow robots to

create semantic maps of different crops and environments. In addition, different

growth stages can be considered. In particular, an early stage such as at the bloom

so that specialists can analyse and perform, for example, yield estimation.
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5
VineSLAM: localization and

mapping algorithm for

agricultural robots

One of the main goals of this thesis was to explore a more advanced SLAM

algorithm for agricultural robots that considers the characteristics of the crops and

that provides useful information for posterior analysis by agronomists. Agriculture

brings several challenges to robotic-based approaches due to the characteristic

high environments’ extensions, terrain irregularities, harsh inclinations and elevate

altitude differentials. In this context, VineSLAM1 came out to tackle these

challenges. This algorithm proposes main contributions such as: a 6-DoF

localization system based on a PF that uses different sensors to estimate the robot’s

pose; a metric mapping procedure that extracts features from LiDAR sensors and

maps them; a semantic mapping approach that uses the semantic perception system

described in Chapter 4 and maps grape bunches and vine trunks; a PF pose

refinement using features extracted from point clouds generated by stereo cameras;

and, finally, a topological mapping algorithm that uses a graph-based structure to

manage the memory resources and enable large-scale and long-term navigation.

This line of work is in the origin of four different articles. Three of them are already

published, and one is submitted in peer review process. Merging all of these works

enables to reach a solution with capacity to estimate the 3D robot pose in challenging

agricultural environments, providing a multi-layer mapping with efficient memory

management. This enables the deployment of autonomous robots in agriculture

1https://gitlab.inesctec.pt/agrob/vineslam_stack/vineslam
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with the ability to navigate in large-scale environments and long-term periods.

Moreover, with this autonomous navigation capability, robots can contribute in

precision agriculture operations such as planting, harvesting, pruning, and spraying.
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ROBOTS

5.1 Localization and Mapping on Agriculture

Based on Point-Feature Extraction and

Semiplanes Segmentation From 3D LiDAR

Data

In this thesis, the first step to accomplish a localization and mapping system for

agricultural robots is made through the use of a 3D LiDAR sensor. This work

was published in the Field Robotics section of the Frontiers in Robotics and AI

journal, and is entitled Localization and Mapping on Agriculture Based on Point-

Feature Extraction and Semiplanes Segmentation From 3D LiDAR Data (Aguiar

et al., 2022a). The approach is designed in three main steps: feature extraction,

localization, and mapping. In the first step, two types of features are extracted.

Point features that are searched in sharp edges and planar surfaces and polygon-

based features (or semiplanes) that are searched on the ground and in the right and

left sides of the robot. The polygon features are extracted through an innovative

approach using a RANSAC algorithm to find the equation of the plane and then

a Convex Hull to determine the boundaries of the polygon. Each polygon is

represented by its normal vector, its centroid and the set of extrema points that

limit it. This three-dimensional representation brings challenges both for the

localization and mapping procedures. This article describes how this representation

is incorporated in the PF for localization and what is the strategy to solve the feature

association problem during mapping. Also, this work shows the modularity of the PF

due to its capacity to support different types of features. The theoretical polygon-

based approach is validated using a simulated environment with three detectable

semiplanes. The performance of the entire localization algorithm is benchmarked

against a state-of-the-art algorithm using data collected in real-world agricultural

environments.



Localization and Mapping on
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Extraction and Semiplanes
Segmentation From 3D LiDAR Data
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Developing ground robots for agriculture is a demanding task. Robots should be capable
of performing tasks like spraying, harvesting, or monitoring. However, the absence of
structure in the agricultural scenes challenges the implementation of localization and
mapping algorithms. Thus, the research and development of localization techniques are
essential to boost agricultural robotics. To address this issue, we propose an algorithm
called VineSLAM suitable for localization and mapping in agriculture. This approach uses
both point- and semiplane-features extracted from 3D LiDAR data to map the
environment and localize the robot using a novel Particle Filter that considers both
feature modalities. The numeric stability of the algorithm was tested using simulated
data. The proposed methodology proved to be suitable to localize a robot using only
three orthogonal semiplanes. Moreover, the entire VineSLAM pipeline was compared
against a state-of-the-art approach considering three real-world experiments in a
woody-crop vineyard. Results show that our approach can localize the robot with
precision even in long and symmetric vineyard corridors outperforming the state-of-
the-art algorithm in this context.

Keywords: localization, mapping, 3D LIDAR, semiplanes, agriculture

1 INTRODUCTION

The development of autonomous robots in agriculture is a challenging and active research topic
(Emmi et al., 2014). To implement such systems, the autonomous navigation issue must be solved,
i.e., robots should be capable of driving autonomously within multiple environments Shalal et al.
(2013). Consequently, autonomous robotic platforms should be endowed with robust localization
systems, that allow recovering their absolute pose in the agricultural environment (Vougioukas,
2019). Simultaneous Localization and Mapping (SLAM) allows calculating the travelled trajectory
while mapping the environment simultaneously (Bailey and Durrant-Whyte, 2006; Durrant-Whyte
and Bailey, 2006). In agriculture, the implementation of SLAM is particularly important since it leads
to creating maps that farmers can use in various tasks. When robots have this ability, they can
perform several autonomous operations such as precision agriculture (application of fertilizers,
nutrients and water), plant protection, harvesting, monitoring, and planting (Bergerman et al., 2016;
Roldán et al., 2018; Pinto de Aguiar et al., 2020). Even so, the implementation of SLAM in outdoor
agricultural environments can be challenging since the characteristics of illumination and terrain
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irregularities can difficult the perception stages, and therefore,
compromise the SLAM systems (Aguiar et al., 2020a).

To perform accurately, one of the most important steps of
SLAM is perception. In this context, the use of 3D LiDARs has
become popular in outdoor environments since they allow a high-
range field of view perception of the environment. The point
clouds generated by these sensors contain several types of features
that are important for SLAM approaches. Regarding point
features, one important descriptor is smoothness (Zhang and
Singh, 2017), that for a given point pi and a set of continuous
points S, can be calculated as

c � 1
|S| · ‖pi‖

∑
j∈S,j≠i

pj − pi( )
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣. (1)

With the application of threshold levels to c, two main types of
point features can be extracted. Features with small values of c are
present in high-curvature locations and therefore are called edge
features. On the contrary, features with high smoothness are
called planar features. Shan and Englot (2018) use these concepts
in their proposed SLAM pipeline, LeGO-LOAM. In this work, the
raw point cloud is first segmented to remove noise, and then edge
and planar features are extracted. Other approaches propose the
extraction of point features in the SLAM context. Steder et al.
(2010) project the point cloud onto a range image and calculate
the second derivative of the depth. With this formulation, high-
curvature features are extracted from the range image. Chen et al.
(2015) extract curb features from a 3D point cloud with a range
up to 50 meters. This approach uses a distance criteria, and a
Hough transform to process the point cloud and collect the
desired features.

Point features extracted from 3D point clouds can have high
computational cost in localization and mapping algorithms due
to their usual high density. Even if the SLAM approaches are
robust to this issue, the fusion of these perception techniques with
other feature types can improve performance (Grant et al., 2019).
Thus, as detailed in Table 1, many works use plane features in the
mapping and localization stages. To extract such features, one of
the most common techniques is Random Sample Consensus
(RANSAC) (Gee et al., 2008; Ulas and Temeltas, 2012;
Taguchi et al., 2013; Elghor et al., 2015). This algorithm
receives as input a set of points and calculates the best fitting
plane to those points, removing the input set’s outliers. Other
approaches use Convolutional Neural Networks (CNN)s (Yang
et al., 2016) or Principal Component Analysis (PCA) (Viejo and
Cazorla, 2007) for plane extraction. In terms of representation, a
plane i is usually characterized as

mγi � π, d{ }, (2)
where π � [π1, π2, π3]T represents the plane unit normal vector,
and d the plane distance to the origin. Other representations are
also present in the literature. For example, Elghor et al. (2015)
also preserve the number of inliers found in the RANSAC
procedure in the plane representation. Also, Gee et al. (2008)
represent a plane by its origin and two orthogonal basis vectors.
All these representations are suitable for infinite planes. For
localization and mapping, this representation can be improved
using semiplanes. With this type of features, the matching
procedure becomes more robust since other correspondence
techniques can be applied, such as semiplane overlapping
(Yang et al., 2016). Ulas and Temeltas (2012) use a Convex
Hull algorithm to extract semiplanes extremas and feed an

TABLE 1 | Summary of the current state-of-the-art on plane-based localization and mapping.

References Application Feature extraction Mapping

Taguchi et al. (2013) 3D reconstruction of indoor spaces using
hand-held sensors.

Points: image feature detector; planes: RANSAC
algorithm.

RANSAC-based registration algorithm.

Yang et al. (2016) Localization and mapping of low-texture
indoor environments.

CNN-based plane detection. Point and semiplane registration.

Viejo and Cazorla
(2007).

Egomotion estimation in indoor and
outdoor semi-structured environments.

Plane extraction using a PCA technique. Iterative Closest Point (ICP) algorithm used for plane
registration.

Grant et al. (2019) Velodyne point-plane SLAM in challenging
indoor and outdoor environments.

Find groups of points that arise from planar
surfaces in a scan-line basis (Grant et al., 2013).

Registration with a developed algorithm: Iterative
Closest Point Plus Plane Optimization (IC3PO).

Zhang et al. (2019b) SLAM in indoor environments. Plane segmentation using a connected
component-based approach.

Points added by triangulation and observed planes
added if no correspondence is found.

Kaess (2015) Mapping of indoor environments using
hand-held sensors.

Plane segmentation from point cloud data. Infinite plane representation and mapping.

Weingarten and
Siegwart (2006)

Localization and mapping of indoor
environments.

Divide and conquer approach: best-fitting planes
from small regions (Weingarten et al., 2003).

3D map builds using an Extended Kalman
Filter (EKF).

Gee et al. (2008) SLAM in indoor environments using hand-
held sensors.

Planar surfaces extracted using RANSAC. Registering based on similarity test.

Elghor et al. (2015) 3D reconstruction of indoor environments. Planes extracted using RANSAC. Planes registered and fused using a weight
function.

Lenac et al. (2017) Planar representation of indoor and
outdoor environments.

Plane segments extracted by a 2D Delaunay
triangulation.

Registration using the overlapping between planes.

Ulas and Temeltas
(2012)

Outdoor SLAM. Planes extracted using RANSAC. Planes matched and registered using: orientation,
translation and closeness.

Our approach Autonomous navigation in outdoor
agricultural environments.

Point-wise and three stage semiplane-wise
feature extraction.

Point registration and semiplane matching and
merging algorithm for registering and mapping.
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outdoor SLAM algorithm. Similarly, Weingarten and Siegwart
(2006) represent semiplanes by a set of convex polygons and use
them in a 3D SLAM algorithm. Lenac et al. (2017) also use this
representation and incorporate the polygons extremas in each
semiplane characterization vector.

Plane mapping and registration can be more challenging than
feature point mapping. In the latter, the general approach is to use
a nearest neighbor search, optimized by efficient data structures
such as 3D voxel maps. Two main factors are usually considered
to solve plane matching and mapping: the difference between the
plane normals and plane-to-plane distance (Viejo and Cazorla,
2007; Grant et al., 2013). With the consideration of bounded
planes, Pop-up SLAM (Yang et al., 2016) also uses the
overlapping area between semiplanes. After a successful
matching procedure, the plane-based mapping step either adds
new features to the map or updates the existing ones in case of
correspondence. In SLAM, the mapping procedure is
interdependent of localization. From Table 1, one can verify
that most works use graph-based optimization to localize the
robot using planes. For example, Zhang X. et al. (2019) build a
pose graph where points and planes are marked as landmark
nodes, and add structural constraints between planes in the
graph. Kaess (2015) formulates planar SLAM as a factor graph
finding a solution for the localization and mapping through least-
squares optimization. Some works also adapt the ICP scan-
matching algorithm to be used considering planar features.
Viejo and Cazorla (2007) propose a two-step ICP that
considers separate orientation and position alignment. This
approach uses information given by the normal vector
orientation and the geometric plane position. In addition,
some works are based on Gaussian filters (Gee et al., 2008;
Ulas and Temeltas, 2012; Zhang X. et al., 2019). In these, the
state vector comprises the robot pose and the plane landmarks. In
comparison with point feature-based SLAM, this approach has
the advantage of reducing the state’s dimension.

Given all of the above, it is clear that 3D LiDARs provide rich
information for localization and mapping approaches. Besides
the previously mentioned LeGO-LOAM approach, and its
ancestor LOAM (Zhang and Singh, 2014), other approaches
use this sensor to provide reliable SLAM systems. Kuramachi
et al. (2015) propose a range and inertial odometry algorithm that
fuses a 3D LiDAR and a gyroscope to recover the 6-DoF robot
pose andmap the environment. This LiDAR odom etry technique
can either be approached traditionally using iterative algorithms,
or in more sophisticated manners, such as using Artificial
Intelligence (AI). For example, Choy et al. (2020) propose a
deep global registration algorithm that is designed for pairwise
registration of 3D scans. The key innovation of this approach is
the use of a 6-DoF Convolutional Neural Network (CNN) for
correspondence confidence prediction. In the same context, Li
and Wang (2020) propose DMLO, a deep matching LidAR
odometry algorithm which presents a learning-based matching
network which provides accurate correspondences between two
scans. In this work, we make use of a rich feature extraction
process that considers both point and semiplane features, and
implement a filter-based algorithm for localization and mapping.
As represented on Table 1, to the best of our knowledge, the

Particle Filter (PF) has not been approached together with
semiplanes features in the SLAM context. The most common
approach is to use optimization-based localization algorithms
such as Bundle Adjustment and factor graph optimization. Thus,
in this work, we extend the state-of-the-art to consider the use of a
6-DoF PF that supports two modalities of features: point-wise
and semiplane-wise features. This filter-based algorithm was
initially applied to robotics to solve the localization and
kidnapping problems (Thrun, 2002). Zhang Q.-B. et al. (2019)
use the PF to develop a robust localization algorithm that works
when a priori environment map is available, considering range
observations. Due to its capacity to accommodate multi-
dimensional problems, the PF was later used to solve the
SLAM issue. FAST-SLAM (Montemerlo et al., 2002) is one of
the most popular examples, being able to solve the SLAM
problem with a PF considering a landmark-based feature
extraction procedure. In the agricultural context, the PF was
also applied in autonomous navigation algorithms. Hiremath
et al. (2014) use a PF to implement a row following algorithm
in a maize field. The filter state is composed of robot heading,
lateral deviation, distance between the rows of plants and the end
of the rows. Similarly, Blok et al. (2019) use the PF and a 2D laser
sensor to localize an agricultural platform for in-row navigation
in orchards.

In this work, we propose VineSLAM (dos Santos et al., 2016;
Aguiar et al., 2021), a 6-DoF SLAM algorithm for agricultural
environments that uses point and semiplane features extracted
from 3D point clouds. Our approach presents the following main
contributions:

• A three-stage algorithm for semiplane extraction;
• A semiplane matching and merging algorithm that allows
efficient registering and mapping;

• A novel localization procedure based on a PF that can use
both point and planar information.

We model the agricultural environment as points and
semiplanes. In each time step, edge and planar point features
are extracted, and three semiplanes are searched in the
environment. The first semiplane is the ground, and the other
are two semiplanes, one in each side of the robot, that present the
higher number of inlier points. This formulation is a reaction to
the context where VineSLAM is intended to solve localization and
mapping: agricultural cultures mainly characterized by woody-
crop topologies. Thus, besides edge and planar features, usually
only three semiplanes are available in the environment. These
semiplanes are essential to the estimation of the three
components of the robot’s orientation. The ground plane is
particularly important to estimate the roll and pitch
components, and the vegetation planes to estimate the yaw
component. Without these features, the algorithm would rely
only on point-based features which could lead to drift in the
orientation components over time. Also, if we rely only on
semiplanes, we would always have to extract a minimum of
three non-coplanar semiplanes to compute the 6-DoF
localization of the robot. Thus, it is essential to merge the
point and planar features.
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Our approach relates to the state-of-the-art feature extraction
and matching steps but differs in the registration. We aplly a
plane merging algorithm that constantly updates and grows the
semiplanes present on the map. With this approach, we can
capture large planar ground surfaces, as well as extensive
vegetation planes. Also, we propose a novel localization
algorithm that uses a PF fusing information at both point and
planar levels. As reported in Table 1, most works in the state-of-
the-art apply plane-based localization and mapping in indoor
environments. Our approach is suitable for unstructured outdoor
environments, and it was tested in a woody-crop vineyard. The
PF approach was adopted in this work due to three main reasons.
The first is relative to sensor fusion. Our aim is to implement a
generic algorithm that is agnostic to the type of sensors used,
i.e., an approach that can use any kind of sensor if an adequate
weight function is provided for each one of them. With this,
particles should be weighted by the combination of all the weight
sub-functions. The second motivation for the use of this kind of
filter to solve the SLAM problem is the straightforward
parallelization scheme that it provides. Powerful processors
such as Graphics Processing Units (GPU)s can be used
considering that the calculations performed per particle can be
executed in a separate processing core. Finally, the third is the
support for multiple noise distributions in relation with other
approaches that usually only support Gaussian noise. In this way,
particles can be sampled and innovated with the distribution that
best fits with the robot itself, and the scenario where it is
inserted in.

The remainder of this paper is structure as follows. Section 2
details the contributions of this work. Section 3 contains two
simulation experiences to validate the proposed approach.
Section 4 presents the test and validation of this work in real-
world experiments. Finally, Section 5 details the conclusions of
this work.

2 VineSLAM: Localization and Mapping on
Agriculture
This work proposes VineSLAM, a localization and mapping
algorithm based on 3D points and semiplane features
extracted from an input point cloud. Figure 1 shows a high-
level representation of the approach.

The system is divided in three main layers:

• Perception: 3D point cloud processing to extract edge,
planar and semiplane features;

• Mapping: Multimodal registration of the types of features
extracted to build a consistent 3D map of the agriculture
environment;

• Localization: PF-based procedure that uses both point- and
semiplane-based information to localize the robot.

Thus, our approach is able to efficiently extract point and
semiplane features from a 3D point cloud, and use them to build a
map of the crop and localize the robot within this map.

2.1 Perception
In the perception stage, three feature types of two different
modalities are extracted: edge and planar features (points), and
semiplanes. The point features are searched in sharp edges and
planar surfaces. In the semiplane extraction case, this work
searches for three semiplanes in the environment for each
frame. The first is a flat ground surface, and the others are
two semiplanes, one in each side of the robot. This
formulation allows the extraction of large ground surfaces by
recurrent plane registration. In woody-crop cultures, these
semiplanes usually extract the morphology of the vegetation
canopies. The extraction of point and semiplane features is
described in 1) and 2) respectively.

1) Point-level feature extraction: To extract point features, our
approach relates with LeGO-LOAM Shan and Englot (2018)
in that it uses the smoothness descriptor c present in (Eq. 1).
Points are projected into a range image and sorted by their
value of c. The points with larger c are considered edge
features, and the ones with lower c are considered planar
features. Figure 2 shows an example of this feature extraction
procedure in a woody crop vineyard.

2) Semiplane-level feature extraction: Our approach can
simultaneously use points and semiplanes to map the
agriculture and localize the robot. The representation of
semiplanes includes more dimensions than point features,
and their extraction involves more complex procedures. In
this work, we represent semiplanes as follows:

FIGURE 1 | System architecture partitioned in three main layers:
perception, localization and mapping.

FIGURE 2 |Corner (yellow) and planar (red) feature extraction example in
a woody crop vineyard.

Frontiers in Robotics and AI | www.frontiersin.org January 2022 | Volume 9 | Article 8321654

Aguiar et al. Localization With Points and Semiplanes



mγi � π, p0, e{ }, (3)
where π represents the unit normal vector, p0 the centroid defined
by the points that compose the semiplane, and e the set of extrema
points that limit the convex semiplane. The semiplane extraction
is processed in two main steps: point candidate selection and
plane fitting. In this step, the main goal is to extract three
semiplanes from the input point cloud, the horizontal ground
and two other arbitrary semiplanes.

For selecting the ground semiplane point candidates, two
different parameters are used. The first is the point vertical
angle Yang et al. (2021) (Figure 3) represented as δ. Given the
point cloud projection into the range image and two points in
consecutive rows, and defining the difference between these two
points as Δp = [Δx, Δy, Δz], the vertical angle is compute as

δ � arctan
Δz���������

Δx2 + Δy2
√ . (4)

The second criteria is the point’s height. Given the sensor
position’s prior knowledge in the robot’s referential frame, and
considering that it is mounted horizontally, only points that have
a height component closer to the sensor altitude are considered.
Thus, if this criteria is met and if δ is bellow a well-defined
threshold, the point is considered as candidate for the ground
plane. For the two remaining planes, a simpler point candidate
selection is performed. In this case, the input cloud points that
were not selected as ground candidates are divided into two main
sets, one on each side of the robot. With this formulation, the goal
is to extract two robust semiplanes both at the right and left sides
of the robot.

After extracting the point candidates for the three planes, we
implement a RANSAC algorithm in each set of points. This
approach fits the best plane model represented by its hessian
coefficients to the input set of points. In the end, the algorithm
retrieves the set of inlier points that belong to the extracted plane,
as well as its normal vector π. This formulation outputs an infinite

plane. To convert it to a semiplane, we extract a convex polygon
that bounds all the inlier points that constitute the plane. To do
so, a Convex Hull algorithm is applied to calculate the semiplane
extremas e, represented in (Eq. 3). Since agricultural
environments are highly unstructured, semiplane outliers can
be extracted. In this work, the outliers are filtered based on the
semiplane area. Only convex polygons with an area superior to a
defined threshold configured by the user are considered and
stored. Figure 4 shows an example of the extraction of the ground
plane and the vegetation canopies in a woody crop vineyard.

2.2 Mapping
In the mapping stage, two registration procedures are proposed,
one for points and the other for semiplanes. A 3D voxel grid is
implemented and used to store the point feature map and
perform efficient search algorithms. A more complex feature
matching algorithm is computed, and a map merging procedure
is proposed to update the semiplanes in the global map
continuously. These algorithms are described in 1) and 2)
respectively.

1) Point-level mapping: Unlike LeGO-LOAM’s approach
that uses a standard KdTree to store feature points and map
the environment, our work implements a 3D voxel grid map.
This data structure, besides being less memory-efficient is
more time-efficient since the searching algorithm is
performed by just accessing each cell index. This 3D map
is an extension of the standard 2D grid map, considering a
discretization also in the z coordinate. Each cell is indexed by
specific 3D discrete coordinates and can be efficiently accessed
with these coordinates. Also, the map recognizes the different
types of features supported. Thus, each cell can contain
several types of features, and the searching procedures
account for each type for faster processing. With this data
structure, the point-based mapping procedure is performed
using the information about the robot pose provided by the
localization layer and using a local search algorithm. Given a

FIGURE 3 | Vertical angle definition. Green dots are estimated ground
points, and red dots non-ground points. The vertical angle is estimated
between two consecutive points of the same column in the range image. FIGURE 4 | Semiplane feature extraction example in a woody crop

vineyard. The blue lines represent the polygons edges, the red dots their
extremas and the dark dots the semiplane inliers points.
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set of input point features Mλ � {mλ1,mλ2, . . . ,mλN} in their
homogeneous form and the robot’s pose Tr, each feature is
converted to the maps’ referential frame as follows:

~mλi � Tr mλi , i ∈ 1, . . . , N{ }. (5)
Then, a local search is performed for each feature in the 3D

voxel grid map. The nearest neighbor of each feature is
searched by the procedure represented in Figure 5. Each
feature’s nearest neighbor can be located either in its cell, in
adjacent cells, or even in more distant cells. Depending on the
voxel resolution, the user can specify if the local search
algorithm looks for neighbors just in adjacent cells or if it
continues for more remote cells in case of failure. This decision
sets the stop criteria of the algorithm, that iteratively looks for
the nearest feature in a region using a well-defined path as
specified in Figure 5. In cases where no neighbor is found, the
feature is registered and saved in the voxel map.

2) Semiplane-level mapping: The semiplane mapping procedure
consists of two main tasks: semiplane matching and
registering. The first step is to start with the matching
algorithm, like in the point features case, to convert the
observed semiplanes to the maps’ referential frame. Thus,
we apply a similar transformation as the one represented in
(Eq. 5) to the semiplane inlier points and extremas. Then, to
improve the matching procedure, we refine the normal vector
estimation of the transformed semiplanes using a Principal
Component Analysis (PCA) algorithm. Given the set of
transformed semiplane points ~Mγ � { ~mγ1, ~mγ2, . . . , ~mγN}, we
define S = YYT, where

Y �
~mγ1 − p̃0
~mγ2 − p̃0
. . .

~mγN − p̃0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

and p̃0 represents the transformed semiplane centroid. The
refined normal vector corresponds to the eigenvector of S with

the smallest eigenvalue. After this, the matching procedure is
computed considering three different correspondence criteria:

• Overlapping area;
• Normal vector difference;
• Centroid-to-plane distance.

If an observed and a global map’s semiplane meet these
criteria, one can conclude that both planes overlap, have the
same orientation, and are at the same position. Thus, they are
considered as correspondences.

To compute the overlapping area between semiplanes, the
local plane reference frame is extracted from the normal
vector, and the semiplanes boundaries are projected into
this frame. The z component is ignored since it is expected
that, in the local plane reference frame, the boundaries lie in
the X-Y plane (z = 0). Working in two dimensions, the
interception between the two polygons is computed, and its
area is calculated. If the overlapping area is higher than a
threshold level, the normal vector difference is computed to
check if the planes have the same orientation. Finally, the
distance between the observed semiplane centroid to the
semiplane in the global map is computed.

After the matching step, semiplane registration is
performed to build the semiplane global map iteratively.
Semiplanes that were not matched with any in the global
map are directly registered in the global map. For the ones
that were matched, a map merging algorithm is proposed. The
semiplane representation is recomputed by merging inliers
points between the two correspondences, recalculation of the
normal vector using (Eq. 6), and boundary merging using
Convex Hull. This process allows semiplanes to grow with
newly observed features and to map large bounded surfaces.
The process of registration can be observed in the following
video: https://youtu.be/Yx8el67eTCw.

2.3 Localization
The localization procedure aims to compute the robots’ 6-DoF
pose using the feature extraction and mapping algorithms
described. To this purpose, in contrast with the state-of-the-
art, this work implements a PF with the novelty of considering
point-semiplane particle weight calculation. This means that the
filter can consider and balance both feature modalities and work
in the absence of each one of them. The PF is standardly divided
into three main steps: a prediction step where the particles are
innovated through a motion model, the particles weight
calculation given the observed features, and the resampling
step to replace particles with lower weight by others with
higher weight. These three steps are described in 1), 2) and 3)
respectively.

1) Motion model: For predicting the particles likelihood
distribution, they are innovated through a 6-DoF model
proportional to an estimated relative motion. A LiDAR
odometry algorithm based on the Iterative Closest Point (ICP)
Besl and McKay (1992) method is implemented to estimate the
frame-to-frame 6-DoF robot motion, where an input wheel
odometry control ut is used as first guess for the iterative

FIGURE 5 | Point feature nearest neighbor local search. In a discrete 3D
space, the nearest neighbor of a point feature can be in the grid map layer
where the feature is located or at the top and bottom adjacent layers. A local
search in these three layers is performed to find the nearest feature as
described in the figure. If a feature is found when searching in the blue path,
the search ends. Otherwise, the search continues through the yellow path.
The user can tune the stop criteria.
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algorithm. The particles spreading is proportional to the distance
measured by the scan-matching algorithm du. Let us define the
following matrices:

• ΔT: the LiDAR odometry increment represented as an
homogeneous transformation; and

• Tn: an homogeneous transformation matrix computed by
sampling a minimal parameter space (6-DoF) from a
Gaussian distribution with standard deviation du.

Thus, a particle j is innovated at the instante t as follows:

Tj,t � Tj,t−1 ΔT Tn. (7)
2) Weight update: The particles weight calculation is the most

critical and innovative step of the proposed localization
procedure. The major challenges are the consideration of
multi modal inputs (points and semiplanes) and the creteria
balance on the semiplane-based weight calculation, since two
parameters are used to compute the weight. To account for both
modalities, a two-step weight calculation is performed using two
subfunctions:Wλ for the point (edge and planar) features andWγ

for the semiplane features. The particles weight is represented as a
likelihood function P(zt|Tj,t, Z0:t−1) where zt represent the feature
observations at the instant t, Tj,t the particle’s pose, and Z0:t−1 the
map build so far.

In the point-feature case, features are converted to maps’
reference frame using each particle pose as follows:

~mλi � Tj,t mλi , i ∈ 1, . . . , N{ }. (8)
Then, correspondences are found using the 3D voxel grid map

search algorithms described in Section 2.2. Considering the set of
K correspondences found { ~mλi ↔ mλ,gi : i ∈ {1, . . . , K}}, where
the subscript g denotes for features in the global map, the point-
feature weight subfunction is computed as

Wλ � 1���
2π

√
σλ

∑K
i�1

exp
−1
σλ

· ‖ ~mλi − ~mλ,gi‖( ), (9)

where σλ is the standard deviation of the point-feature
measurement, and ‖.‖ represents the L2 norm. This
formulation states that the weight of the particle increases
exponentially with the decrease of distance between two
correspondences, and that it is as higher as the number of
correspondences K found.

In the semiplane-feature case, the first step is also the
conversion of them to the maps’ reference frame. The set of
extremas of each semiplane ei and its corresponding centroid p0i
are converted to this referential using each particle pose as in (Eq.
8). Then, correspondences between the observed semiplanes and
the ones already registered in the global map are searched using
the three criterias described in Section 2.2: overlapping area,
normal vector difference, and centroid-to-plane distance. Given
the set of K correspondences found
{ ~mγ ↔ mγ,gi : i ∈ {1, . . . , K}}, where the subscript g denotes
for features in the global map, the semi-plane weight
subfunction is modelled as a multivariable function as follows:

Wγ � ∑K
i�0

wγ πi( ) · wγ p0i( ), (10)

where

wγ πi( ) � 1���
2π

√
σπ

exp
−1
σπ

· ‖~πi − ~πgi‖( )
wγ p0i( ) � 1���

2π
√

σp0

exp
−1
σp0

·D p0i , ~mγ,gi( )( ),
σπ and σp0 represent the standard deviations of the normal

vector and centroid measurements respectivelly, ~π(.) the
semiplane’s normal vector, ~p0(.) the semiplane’s centroid, and
D(.) the point-to-plane distance operator. Figure 6 represents the
semiplane-based weight for a single correspondence. As
represented, the importance given to the normal vector
difference (to account for plane rotation) and to the centroid-
to-plane distance (to account for plane displacement) can be
tuned by the standard deviations of each measurement. The
tunning step can be challenging since the multivariable
function considers two variables in different spaces (vectors
and distances). Overall, the particle’s weight decreases
exponentially with the increase of difference between
correspondence’s normal vector and centroid-to-plane distance.

Given the definitions (Eqs 9, 10) the particle likelihood is
computed as

P zt|Tj,t, Z0: t−1( ) � Wλ ·Wγ. (11)
In this way, the particle with the highest weight is the one that

presents the best alignment both in the point-feature and
semiplane-feature spaces. The final robot pose per frame is
computed by the weighted average of all particles’ pose.

3) Resample: The resampling step of the PF is used to
substitute low-weight by high-weight particles. In this work,

FIGURE 6 | Likelihood of the semiplane-based weight calculation
represented as a multivariable function. The likelihood decreases
exponentially with the increase of difference between normal vectors and
centroid-to-plane distance. Their corresponding standard deviations
can control the impact of each one of the variables in the final likelihood.
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the multinomial resample algorithm Douc and Cappe (2005) was
implemented to accomplish this. This approach draws N samples
from a uniform distribution ui and selects the particle j for
replication if

ui ∈ ∑j−1
p�1

wp,∑j
p�1

wp
⎡⎢⎢⎣ ⎞⎠, (12)

where wp represents the particle’s p weight. To avoid the well-
known problem of particle degeneracy that happens when either
all the particles are in the wrong place or they are highly
condensed, resampling is not executed for all iterations. This
method is only employed when a significant robot motion is
observed (either in translation or rotation in the six degrees of
freedom). The user can set the amount of motion required to
perform resampling.

3 SIMULATION EXPERIMENTS

This work’s major innovation is the use of semiplanes to map the
environment and localize the robot within it. As discussed in
Section 2.3, one of the biggest challenges in the proposed
semiplane-based localization is the weight given to the normal
vector difference and the centroid-to-plane distance. This Section
presents two simulation experiences to validate the numeric
stability of the approach. Three orthogonal planes are used to
localize the robot in the simulated environment and no point-
features are considered.

3.1 Methodology
The simulation’s main goal is to verify if, with three orthogonal
planes is possible to localize the robot. Thus, the environment
present in Figure 7 was built containing two perpendicular walls.
The third semiplane is the ground. The robotic platform used for
real experiments that will be detailed in Section 4 was modeled
and inserted in the simulation. This platform is based on a Husky
robotic base. To obtain the raw wheel odometry inputs, the Husky
simulator1 was used, that considers the error caused by the wheel

slippage. To obtain the LiDAR data, the Velodyne simulator2 was
used with a simulated Gaussian noise with standard deviation of
0.008 m.

Given all of the above, the simulation experiments were
carried out by two different sequences: a translation-only
motion and a rotation-only motion. The idea is to validate
that, using only three perpendicular semiplanes, the proposed
approach can estimate translations and rotations. The PF
algorithm used 500 particles to estimate the robot’s motion.

3.2 Localization Performance
As referenced before, under the same simulated environment,
two different experiments were performed. The semiplane feature
extraction procedure describe in Section 2.2 resulted in the
successful detection of the three semiplanes (two walls and the
ground) as shown in Figure 8. In the first experiment, the robot
moves forward without rotating. Figure 9A shows the x and y
deviation to the ground truth, as well as the absolute distance
error (meters). Overall, the semiplane-based localization
procedure presents an average distance error of 0.069 1 m for
this sequence. This shows that the semiplane extraction algorithm
is accurate in estimating the normal vectors, centroids and
extremas. More importantly, using only three orthogonal
semiplanes, the localization procedure can localize the robot
with low error.

Regarding the rotation-only experiment, Figure 9B shows the
estimated yaw rotation in reference with the ground truth, as well
as the corresponding rotation error. For this sequence, the
average rotation error obtained was 5.01 degrees. One of the
well-known localization issues is the estimation of motion in
rotation-only movements. These scenarios are more challenging
than translation motions since the perception of the environment
changes faster, challenging the matching procedures. Besides, the
odometers tend to present higher errors in rotations due to wheel
slippage. For all these reasons, this type of motion shows to
impact the filter’s performance. Even so, the localization

FIGURE 7 | Simulation environment containing three perpendicular
planes: the ground and two walls.

FIGURE 8 | Semiplane feature extraction of the three simulated
semiplanes.

1https://github.com/husky/husky_simulator 2https://bitbucket.org/DataspeedInc/velodyne_simulator.git
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approach can estimate the robot rotation with acceptable
performance, using only three semiplanes.

In the real world, the presence of at least three orthogonal
semiplanes is not always guaranteed. For example, in vineyards,
the most common scenario is detecting the ground plane and two
parallel vegetation planes. With this configuration there are no
constraints to estimate the forward component of the translation.
Due to this, the proposed approach fuses points with semiplanes.
Nevertheless, this simulation aims to show that the proposed
formulation is suitable for semiplane-only localization. The
simulated experiments performed show that the algorithm can
perform accurately in translational and rotational movements.

4 RESULTS

To test the proposed solution, our robotic platform AgRob V16
Aguiar et al., 2020b; Santos et al. (2020) present on Figure 10 was
used. The robot is equiped with a Velodyne Puck (VLP-16) and
was placed in Aveleda’s vineyard, in Portugal. It travelled three
different sequences that will be described later on. Section 4.1

details the experiments performed in this context, and Section 4.2
describes and analysis the results obtained.

4.1 Methodology
The proposed VineSLAM localization and mapping algorithm
performance was analysed in three different sequences described
in Table 2. The characteristics of each sequence are different not
only due to the different travelled paths, but also because they
were recorded in different seasons of the year. Two of them in the
summer, which means that the vineyard present a high density of
foliage, and other in the winter and without foliage. Sequence 1
has almost 70 meters of extension and is the less symmetric
sequence since, besides being inside a corridor, it is at the border

FIGURE 9 | Simulation results using three perpendicular planes in the localization and mapping procedures for a (A) translation-only trajectory, and for a (B)
rotation-only trajectory.

FIGURE 10 | AgRob V16 robotic platform used to test the proposed
approach placed in a woody-crop vineyard.

TABLE 2 | Summary of the experiments performed in Aveleda’s vineyard.

Experiment Distance (m) Foliage stage Season

Sequence 1 69.73 With Summer
Sequence 2 23.52 Without Winter
Sequence 3 81.72 With Summer

FIGURE 11 | Satellite image of Aveleda’s vineyard. The sub-figures
represent the sequences (1, 2 and 3) traveled by the robot.
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of the vineyard. Thus, the high-range LiDAR used can capture
scene objects that are not present in the corridor. Sequence 2
presents the smallest path (23.52 meters). Nevertheless, it is
challenging since the path is inserted in the middle of the
vineyard, with a high density of corridors. This sequence was
recorded during the winter, which means that the vineyard had
not foliage. Finally, sequence 3 is the most extensive, with more
than 80 meters. In this, the robot travels along two vineyard
corridors and is also placed in the middle of the vineyard. Thus, in
most cases, the environment is highly symmetric, compromising
the localization and mapping algorithm. Figure 11 shows a
satellite image with the three sequences represented.

To test and our approach, the proposed VineSLAM algorithm
was executed in the three sequences and compared with the state-
of-the-art LeGO-LOAM (Shan and Englot, 2018) SLAMmethod.
We consider LeGO-LOAM the state-of-the-art in outdoor 3D

SLAM using LiDAR sensors. This method was tested in extensive
outdoor experiments, and proved to perform better than its
ancestor, LOAM. From the literature, one can see that LeGO-
LOAM is aligned with robust 3D SLAM approaches, such as
G-ICP (Ren et al., 2019). Thus, in this work we test LeGO-LOAM
in harsh agricultural environments, and benchmark it against our
approach, VineSLAM.

To validate the results, Global Navigation Satellite System
(GNSS) was used as ground truth, and the Absolute Pose Error
(APE) was measured using this reference. The maximum, mean
and Root Mean Squared (RMS) APE errors were annotated for
each experiment.

4.2 Localization Performance
The robot localization estimation is evaluated in sequences 1, 2
and 3 and compared with the state-of-the-art SLAM approach
LeGO-LOAM. It is worth noting that the sequences are present in
long vineyard corridors, which can be problematic for SLAM
approaches. One of the key issues of SLAM is the well-known
corridor problem where the forward component of motion has
high uncertainty due to the symmetries of the scene. In the
Aveleda vineyard, this can happen since vine trunks are equally
spaced, and consequently, the agricultural environment is highly
symmetric.

The APE is used to analyze the obtained results. For each
timestamp, the absolute difference between the reference and the
estimated poses is calculated. Table 3 summarizes the results

TABLE 3 | Absolute pose error metrics for VineSLAM and LeGO-LOAM under the
three test sequences.

Experiment Method Max (m) Mean (m) RMS (m)

Sequence 1 VineSLAM 2.65 1.41 1.58
LeGO-LOAM 2.26 0.81 0.93

Sequence 2 VineSLAM 0.84 0.38 0.44
LeGO-LOAM 20.81 10.49 11.87

Sequence 3 VineSLAM 1.17 0.64 0.69
LeGO-LOAM 29.57 21.39 22.48

FIGURE 12 | Average pose error (m) and its corresponding Root Mean Squared Error (RMSE), median, mean and standard deviation for (A–C) VineSLAM and
(D–F) LeGO-LOAM under the three experiments performed.
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obtained for both methods in the three sequences. Figure 12 plots
the APE over time, as well as its corresponding RMS error, mean,
median and standard deviation. To highlight the APE during the
robot motion, Figure 13 maps it onto the trajectory and
represents the error through a color code. Finally, to have a
clear perception of our VineSLAM approach and LeGO-LOAM
in reference with the ground truth, Figure 14 presents all the
trajectories in the same graphic for each sequence.

For sequence 1 it is possible to verify that LeGO-LOAM
performs better than VineSLAM. In particular, for this
sequence, the state-of-the-art approach outperforms

VineSLAM in approximately 0.6 meters considering the RMS
error. This was the sequence where LeGO-LOAM presented
better performance since, as referenced before, it could find
structure outside the corridor placed in the vineyard’s border.
As can be observed in Figure 13A VineSLAM present the higher
error when the robot performs a rotation inside the corridor.
Even so, both methods showed acceptable performance even in
this challenging environment.

For sequences 2 and 3, we verified that LeGO-LOAM
localization estimation has degenerated, i.e., the state-of-the-art
algorithm fails to estimate the robot pose for these two sequences.

FIGURE 13 | Absolute pose error (m) mapped onto the trajectory for (A–C) VineSLAM and (D–F) LeGO-LOAM with reference to the ground truth.

FIGURE 14 | VineSLAM’s and LeGO-LOAM’s localization estimation with reference to the ground truth for sequences (A) 1, (B) 2, and (C)3.
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The environment’s high symmetry impacts its localization
algorithm since, in many instants, LeGO-LOAM estimates that
the robot is stopped when it is moving. Thus, for sequence 2 this
method presents an RMS error of 11.87 meters and for sequence
3 22.48 meters. Figure 12E shows that LeGO-LOAM
accumulates error over time for sequence 2. For the other
sequence, the same happens until the robot turns around, the
moment where this method starts estimating movement again. In
these two sequences, the proposed VineSLAM approach’s
contribution is highlighted since it can maintain a precise
robot localization in both of them. Especially for sequence 3,
where the robot travels more than 80 meters over two vineyard
corridors, VineSLAM achieved an RMS error of 0.69 meters.

Overall results show that VineSLAM is suitable for localization
and mapping in agricultural environments. The PF approach
considers not only point-features but also semiplanes to map and
localize the robot. This approach proved to be accurate even in
challenging agricultural environments, improving the state-of-
the-art. In most cases, LeGO-LOAM underestimates translation
due to the corridor’s symmetry, while the PF approach proposed
in VineSLAM can overcome this issue using a discretization of
the 6-DoF state space in 500 different particles. From Figure 14
one can verify that VineSLAM follows the GNSS reference with
accuracy in the three sequences while LeGO-LOAM only does so
in the first. This proved that the localization and mapping
research is still open for improvement. For harsh
environments such as vineyards, dedicated approaches should
be proposed to tackle the more generic state-of-the-art
algorithms’ limitations.

5 CONCLUSION

This work proposes an extension of the state-of-the-art in
localization and mapping oriented to agricultural robots. In
this context, we propose VineSLAM, an algorithm that uses
both points and semiplanes to map the environment and
localize agricultural robots. The integration of all this
information in a single pipeline is done efficiently with a 3D
voxel map proposal to accelerate search algorithms and
innovative semiplane-based mapping techniques. Also, a PF is
used with a novel update step, where the likelihood of the particle
considers both feature modalities. Results show that our
formulation can localize a robot using only three orthogonal

semiplanes. Under real-world experiments in a woody-crop
vineyard, VineSLAM achieved RMS errors of 1.58, 0.44, and
0.69 meters for three sequences. Overall, our approach
outperforms the state-of-the-art LeGO-LOAM algorithm that
fails in two of the three sequences.

In future work, we would like to extend the mapping
algorithms of VineSLAM. In particular, features with semantic
representations will be extracted from agriculture environments,
such as trunks and fruits, and used in the mapping and
localization procedures. Additionally, we would like to
partition the global map in a graph-like fashion considering a
topological structure. A sensor fusion approach will be adopted to
improve the localization redundancy and robustness. Finally, the
algorithm will be tested in different agricultural scenarios such as
greenhouses and orchards.
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CHAPTER 5. VINESLAM: LOCALIZATION AND MAPPING ALGORITHM FOR AGRICULTURAL

ROBOTS

5.2 Semantic Mapping of Grape Bunches and

Stems using Sensor Fusion and a Robust

Localization Algorithm

After having a metric-based localization and mapping system, VineSLAM’s

localization and mapping are improved. The PF modularity is exploited to fuse

other types of sensors to have a more precise robot pose estimation. Also, in this

work, the concept of multi-layer mapping is introduced - the proposed semantic

mapping approach is added to the metric mapping procedure described before. This

work produced an article that is currently being peer reviewed in the Robotics and

Autonomous Systems Journal and is entitled Semantic Mapping of Grape Bunches

and Stems using Sensor Fusion and a Robust Localization Algorithm. Regarding

the localization module, this work describes the PF-based fusion of the metric

features extracted from the 3D LiDAR with an RTK-GNSS and an IMU sensor.

The semantic mapping algorithm uses the perception system described in Chapter 4

and implements an EKF to create a map of the vineyard with vine trunks and grape

bunches. The multi-layer mapping architecture can be enhanced since the depth of

the semantic features is calculated using the metric map that VineSLAM builds

while the robot operates. The system was tested in two vineyards that present

different challenges to the algorithm and was benchmarked against two state-of-

the-art SLAM algorithms. Results show that the proposed system can localize the

robot with precision in challenging environments and create semantic maps of the

vineyard. The localization approach outperforms the LeGO-LOAM state-of-the-art

algorithm and present similar results compared with LOAM.
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ABSTRACT

Localization and mapping are fundamental aspects of mobile robotics, since they allow track the robot
position and to build useful maps of its surroundings. In most cases, these algorithms build metric maps
that represent the geometry of the environment. In agriculture, there is an increase need for robots to
have precise and rapid information since it affords time and money, enables to trigger actions plans
in case of diseases, and allows accurate yield estimation. In this context, semantic perception and
mapping are essential concepts. With semantics, robots can learn how to assign meaning to data, learn
to co-exist with humans, and provide useful information for further human use. For all these reasons,
this work proposes a system capable of semantically mapping grape bunches and vine stems using
sensor fusion through a robust Simultaneous Localization and Mapping algorithm. The contributions
of the proposed approach are threefold: a robust system capable of localizing the robot in challenging
agricultural environments and build 3D maps of the environment; a Deep Learning-based semantic
visual perception algorithm that detects grape bunches and vine stems considering a public dataset with
RGB and thermal vineyard images in different stages of the year; a semantic mapping approach that
represents the vineyard as a map of grape bunches and vine stems. Results show that our system can
localize the robot in several types of vineyards with high precision. Also, the Deep Learning model is able
to detect vine stems and grape bunches in two different growth stages. Finally, the system is able to build
rich semantic maps of the vineyard.

Keywords: SLAM, Semantic Mapping, Perception, Agriculture

1 INTRODUCTION
Environment mapping is one of the fundamental aspects of mobile robotics. Most tasks developed by
autonomous robots require at least the knowledge of the environment’s geometry. In these cases, robots
know where the free and navigable space is and where the static obstacles that they must avoid are
located Thrun (2003). For robots to perform advanced tasks besides navigation, in most cases is required
more intelligent mapping techniques. In this context, semantic mapping uses robots to build maps with
geometry information and assign properties to objects and places. In other words, robots learn how to
assign meaning to data Wolf and Sukhatme (2008). This means that robots with this faculty can percept
environments in a similar way as humans do, but also that the maps built by them can be easily read and
used by humans Kostavelis and Gasteratos (2015). Thus, robots that have semantic perception can operate
in human co-existent environments and even interact with them Sheng et al. (2015).

In agriculture, robots with semantic perception are fundamental to automating several tasks such as
precision agriculture (application of fertilizers, nutrients and water), harvesting, monitoring, and planting.
Besides, these robots can also be used for fruit and vegetable counting Das et al. (2015), which allow yield
estimation and monitoring of productivity. All these tasks require that the robot perform self-localization
in real time to know where it is located in the agricultural map. Consequently, autonomous robotic
platforms should be endowed with robust localization systems that allow recovering their absolute pose in



the agricultural environment Vougioukas (2019). Simultaneous Localization and Mapping (SLAM) allows
calculating the traveled trajectory while mapping the environment simultaneously Durrant-Whyte and
Bailey (2006); Bailey and Durrant-Whyte (2006). Figure 1 shows an example of a steep slope vineyard
located in the Douro’s demarched region, where is visible the challenging conditions for autonomous
robots. In this particular environment, and all the other agricultural contexts in general, SLAM algorithms

Figure 1. Typical steep slope vineyard in the Douro’s region. Localization and mapping approaches
need to be robust to the sharp slopes that characterize these environments.

face many challenges. These environments are usually highly unstructured compared to indoor scenarios,
which can compromise the performance of matching algorithms that are crucial, especially in 3D SLAM.
Also, the presence of terrain irregularities makes the robot trajectories less smooth, which implies that
SLAM algorithms should have the ability to estimate frequent variations in the six components of
motion. Finally, illumination characteristics can harm perception systems, especially vision-based feature
extractors. In order to robots operate autonomously in this kind of environments, one of the critical aspects
that should be present in SLAM approaches is information fusion. The algorithms that fuse information
from different modalities of sensors can be more tolerable to faults and more robust Vu et al. (2011). In
agriculture, this can be particularly important. For example, in the scenario present in Fig. 1, sensors
that can detect slopes such as Inertial Measurement Units (IMU)s or Real-time kinematic (RTK) Global
Navigation Satellite Systems (GNSS) can be fused with sensors capable of providing accurate maps of
the environment such as Light Detection And Ranging (LiDAR)s or cameras. Thus, intelligent systems
should be implemented to extract each sensor modality’s key components of each sensor modality and
incorporate all sensors simultaneously in the localization and mapping stages.

This work intends to solve the localization and mapping problems in challenging agricultural environ-
ments such as vineyards and provide a semantic representation of them by mapping and counting of grape
bunches and stems in vineyards. To do so, this paper proposes the following contributions:

1. The creation of a novel annotated dataset for Deep Learning (DL) model training with RGB and
thermal images of different vineyards in different stages of the year (with and without foliage) and
with different grape growing stages;

2. The evaluation of a state-of-the-art trained DL model that can detect vine stems and grape bunches
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using low-power resources using Edge-AI concepts;

3. The implementation and evaluation of a new SLAM framework based on a localization and 3D
mapping algorithm based on a Particle Filter (PF) designed to work in challenging agricultural
environments that fuses an RTK-GNSS, an IMU, a long-range 3D LiDAR, and wheel odometry;

4. The implementation and evaluation of a semantic mapping algorithm that fuses a monocular camera
with the sensors used in the localization and 3D mapping stages to provide the positioning of grape
bunches and vine stems in the agricultural environment.

The output of our system is a 3D map that can be visualized in several ways, such as 3D point clouds,
octomaps or meshes, with the vine stems and grape bunches location mapped inside these 3D representa-
tions.

The rest of the paper is organized as follows. Section 2 provides an analysis of the state-of-the-art.
Section 3 details the implementation of the proposed system. Section 4 shows the results obtained under
the experiments performed. Finally, section 5 provides the main conclusions of this work.

2 RELATED WORK
The mapping procedure is crucial for localization performance. The accuracy of the onboard sensors
and the quality of the data post-processing algorithms dictate the quality of the perception of the sur-
rounding environment by the robotic platform. In agriculture, this is especially true, since in most cases,
the environment present harsh conditions for robotics localization and mapping Aguiar et al. (2020a).
When the localization and mapping algorithms succeed, robots can create several types of maps of the
environment that can be used by humans or even by other robots to operate. The first and most common
type of maps are geometry or metric maps as represented in Fig. 2. The representation is a structure

Figure 2. Metric map of a steep slope vineyard. White cells represent free space and black cells
represent occupied space.

that encodes the geometry of the environments Cadena et al. (2016) and can be represented in several
ways depending on the sensor input data and the dimension of the mapping area. Another popular
representation is topological mapping.These algorithms represent the global map as a set of connected
local maps stored in nodes Yi et al. (2012). As stated by Lowry et al. Lowry et al. (2016), a topological
map is conceptually a biological, cognitive map, where nodes represent possible places in the world and
edges the possible paths that connect these nodes. These maps can have several benefits. In particular,
more intelligent memory management can be done since the global map is partitioned and only sub-maps
are loaded at each instant. Finally, robots can conjugate the previously mentioned types of maps with more
complex and informative types such as semantic maps as represented in Fig. 3. Bringing semantics to the
robotic mapping procedures can improve localization systems Walter et al. (2013) and provide essential
information about the agents present in the environment. For these reasons, this work fuses a monocular
camera for semantic mapping with an RTK GNSS, IMU sensor, a 3D LiDAR, and wheel odometry for
localization and 3D mapping to compute reliable robot self-localization and diverse map representations
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with meaningful information. This approach is divided into three main stages: the localization and
3D mapping algorithm, the vineyard’s semantic perception, and finally, the visual semantic mapping
approach.

2.1 Localization and Mapping Algorithms
Localization and mapping, and more specifically SLAM, is one of the most common approaches used
to perform robot self-localization with the advantage that a map of the environment where the robot is
inserted is also generated. The main goal of SLAM is to estimate the following posterior distribution:

p(Xk,m | Zk,Uk,x0), (1)

where Xk can either be the robot trajectory or the robot pose at the instant k, m represents the map, Zk
the observations, Uk the control inputs and x0 the initial robot pose. To estimate (1) many approaches
have been proposed. The Extended Kalman Filter (EKF) Paz et al. (2008); Bailey et al. (2006) is one of
the most popular. This method is suitable for non-linear state and observation models and considers that
a Gaussian distribution can approximate the state uncertainty. Without this restriction, Particle Filters
(PF)s are also popular. These algorithms are based on Monte Carlo sampling, and they discretize the state
space in a well-defined number of particles to calculate the posterior. Each particle encodes information
about the robot pose and contains the map data. Besides these filter-based techniques, SLAM can also
be approached using optimization. Graph-SLAM Lu and Milios (1997) is a well-known optimization
approach that solves the SLAM problem by representing the robot and the map as a set of nodes and
edges in a graph-way procedure.

All the mentioned approaches can fuse different types and modalities of data. In this context, Chiang
et al. Chiang et al. (2019) propose a grid-based SLAM approach that fuses a GNSS sensor with an inertial
sensor and a LiDAR. The authors use an EKF to fuse the three types of sensors and compute a grid-based
SLAM using the LiDAR sensor. Canedo-Rodrı́guez et al. Canedo-Rodrı́guez et al. (2016) propose a
multi-sensor fusion algorithm based on a PF for robot localization in crowded environments. In this work,
the authors use a 2D laser range finder, a WiFi positioning system, a magnetic compass and a network
of USB webcams. The main novelty of this work is the ability to fuse onboard and off-board sensors

Figure 3. Semantic and topological map of a vineyard Neves Dos Santos et al. (2015). In this map,
nodes represent well-defined places and contain semantic information: they either represent a vineyard
row or corridor. Local maps of artificial landmarks are stored in each node. Edges encode the geometric
path between nodes.
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to compute the robot localization. Zureiki and Devy Zureiki and Devy (2008) fuse a 3D LiDAR sensor
with a monocular camera in order to perform SLAM and build a map of planar features and lines. This
algorithm uses region growing and an EKF to estimate the parameters of the 3D planar features and
compute line features with the fusion of both sensors.

In agriculture, SLAM is still a research area under development due to the challenging characteristics
of the environment. In this regard, Auat Cheein et al. Auat Cheein et al. (2011) propose a method based
on an Extended Information Filter (EIF) for olive groves. This approach fuses a monocular vision system
with a range sensor to detect and map olive stems. The authors extend this work in order to estimate
the treetop volume applying a convex hull to the 3D LiDAR data Auat Cheein and Guivant (2014). In
order to automate the mapping procedure in agriculture, Zhao et al. Zhao et al. (2020) propose a SLAM
algorithm called Mesh-SLAM that uses a mesh-based algorithm to reconstruct the environment frame by
frame. Shu et al. Shu et al. (2021) propose a monocular visual SLAM approach in a challenging dynamic
agricultural environment. The authors propose an unsupervised depth estimation approach and show that
their method is suitable for mapping the crop. Libby and Kantor Libby and Kantor (2011) fuse a laser
sensor with wheel odometry using an EKF to estimate the robot pose in an orchard. This work innovates
the state-of-the-art through a filter with two update steps, one using point features and the other using
linear features extracted from three rows.

Our approach brings SLAM to challenging vineyards, operating in long planar vineyards and environ-
ments characterized by harsh steep slopes. This paper presents a novel PF-based approach capable of
fusing information from various sensors such as RTK GNSS, IMU, 3D LiDAR and wheel odometry that
is relevant when dealing with challenging outdoor environments. The novelty of this approach consists of
introducting of the PF in SLAM approaches designed for agriculture and in the flexible and vast fusion of
data that the filter supports.

2.2 Semantic Perception
The semantic characterization of the robot working environment is important in the interpretation of the
state of the scene Kostavelis and Gasteratos (2013) and can also be useful to provide information for
further human use. In particular, there has been a growth in the use of robots associated with processes
that require thinking Crespo et al. (2020). For this reason, robots should be equipped with reliable sensors
that endow them with perception systems capable of understanding their surroundings. One of the most
common approaches is to use camera sensors to classify, detect or segment objects and agents semantically.
In addition to traditional computer vision algorithms, DL is nowadays a widely used technique for this
purpose Hao et al. (2020), In agriculture, DL is being used in the detection of natural features for multiple
navigation and exploration purposes Santos et al. (2020a).

In vineyards, semantic perception is focused on detecting the presence and location of vine stems
and grape bunches. This topic has been approached in the state-of-the-art in multiple manners and with
several purposes. For example, Perez-Zavala et al. Pérez-Zavala et al. (2018) cluster image pixels into
grape bunches using shape descriptors and texture information. This work aims essentially to automate
grapevine monitoring, spraying, lead thinning and harvesting. Liu et al. Liu et al. (2018) detect grapevine
flowers for determining potential early yields. To estimate the number of grape flowers per inflorescence
automatically, Diago et al. Diago et al. (2014) implement an image segmentation algorithm in the CIELAB
color space. Similarly, Palacios et al. Palacios et al. (2020) perform DL- and computer vision-based
inflorescence segmentation and flower detection. In addition, this work presents the novelty of performing
the perception at night using artificial illumination.

Several works tackle the problem in different ways concerning vine stem detection. With the purpose
of grape harvesting, Badeka et al. (2021) use DL for vine trunk detection. In this work, three different DL
models were trained to achieve a fast and accurate detection. Our previous works Aguiar et al. (2021);
Pinto de Aguiar et al. (2020); Aguiar et al. (2020b) also approach the problem of vine stem detection. In
these, we used low-power and high-performance devices for real-time inference in an Edge-AI fashion.
Other works also implement the detection of trunks in other fields such as orchards Shalal et al. (2013);
Colmenero-Martinez et al. (2018), oil-palm plantations Juman et al. (2016), and forests Lamprecht et al.
(2015).

In this work, the semantic perception pipeline can detect vine stems and grape bunches using a state-
of-the-art DL model for object detection. To do so, we propose a novel public dataset containing 2281
original images of several vineyards, extended to 22270 with augmentation. The dataset comprehends
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images of the vineyard in different stages of the year (winter and summer), with different grape bunch
growth stages (two different classes: tiny and medium). We also provide the fruit and trunk annotations,
enabling fast-forward DL model training to the community. The dataset is publicly available in the
following link: https://doi.org/10.5281/zenodo.5114142.

2.3 Semantic Mapping
Fruit detection, localization, and mapping are key components of the new generation of agricultural
robots. They allow accurate fruit counting and yield estimation. Additionally, they can be important
in the detection of fruit diseases Arnal Barbedo (2019), and they constitute the preliminary step to the
automation of processes such as harvesting, spraying, crop monitoring, and others Rahnemoonfar and
Sheppard (2017).

In the current state-of-the-art, many works focus on visual-only fruit counting. For example, Kestur et
al. Kestur et al. (2019) present a detection and counting pipeline for mango fruits in images for further
yield estimation. In this work, the authors use MangoNet, a CNN for mango detection using semantic
segmentation. For the detection and counting of small passion fruits, Tu et al. Tu et al. (2020) propose a
multi-scale, faster region-based convolutional neural network approach using both color and depth images.
A detector for each image type is trained separately and then fused. The authors show that the system can
perform in different lightning and occlusion conditions. Some works propose the detection and counting
of grapes in vineyards and orchards. Santos et al. Santos et al. (2020b) detect, segment, and track grape
bunches using state-of-the-art CNNs. This work makes available a public dataset with 300 RGB vineyard
images showing 4,432 grape bunches from five different varieties. Also, using DL, Zabawa et al. Zabawa
et al. (2020) deploy a Convolutional Neural Network (CNN) to detect and count single grape berries. This
work uses a semantic segmentation technique to perform pixel-wise classification.

In addition to detecting and counting, some works already focus on creating maps of fruits and other
agricultural agents, with the 2D or 3D location of them. Other works focus on mapping the agricultural
environment to recover its 3D structure. In this context, Liu et al. Liu et al. (2019) propose a cost-effective
and lightweight fruit and tree trunk counting and mapping pipeline. This work estimates the image
location of mangoes and tree trunks on images using a CNN. To track and map their location in 3D, a
KF is used to fuse the CNN output with a Structure for Motion (SfM) algorithm that tracks the camera
pose. Dong et al. Dong et al. (2019) build 3D maps of orchard rows with semantic information. In this
work, the two row sides are reconstructed and fitted using global features and semantic information. Here,
semantics are used in the mapping procedure to find the common information between the two row sides.
The output of this system is a 3D model of the orchard, where information such as canopy volume, trunk
diameter, tree height and fruit counting can be extracted.

In this work, we propose a semantic mapping pipeline for grape bunches and vine stems. Our approach
uses the semantic visual perception pipeline that retrieves the image location of the natural features, fusing
this information with a 3D LiDAR to compute depth information. The mapping pipeline is based on a
single EKF algorithm for each landmark, as proposed in FAST-SLAM Montemerlo et al. (2002). Trunks
are mapped in two dimensions, using the exact model proposed in FAST-SLAM. To map grape bunches,
we propose an extension of the state-of-the-art EKF model to work in three dimensions.

3 SEMANTIC VINEYARD NAVIGATION AND MAPPING
In this work we propose a novel pipeline for robotic navigation and semantic mapping in vineyards.
Figure 4 represents the high-level architecture of the system. The proposed approach is segmented into
three main stages:

1. A 6-DoF SLAM approach for unstructured agricultural environments that fuses four different sensor
modalities: an RTK-GNSS, an IMU, wheel odometry, and a long-range 3D LiDAR;

2. A semantic vineyard perception approach that uses a state-of-the-art DL object detection model to
detect grape bunches in different growth stages and vine stems;

3. A semantic mapping algorithm that computes the location of the grape bunches and vine stems in
the real world.

The outputs of this online approach are an estimation of the robot path and a set of maps (semantic, 3D
feature map). Since the SLAM output 3D map does not use all the 3D LiDAR information (it uses only
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Figure 4. Localization and Mapping pipeline architecture. Our system fuses four different sensors to
accomplish the SLAM algorithm: an RTK-GNSS, an IMU, wheel odometry, and a 3D LiDAR. Also, a
monocular camera is integrated and fused with the LiDAR 3D map to build the semantic vineyard map of
grape bunches and vine stems. The online SLAM and semantic mapping procedures output is the robot
travelled path and the built maps. These outputs, along with the LiDAR raw observations, are used in an
offline dense mapping procedure where 3D models of the vineyard are constructed.

only local features extracted from the input cloud), a dense mapping procedure was created to build
precise maps of the environments considering all the data provided by the 3D LiDAR. Thus, our system
can create 3D models of the vineyard in different formats such as point clouds, 3D meshes, and octomaps.
This proposed approach uses the output robot path of SLAM and the raw 3D LiDAR observations to
create the 3D models of the vineyard.

The robotic platform presented in Fig. 5 was used to test the developed approach. This hardware
platform is equipped with a 3D LiDAR, several RGB and RGB-D cameras, a thermal camera, an
RTK-GNSS, an IMU and a robotic arm.

The following sections describe the proposed approach in detail.

3.1 A SLAM Approach for Agricultural Environments
In order to compute robust and reliable localization and mapping procedures in unstructured environments
such as agriculture, this paper proposes a SLAM approach based on a sensor fusion technique. This
method is based on a PF algorithm capable of capturing information from different sensor modalities and
using it to compute the robot pose. In the mapping procedure, a 3D voxel grid map was created to store
the features extracted from the 3D LiDAR data. This data structure implements a fast and efficient search
method that is crucial for the effective performance of the PF. This being said, the SLAM algorithm can
be described in three different phases: feature extraction, mapping, and localization.
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Figure 5. (left) Robotic platform used to test the developed approach and (right) the correspondent 3D
computational model of the robot. The hardware platform is equipped with a 3D LiDAR (Velodyne Puck
16), several RGB (OAK-D and ZED cameras) and RGB-D (Intel RealSense Depth Camera D415)
cameras, a thermal camera (FLIR M232), an RTK-GNSS (simpleRTK2B), an IMU (CH Robotics UM7)
and a robotic arm.

3.1.1 Feature Extraction
In the feature extraction phase, two different types of features are extracted from the raw 3D LiDAR
sensor data: corner and planar features. The first are characterized by being located in sharp edges, and the
second in planar surfaces. To extract this information from the agricultural environment, a state-of-the-art
approach is used, where the smoothness descriptor Shan and Englot (2018) is calculated as described in
the follow equation

c =
1

|S| · ||pi||
∣∣∣
∣∣∣ ∑

j∈S, j ̸=i
(p j − pi)

∣∣∣
∣∣∣, (2)

where pi is the ith point in the set of continuous points S. After computing the descriptor, points are
projected into a range image and sorted by their value of c. The points with larger c are considered edge
features, and the ones with lower c are considered planar features. Figure 6 shows an example of this
feature extraction procedure in a woody crop vineyard.

3.1.2 3D LiDAR Mapping
In the mapping stage, a registration procedure is proposed to store the point features in a voxel grid
data structure. This map structure is implemented and used to store the point feature map and perform
efficient search algorithms. This map is an extension of the standard 2D grid map, which also considers
discretization in the z component. From the implementation point of view, the 3D voxel grid map is a set
of interconnected 2D grid maps, each one corresponding to a certain z discrete value. Each cell is indexed
by specific 3D discrete coordinates and can be efficiently accessed with them. Also, the map recognizes
the different types of features supported. Thus, each cell can contain several types of features, and the
searching procedures account for each type for faster processing. With this data structure, the point-based
mapping procedure is performed using the information about the robot pose provided by the localization
layer and using a local search algorithm. Given a set of input point features Mλ = {mλ1 ,mλ2 , . . . ,mλN} in
their homogeneous form and the robot’s pose T r, each feature is converted to the maps’ referential frame
as follows:

m̃λi = mλi ·T r, i ∈ {1, . . . ,N}. (3)

Then, a local search is performed for each feature in the 3D voxel grid map. The nearest neighbor of each
feature is searched by the procedure represented in Fig. 7. Each feature’s nearest neighbor can be located
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Figure 6. Corner (yellow) and planar (red) feature extraction example in a woody crop vineyard.

either in its cell, in adjacent cells, or even in more distant cells. Since we are performing 3D SLAM,
the search is performed in three map layers: the top and bottom adjacent layers and the layer where the
feature is located. Depending on the voxel resolution, the user can specify if the local search algorithm
looks for neighbors just in adjacent cells or if it continues for more remote cells in case of failure. This
decision sets the stop criteria of the algorithm that iteratively looks for the nearest feature in a region
using a well-defined path as specified in Figure 7. In cases where no neighbor is found, the feature is
registered and initialized in the voxel map.

3.1.3 Localization
The localization procedure uses the LiDAR features computed at each instant, the map built so far, and
a set of sensors to compute the 6-DoF robot pose. This process is implemented employing a PF that
fuses all the information and retrieves a robust localization estimation. The PF is standardly divided into
three main steps: 1) the prediction step, where the particles are innovated using a motion model; 2) the
update step where the weights of the particles are calculated using the sensors’ observations, and; 3) the
resampling step where low-weight particles are substituted by particles with high weight.

In the motion model, the wheel encoders and a gyroscope are used to innovate the particles state.
Let Xk = [x,y,z,φ ,ψ,θ ] represent the robot pose state at the instant k, and let us define the following
matrices:

• ∆T : the homogeneous transformation that constitute the increment computed by the odometry and
gyroscope measures; and

• T n: an homogeneous transformation sampled from a Gaussian distribution with standard deviation
du.

Thus, a particle j is innovated at the instante k as follows:

X j,k = Γ
(

Γ−1(X j,k−1
)
·∆T ·T n

)
, (4)
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Figure 7. Point feature nearest neighbor local search. In a discrete 3D space, the nearest neighbor of a
point feature can be in the grid map layer where the feature is located or at the top and bottom adjacent
layers. A local search in these three layers is performed to find the nearest feature as described in the
figure. If a feature is found when searching in the black path, the search ends. Otherwise, the search
continues through the yellow path. The user can tune the stop criteria.

where Γ(.) is the operator that transforms a homogeneous transformation in the 6-DoF cartesian pose state
with Euler representation. The innovation increment ∆T is computed fusing the gyroscope and wheel
odometry. For the components observed by both sensors, the average of both measures is computed.

After innovating the particles in step 1), their corresponding weights are calculated in step 2). This
step represents the main novelty of the filter since it is capable of fusing information from multiple sensors
considering multiple data modalities to compute each particle weight. To account for all sensor and data
modalities, a sub-function Wi is computed for each observation type (in this case for the ith observation
type). Then, all the sub-functions are combined in a single function W to calculate the final particle
weight. Table 1 summarizes the information used in the filter to compute the robot pose.

Table 1. Summary of the sensors used in the update step of the PF. Each sensor has one (or more, in the
case of the 3D LiDAR where two types of features are extracted) weight function. It is important to note
that each modality provides information for different components of the robot pose, and that the filter
must be capable of accounting all the information.

Sensor Sub-function Information

3D LiDAR Wc Corner and planar feature aligment.
Wp 6-DoF pose calculation.

RTK-GNSS Wr
Absolute position correction with

altitude information.

IMU Wu
Absolute orientation correction with

three axes information.

To compute the weight functions related to the 3D LiDAR, the feature extraction procedure described
in section 3.1.1 is used. This algorithm extracts corner and planar features are extracted from a raw
3D point cloud, constituting two local feature maps in the robot’s reference frame. As described in
section 3.1.2, both types of features build a global 3D map and are stored in a voxel grid map structure.
Thus, this data modality can be considered to calculate the particles’ weight by computing the alignment
error between the two local maps and the global map, considering each particle pose. To do so, firstly, the
N local features are transformed into the global map reference frame as follows:

m̃Ci = mCi ·Γ−1
(

X j,k

)
, i ∈ {1, . . . ,N}, (5)

where X j,k represents the jth particle pose at the instant k, and C ∈ {c, p} represents the corner and
planar features subscript (see Table 1). Then, a searching procedure takes place to find correspondences
between the projected local features and the features stored in the global map, as described in the 3D
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mapping procedure detailed before. Considering the set of K correspondences found {m̃Ci ↔ mC ,gi :
i ∈ {1, . . . ,K}}, where the subscript g denotes for features in the global map, the point-feature weight
sub-function is computed by the following equation:

WC =
1√

2πσC

K

∑
i=1

exp

(
−1
σC

· ||m̃Ci − m̃C ,gi ||
)
, (6)

where σC is the standard deviation of the point-feature measurement, and ||.|| represents the L2 norm.
Equation 6 states that the particles weight increases exponentially with the decrease of distance between
feature correspondences, and with the number of correspondences found.

For the RTK and IMU sensors, the weight function is designed in the same way, i.e., a negative
exponential function for each sensor. In this case, the particle weight calculation can be directly extracted
without transformations since both sensors provide absolute observations. This being said, considering
the RTK absolute robot position observation Xr,xyz and the jth particle position X j,xyz, the particle weight
is calculated as follows:

Wr =
1√

2πσr
exp

(
−1
σr

· ||Xr,xyz −X j,xyz||
)
, (7)

where σr represents the standard deviation of the RTK position observation. It is worth noting that during
the experiments detailed in section 4 the GNSS-RTK was not used to perform a fair comparison of the
proposed algorithm’s localization precision with state-of-the-art approaches. For the IMU sensor, the
weight function is adapted to work with the Euler angle representation. Let L = {φ ,ψ,θ} represent the
three orientation degrees of freedom and XL represent a vector with the three orientations. The particle
weight is calculated applying the following equation:

Wu =
1√

2πσu
∏

η∈L

exp
∣∣∣Xu,η −X j,η

∣∣∣, (8)

where σu represents the standard deviation of the IMU observation, X.,η represents the extraction of a
single orientation component from the pose vectors, and |.| represents the absolute value. Thus, in this
case, the particle weight is computed as the product of differences between the IMU absolute orientations
and the particle’s orientations.

To fuse all the weight subfunctions in a single function and compute the final particle weight, we
multiply all the sub-function results as follows:

W =Wc ·Wp ·Wr ·Wu. (9)

The balance between the multiple modalities is controlled by the standard deviation of each observation.
To substitute low-weight by high-weight particles, the filter loop ends with the resampling step. In this

work, the multinomial resample algorithm Douc and Cappe (2005) was implemented to accomplish this.
This approach draws N samples from a uniform distribution ui and selects the particle j for replication if

ui ∈
[ j−1

∑
p=1

Wp,
j

∑
p=1

Wp

)
, (10)

where Wp represents the particle’s p weight. To avoid the well-known problem of particle degeneracy that
happens when either all the particles are in the wrong place or they are highly condensed, resampling is
not executed for all iterations. This method is only employed when a significant robot motion is observed
(either in translation or rotation in the six degrees of freedom). The user can set the amount of motion
required to perform resampling.

The proposed SLAM approach is designed taking in consideration several well-known issues inherent
to the PF approach. In woody-crop vineyards characterized by long and symmetric corridors, one of the
major challenges is the aliasing in the environment, such as estimating high likelihoods for the robot
pose in consecutive parallel rows. In this work, we tackle this issue in two ways. First, for the particle
innovation step, six different parameters are tuned to decide the particles’ innovation in each of the 6-DoF
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components, and consequently, the particles’ dispersion. In long and symmetric corridors, the particles’
dispersion is modeled so that the filter has more uncertainty in the forward component of motion. This
means that particles will not be spread to different corridors unless some error occurs during the weight
calculation procedure. The second factor that addresses the aliasing issue is the fusion of sensors that
retrieve absolute measures for the robot pose. If, for some reason, the LiDAR sub-function of the PF
estimates several peaks for parallel rows, the GNSS sensor will retrieve a higher likelihood for one of the
rows. The multimodal fusion of weights present in (9) enables the PF to know what is the most likely row
where the robot is located.

Another common problem related to PFs is particle depletion, i.e., the lack of particles corresponding
to the true robot pose solution. In this work, this is avoided through the resample algorithm and sensor
fusion. As referenced before, the resampling step is only executed when the robot motion changes a
certain amount, either in the translation or the rotation components. Thus, low-weight particles are only
substituted by high-weight particles in these critical frames. If, for every frame, particles are substituted,
this would lead to a high reduction in their dispersion if we maintain the same number of particles. Also,
the fusion of data from many sensors leads to the requirement of fewer particles since the filter will be
more confident of the robot pose in each iteration. This means that particles’ dispersion will be closer to
the true robot pose in each instant, and fewer particles are necessary.

The SLAM pipeline operation in a real vineyard can be visualized in the following video: https:
//youtu.be/xm6VQVrkceE.

3.2 Semantic Perception of the Vineyard
After having a reliable and robust robot localization in the agricultural environment and to create a semantic
map of the vineyard, there is an intermediate step where the natural features are extracted. In this work,
we propose a DL-based approach to detect vine stems and grape bunches in two different growth stages in
RGB images. To feed the DL model with substantial amount of data, a dense data collection procedure
was carried out. A dataset with 2281 images was created by collecting vineyard visual data with different
cameras, in multiple vineyards, in different year stages, and with different grape bunch growth stages.
Our publicly available dataset (at https://doi.org/10.5281/zenodo.5114142) provides not
only the vineyard images but also the natural feature annotations so that it can be used in the scientific
community train to directly DL models. It is worth noting that, to build the proposed dataset, we
went to the multiple vineyards many times, during the winter and the summer. Figure 8 presents an
overview of the dataset, where one can see that two different grape growth stages were captured with
a camera pointing directly to the canopy, but also that it contains frontal images of different vineyards,
including a thermal camera. Thus, the dataset contains three different classes: tiny grape bunch,
medium grape bunch, and stem. The first class represents grape bunches in an early growth stage,
and the second in an intermediate growth stage. To have these two classes in the dataset, the data collection
procedure was performed with an interval of approximately one and a half months. For detecting and
mapping vine stems (the third class), the dataset contains forward- and side-view RGB and thermal images
of multiple vineyards in different years. It is worth noting that the entire dataset contains 101 thermal
images and 2180 RGB images.

To increase the dataset size and data variability, a set of augmentation techniques were applied to
the original images. In this process, the images were rotated by several angles, translated, flipped, and
multiplied to vary their contrast. Table 2 presents an analysis of the original and augmented dataset. The

Table 2. Number of annotated objects per class. The original dataset contains 2281 images with three
different classes. To increase the dataset size, several augmentation operations were applied, increasing
the number of images to 22270.

Class # objects # augmented objects

tiny grape bunch 2497 13393

medium grape bunch 4292 25189

stem 6375 51130

last step to build the dataset is image cropping. As will be mentioned, the model used has a hyperparameter
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Figure 8. Public available dataset containing images of several vineyards in different stages of the year.
Our dataset contains images of grape bunches in two different growth stages with different luminosity
conditions. Additionally, it provides images with two different perspectives - one point directly to the
canopy and another point in the direction of the robot path. Finally, besides RGB images, the dataset also
contains a set of thermal images.

that tunes the input resolution of the images. Thus, if the original images used for training have a different
resolution, the training pipeline will rescale them to match the resolution hyperparameter. Due to this,
the dataset is extended by cropping all the images so that they match the resolution set for training (in
this case, 300x300). Without splitting these images, they would be resized to a lower resolution, and
a significant amount of data would be lost in this process. On the contrary, if we split high-resolution
images, no resize operation would be performed by the DL model when performing image inference.
Then all the data collected would be used. For an image with a 1920 × 1080 px resolution, 40 other
images are generated with a of 300 × 300 px resolution. This results in a total of 302,252 images present
in the dataset.

Finally, after having the dataset collected and annotated, a solution for fast and efficient image
inference was implemented. The state-of-the-art lightweight DL model SSD MobileNet-V1 Howard et al.
(2017) was used for this purpose. This model is one of the most popular among the state-of-the-art models
designed to run on low-power and low-cost embedded devices. The input of the CNN is a tensor with
shape D f ×D f ×M, where D f represents the input channel spatial width and height, and M is the input
depth. After the convolution, a feature map of shape D f ×D f ×N is obtained, where N is the output depth.
Thus, the model contains two hyperparameters that the user can tune to optimize the CNN performance.
The first, width multiplier α , can be used to decrease the model size uniformly at each layer by a factor of
α2. The second hyperparameter, resolution multiplier, ρ , can be used to reduce the computational cost of
the model by a factor of ρ2 by changing the input image resolution accordingly. In this work, we only
tuned the resolution multiplier parameter, using input images of 300x300 pixels. The depth multiplier
was set to one to not affect the model performance. The model, pretrained with the Coco dataset, was
fine-tuned to learn to detect the three classes existent in the proposed dataset. The training considered
50000 iterations and a batch size of 24. After this, the model was deployed in a low-cost embedded
hardware Tensor Processing Unit (TPU)1. The following video demonstrates the time-effective inference

1https://coral.ai/products/accelerator/
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procedure running on the TPU device: https://youtu.be/B858llfpcgI.

3.3 Mapping Grape Bunches and Vine Stems
With the ability to localize the robot precisely and detect vine stems and grape bunches on images, all the
conditions are met to perform a semantic mapping of the vineyard. In this work, we approach this problem
in the same way FAST-SLAM Montemerlo et al. (2002) maps landmarks, i.e., considering a unique EKF
for each landmark. For the vine stems, since their origin is always at the ground, the mapping is performed
in two dimensions. Thus, we discard their z component and compute only their position in the XoY plane.
Due to this, the exact FAST-SLAM landmark mapping model is applied for this type of landmarks. On
the contrary, to map grape bunches, a 3D model is required to extract their precise location. This paper
proposes the extension of the FAST-SLAM EKF model to map 3D landmarks. Figure 9 demonstrates the
two configurations for both the 2D and 3D cases from the point-of-view of the robot.

Figure 9. Semantic feature observation. (a) In the 2D case the robot observes the depth and bearing in
relation with the feature; (b) in 3D, the robot also observes the pitch angle between the robot and the
feature in order to calculate its 3D location.

The observation of the jth semantic feature at the k time instant y j,k = [r j,k,ψ j,k,θ j,k]
T is represented

by the landmark distance to the robot r j,k, the yaw angle between the robot and the landmark θ j,k, and in
the case of the grape bunches (the 3D case), the landmark pitch in relation with the robot ψ j,k. To extract
these three values for each natural feature, a monocular RGB camera is fused with a 3D LiDAR using the
SLAM approach. The two angles θ and ψ can be directly extracted from the image with the information
of the camera intrinsic matrix. However, the feature depth is not observable with a single camera. Thus,
as represented in Fig. 10, to calculate the depth observation, we compute the intersection between the ray
that goes from the robot to the feature with the 3D map built so far using the LiDAR sensor in the SLAM
procedure.

After having the semantic features observation, an EKF is applied to each one to compute their location
in the map. Let Xk = [xr,k,yr,k,zr,k,φr,k,ψr,k,θr,k]

T be the robot pose calculated by the SLAM approach
and Mγk = {mγ1 ,mγ2 , ...,mγK}k the vector of K landmarks on the map at the instant k. Since the semantic
features are considered static, i.e., they do not change their location between observations, the state model
of the EKF declares that the position of each landmark j with state vector mγ, j,k = [xγ, j,k,yγ, j,k,zγ, j,k]

T is
calculated as follows:

mγ, j,k = mγ, j,k−1. (11)

With the configuration present in Fig. 9, the observation parameters are used to compute the observation
model and adjust the feature location in each iteration. The observation vector ŷ j,k = [r̂ j,k, ψ̂ j,k, θ̂ j,k]

T is
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Figure 10. 3D vineyard map built in the SLAM process with the 3D LiDAR, and the semantic feature
depth calculation by intersection of the ray that points to the feature and the map.

updated as follows:

ŷ j,k =




√
∆x2

k +∆y2
k +∆z2

k

arctan
(

∆zk√
∆x2

k+∆y2
k

)
−ψr,k

arctan
(

∆yk
∆xk

)
−θr,k



, (12)

where [∆xk,∆yk,∆zk] represent the different between the landmark and robot position at the instant k,
component-wise. Since the observation model present in (12) is nonlinear, the EKF linearizes both the
state and observation models about the current state estimate and covariance. The Jacobian of the state
model is the identity matrix because the model is linear and static. On the contrary, the Jacobian of the
observation model is computed as follows:

G j,k =



∆xk
rγ, j,k

∆yk
rγ, j,k

∆zk
rγ, j,k

− ∆zk·∆xk

r2
γ, j,k·

√
∆x2

k+∆y2
k

− ∆zk·∆yk

r2
γ, j,k·

√
∆x2

k+∆y2
k

√
∆x2

k+∆y2
k

r2
γ, j,k

− ∆yk
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∆xk
r2
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0



. (13)

Given all of the above, each landmark state is updated using the standard EKF formulation. The state
estimate is updated as follows:

m̂γ, j,k = m̂γ, j,k−1 +K j,k ·
(

y j,k − ŷ j,k

)
, (14)

where K j,k is the Kalman gain computed in the EKF loop. Equation (14) calculates the semantic feature
position at the instant k. This information is then stored in the voxel grid map represented in Fig. 7 like all
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(a) Woody-crop Aveleda vineyard. (b) Seixo mountain vineyard.

Figure 11. Our robotic platform navigating in the two vineyards used as use-cases to evaluate the
proposed approach.

the other features. The voxel map supports any kind of feature, as long as it has a proper template defining
each type. In the case of semantic features, they should be identified by the type of natural object that
they represent.

The following video demonstrates the semantic mapping procedure: https://youtu.be/IGZ88HFt7Q0.

4 RESULTS
To test and evaluate the proposed system, experiments were carried out in two different vineyards with
different characteristics. The first, Aveleda vineyard (41°12’19.8”N 8°18’26.6”W), is a woody crop
vineyard as represented in Fig. 11a with light inclinations but with high symmetry over long corridors.
The second, placed in Seixo farm (41°09’59.6”N 7°33’19.0”W), is a mountain vineyard characterized by
harsh steep slopes and high hills, as represented in Fig. 11b.

The SLAM approach was tested in both vinyards for two different sequences, one in each vineyard, as
described in Table 3. In seq-1 the robot traveled 282.7 meters in a long vineyard corridor and in seq-2

Table 3. Description of the experiments performed to evaluate the proposed SLAM approach.

Sequence Vineyard Distance travelled (m) Information

seq-1 Aveleda 282.7 Sequence in a long
vineyard corridor

seq-2 Seixo 337.1 Sequence in a mountain
vineyard

the 337.1 meters along two vineyard corridors. It is important to note that, in the last sequence, the
robot was exposed to harsh inclinations and went down and up more than 7 meters. Both sequences
are publicly available at https://doi.org/10.5281/zenodo.5142159 and https://doi.
org/10.5281/zenodo.5142003

The semantic perception and mapping algorithms evaluation was performed in two stages. Firstly,
state-of-the-art metrics were employed to evaluate the DL object detection model performance. Then, the
semantic mapping algorithm was evaluated, considering the persistency on the mapping. To do so, the
robot traveled two different paths in Aveleda vineyard on two different days in order to build two maps of
the same corridor. Then, an analysis of the mapping performance was carried out by comparing the two
maps.

4.1 Localization and Mapping Performance
As referenced before, the SLAM approach was tested in two sequences on different vineyards. The
robot was equipped with an RTK-GNSS, an IMU, a LiDAR, and an RGB camera. Wheel odometry was
also available. As represented in Fig. 4, the algorithm fuses these sensors to provide reliable and robust
localization and mapping outputs. In these experiments, the filter used 300 particles to discretize the
6-DoF space and calculate the robot pose.
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(a) Aveleda woody-crop vineyard. (b) Seixo mountain vineyard.

Figure 12. 3D maps overlay over satellite images. The alignment between both representations validate
the performance and robustness of the SLAM algorithm.

To evaluate and validate the performance of the SLAM system, the maps built during the process
were overlapped over satellite images (Fig. 12). These images are used as ground truth for the mapping
and localization procedures since they are co-dependent. In other words, if either the localization or the
mapping fails, the other process will also fail. Thus, if the maps match the ground truth, we can conclude
that the path traveled by the robot was well estimated, and the mapping procedure was successful. This
experimental approach provides a two dimensional qualitative evaluation of the SLAM algorithm, through
the bird’s eye image overlapping. Figure 12 shows the overlapping between the maps built and satellite
images of the vineyards where the experiments took place. For both sequences, it is possible to observe
that the maps match the ground truth satellite images. In Aveleda’s vineyard, the robot traveled a long path
inside a highly symmetric corridor. The sequence was carried out in a stage of the year where the vineyard
vegetation was extremely dense. This is challenging for SLAM algorithms since there are few places
where range sensors can capture features outside the corridor to overcome its symmetry. The proposed
SLAM approach can overcome the difficulty of navigating in these vineyard corridors. Figure 12a shows
that the map and the satellite images overlap. In particular, the longitudinal motion component could
present error since SLAM systems are often affected by corridor symmetries. In this case, the proposed
algorithm shows high accuracy also in this component, as can be seen by the alignment of the trees and
other agents outside the corridor. In Seixo’s vineyard, the robot also traveled a long path but with different
characteristics. In this case, the sequence was carried out in a stage of the year where the vineyard had
no foliage. However, this vineyard presents high hills with harsh slopes. In these experiments, the robot
traveled over two corridors performing an entire loop, i.e., starting and ending at the same point. The main
challenge in this scenario is the estimation of the robot altitude, as well as the roll and pitch rotational
components, since the robot goes down more than seven meters, and then ascends again. Figure 12b shows
the overlap between the map of Seixo’s vineyard created by the SLAM algorithm and the corresponding
satellite image. Once again, the performance of the proposed system is validated since there is a clear
overlap visible in the house, trees, and vineyard limits.

To have a three-dimensional validation of the mapping algorithm, we propose an innovative evaluation
procedure. In this, a drone equipped with an RTK-GNSS and several cameras flew over the vineyard
corresponding to seq-2 and generated an RGB 3D reconstruction of the entire crop represented in Fig. 13.
With this ground truth reconstruction, the map built by our SLAM algorithm was overlapped with the
drone reconstruction to validate the precision of the mapping pipeline proposed. It is worth to emphasize
that this is a novel evaluation approach, since we are merging together maps built by two different types
of vehicles, showing that they can by used together. Figure ?? shows that there is a clear overlap between
both maps, which validates the robustness of the proposed algorithm.

In Fig. 14 it is represented the path traveled by the robot in both sequences as well as the 3D vineyard
models built using the dense mapping approach. In Aveleda’s vineyard, the robot traveled a rectilinear
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Figure 13. Comparison of the 3D reconstruction of the vineyard of seq-2 performed by a drone
(represented by the RGB pointcloud) and the 3D map generated by the proposed SLAM algorithm
(represented by the yellow and green colormap pointcloud).

path over the corridor, as can be observed. On the contrary, in Seixo, the robot completes an entire loop in
two different corridors. Figure 14b highlights the challenges of this sequence where the robot went up and
down over steep slopes. In addition, this figure also shows the variety of maps supported by the proposed
pipeline. The proposed approach cam export maps in their conventional format (point clouds) but also
as meshes and octomaps. We highlight this feature since each representation can present advantages in
the post-analysis of the built maps. The maps can be used by agronomists to extract key information of
the vineyards such as the foliage density. The support for different map types leads to a more complete
representation of the environment, which can be helpful in the understanding of its main characteristics.

To have a more quantifiable evaluation of the localization algorithm, the proposed approach was
compared against two state-of-the-art SLAM algorithms: LOAM Zhang and Singh (2014) and LeGO-
LOAM Shan and Englot (2018). For this purpose, seq-2 was used since it is more challenging and allows
to evaluate all the 6-DoF of the robot’s pose estimation. To have a fair comparison with the state-of-the-art
approaches, the RTK-GNSS is not used in the localization process, and is instead used as ground truth.
The localization performance is quantified in the three dimensions component-wise, and considering the
mean absolute error for the entire trajectory. This error is computed as follows:

ω =
1
N

N

∑
i

e
(

XG
i −Xi

)
, (15)

where e represents the euclidean distance operator, N represents the number of localization samples
estimated by the algorithms along the trajectory, XG

i represents the ground truth 3D position at the instant
i and Xi represents the 3D position estimated by the localization system at the instant i. Table 4 shows
the error of the three algorithms in comparison with the GNSS-RTK ground truth. Figure 15 represents
the trajectory calculated by the three algorithms in this sequence. From these experiments, one can see
that LeGO-LOAM lost track of the robot pose at a given instant, presenting a high error. On the other
hand, our approach and LOAM perform well, presenting low errors for each component, and an overall
low absolute error. LOAM is the algorithm that presents the lower error, which can be explained by the
presence of a loop closure algorithm that corrected the robot pose between the start an the end points. This
evaluation validates the performance of the proposed algorithm under harsh outdoor conditions, showing
that even without loop closure it presents low drift accumulation, with an absolute error of 0.902 meters
during the entire trajectory.

As a final remark, the proposed SLAM approach was successfully integrated into a navigation stack
and was used for autonomously driving the robot in the Aveleda vineyard. The next video shows a
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(a) (top) Top view of the map and robot trajectory on Aveleda vineyard; (bottom-left) mesh
version of the original map; (bottom-rigth) octomap version of the original map.

(b) (top) Side view of the map and robot trajectory on Seixo vineyard; (bottom-left) mesh
version of the original map; (bottom-rigth) octomap version of the original map.

Figure 14. 3D maps built using the dense mapping approach. The algorithm is able to export maps in
three different formats: a standard 3D point cloud, a 3D mesh, and a 3D octomap.

percentage of the autonomous path traveled by the robot: https://youtu.be/OMzXx1fLsnM.

4.2 Semantic Perception and Mapping Performance
As referenced before, the semantic perception and mapping processes were evaluated in two different
phases. Firstly, the DL model was evaluated using a set of metrics, and then the mapping procedure was
analized by mapping the same vineyard corridor in two different days and two growth stages. To perform
a fair evaluation of the DL models, the input dataset was divided into three groups: training (80%), test
(10%), and evaluation (10%). The larger one, the training set, was used to train the DL models. The test
set was used to perform the evaluation of the models during the training by Tensorflow. The evaluation
set was exclusively used to test the models by computing the metrics described above.

In this work, five different parameters were used to evaluate the DL model: precision p, recall r, F1
score, Average Precision (AP), and medium AP (mAP). The first, precision p, is defined as the total
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Table 4. Localization performance of the three algorithms against the GNSS-RTK ground truth.

Algorithm X error (m) Y error (m) Z error (m) Absolute error (m)
VineSLAM 0.400 0.710 1.496 0.902 ± 0.619

LOAM 0.202 0.586 0.929 0.638 ± 0.429

LeGO-LOAM∗ 1.402 17.756 3.953 16.844 ± 23.189
∗LeGO-LOAM lost track of the robot pose in this sequence.

(a) Top view - xOy plane. (b) Side view - xOz plane.

Figure 15. Evaluation of the trajectory estimated by the three algorithms against the GNSS-RTK ground
truth. The figure shows (a) a top view perspective where a 2D trajectory can be observed and (b) a side
view perspective where the altitude estimation can be evaluated.

number of true positives over all the detections. The second, recall r, is the total number of true positives
over all the ground truths. The F1 score is the harmonic mean between the precision p and recall r, and it
can be calculated as follows:

F1 = 2
p · r

p+ r
. (16)

AP is also calculated as a combination of precision and recall. In other words, the AP is the average value
of the precision vs recall curve p(r) for r ∈ [0,1], for each class. Finally, to have a global parameter that
evaluates the model for all the classes, the mAP is calculated by averaging the AP of all classes. Table 5
summarizes the results obtained considering all the mentioned metrics.

Table 5. DL model performance for grape bunch and vine stem detection. The model performs with a
mAP of 62.43%.

Class Precision (%) Recall (%) F1 Score (%) AP (%)

stem 34.85 88.51 49.60 67.80

tiny-grape-bunch 54.21 62.11 57.89 50.87

medium-grape-bunch 53.26 82.13 64.62 68.63

For the vine stem detection, one can see that the model is able to detect a high percentage of true
positives over all the ground truths due to the high recall. However, the lower precision indicates that the
model has trouble identifying only relevant objects in the entire set of detections performed. Detecting
the grape bunches in an early growth stage is a challenge since the bunches are small and many times
occluded. For this reason, the model presents the lower AP for the tiny-grape-bunch class. For the
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grape bunches in a medium growth stage, the model performs better since they are bigger and more visible.
Summarizing, the model achieves an mAP of 62.43%. This value is aligned with the state-of-the-art,
considering that we use a lightweight model built specifically to run on embedded devices. The use
of more complex models could improve the detection performance but impact the runtime. From the
point of view of this application, recall is the most important metric since having a high recall means
that the model is able to detect a large percentage of grapes and stems. Even so, precision represents
the presence of false detections and can lead to the presence of unreal natural features in the semantic
map. The presence of these false positives can be filtered by the mapping procedure to reduce the impact
of a lower precision. Each feature is mapped through the use of an EKF. In these filters, the covariance
of the observations decreases with the number of times a feature in the map is associated with a new
observation. Thus, the filters that present high covariance correspond to features that were not matched
between iterations, and that most likely represent false positives. This can be used to remove them from
the map, either during the online operation or during the post-processing of the semantic map. Figure 16
shows the detections performed on three images, each one with a different camera and in a different stage
of the year.

(a)

(b) (c)

Figure 16. DL-based detection of vine stems and grape bunches in two different growth stages. Each
color represent one class.

In order to evaluate the semantic mapping approach, two semantic maps were built in different
stages of the year. The first, with grape bunches in an early growth stage (corresponding to the
class tiny-grape-bunch), and the second in an intermediate stage (corresponding to the class
medium-grape-bunch). To analyse the performance of this semantic mapping approach, both maps
were compared with the premise that it is expected that for stems, the maps are identical, and for grape
bunches, only slight changes might be noticed. These changes are related to the change of the center
of mass of the grape bunches due to the difference in size between the two growth stages present in the
dataset. The robot traveled approximately 30 meters in both sequences using two different camera setups
pointing at the same vineyard corridor. In the first experiment, an OAK-D camera was used, and in the
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second experiment, we used a standard Raspberry Pi camera. To compare the maps, the error between
each semantic feature and its correspondence in the other map was calculated in two different ways. For
stems, since they are mapped in two dimensions, the x and y distances between correspondences are
computed. For grape bunches, the z distance is also considered. Finally, to have a global metric for the
mapping of each semantic feature type, the root mean squared (RMS) error is compute as follows:

erms =

√
1
N ∑

i

(
mγ,a,i −mγ,b,i

)2
, (17)

where mγ,a,i and mγ,b,i represent the ith correspondence between semantic features in the maps a and b.
Figure 17 shows the dispersion of errors between correspondences both for vine stems and grape

bunches. In this figure, each dot represents the error of each correspondence characterized by the
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Figure 17. Semantic mapping error dispersion for (a) vine stems and (b) grape bunches. The colorbar
represents the distance between correspondences.

difference of the position of the features in both maps. The color of each dot is encoded by a colorbar
and represents the euclidean distance between each correspondence. For vine stems this figure shows
that most correspondences have a distance lower than 0.20 meters. In fact, for this semantic feature,
our approach achieved an RMS error of 0.174 meters. Similarly, for grape bunches the majority of
correspondences are not seperated more then 0.20 meters. In this case, the RMS error of correspondence
between maps was of 0.180 meters. Considering the challenging characteristics of the environment, these
correspondence errors are considered low since the maps captured the vineyard in two different stages,
with significant amount of scenario changes (illumination, ground vegetation, foliage density, grape
growth stage). In addition, these errors can be also related with aspects of the hardware setup and the
approach itself. Firstly, two different camera setups were used. Thus, the camera intrinsic and extrinsic
parameters changed between experiences, which can have impact on the mapping since there are always
marginal errors associated with the intrinsic and extrinsic calibration of the cameras. Additionally, the
fusion of information between the camera and LiDAR sensors during the semantic mapping can also have
some impact. As referenced before, the depth of each semantic feature is calculated by intersecting the
rays that point to the features and the vegetation plane computed in the 3D LiDAR mapping procedure.
This procedure, besides providing a robust depth estimation, is an approximation, i.e., it is not as accurate
as a direct pixel depth measurement such as RGB-D cameras do. Finally, slight imperfections on the robot
pose estimation also directly impact the mapping performance. Given all of the above, and considering
that the semantic mapping is dependent on so many factors, we consider that the system is robust and that
it can provide accurate semantic maps of the agricultural environments. Figure 18 shows a semantic map
built in Aveleda vineyard, together with the 3D LiDAR map built during SLAM.

4.3 Discussion
The main challeges of this work consisted in the resolution of two main problems: the fusion of data
of multiple sensors and the integration of multiple systems to achieve the goal of semantic mapping. In
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(a)

(b)

Figure 18. Two perspectives of the semantic map built in Aveleda vineyard, together with the 3D
LiDAR map built during SLAM. In (b) the map is presented in a side-view. black bounding boxes
represent stems and the red ones represent grape bunches.

particular, to create these semantic maps, two previous systems were developed: a robust SLAM pipeline
and a semantic perception algorithm. In addition, this work comprehended an intense and long-term field
work that was carried out by visiting the vineyard multiple times in different stages of the year.

Compared with the state-of-the-art, this work fills the gap of robust semantic mapping in vineyards.
The proposed approach provides an expeditious way of creating maps with useful information that
agronomists can later use. Of course, there is still space to improve in the future. For example, we
highlight the work of Xiong et al. Xiong et al. (2018) that uses artificial illumination to develop a
technology for night-time fruit-picking by detecting green grapes. This state-of-the-art approach can be
used as a basis to enable the creation of semantic maps of the vineyard during the night. Also, Aquino et
al. Aquino et al. (2015) propose the grapevine flower estimation, which can be essential to perform an
early yield estimation. This concept can also be used in the future to create a new class in the proposed
publicly available dataset, which will enable the creation of semantic maps of the vineyard in a very early
stage.

5 CONCLUSIONS
This work proposes a system capable of building semantic maps of agricultural environments considering
a robust SLAM approach. The contributions of this work are: a robust SLAM algorithm that fuses four
different sensors (wheel odometry, RTK-GNSS, IMU, and 3D LiDAR) to compute the robot pose and
simultaneously build a 3D map of the culture; a DL-based semantic perception approach that uses a built
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in-house public dataset to train a lightweight model to detect vine stems and grape bunches on images;
and finally a semantic mapping procedure that uses the two other systems to build a map of the culture
with semantic information. Results show that the proposed approach can localize the robot with precision
in challenging scenarios and build 3D maps of them. Additionally, the experiments also show that the
system can build semantic maps in different growth stages of the culture.

For future work, we would like to extend the semantic dataset to consider more growth stages of grape
bunches and include images at the night with artificial illumination. In this context, we would like to test
all the proposed approach (SLAM, perception, and semantic mapping) in real experiments at night. Also,
since our robots will operate autonomously over larger periods of time, and higher extensions, we would
like to validate our approach for continuous operation over several hours, and kilometers. Finally, we
would like to develop a different semantic mapping validation procedure by labeling each grape bunch
with a unique identifier that will serve as ground truth.
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CHAPTER 5. VINESLAM: LOCALIZATION AND MAPPING ALGORITHM FOR AGRICULTURAL

ROBOTS

5.3 Particle filter refinement based on clustering

procedures for high-dimensional localization

and mapping systems

The proposed PF presents a discretization of the six-dimensional robot’s pose

representation. In challenging environments such as agriculture, the number of

required discrete samples (or particles) can increase to improve the localization

precision. This can be computationally expensive and can harm the online

autonomous navigation of the robot. To overcome this issue, this thesis proposes

an algorithm that enables the refinement of the PF performance without the need

to increse the number of particles. This work was published in the Robotics and

Autonomous Systems Journal and is entitled Particle filter refinement based on

clustering procedures for high-dimensional localization and mapping systems (Aguiar

et al., 2021b). This work uses a stereo camera and a feature descriptor to build a

point cloud with color and signature information. Besides producing a new map and

contributing to the multi-layer mapping architecture of VineSLAM, these features

are used to refine the particles’ pose. A clustering procedure is applied to the set

of particles to group them in a fixed-size number of clusters. Each cluster executes

a scan-matching algorithm and refines its particles through the calculation of the

matching likelihood.

It is worth noting that to build the multi-layer mapping, i.e., to provide a

representation of the different types of maps in the same reference frame, the work

described in Chapter 3 is essential. The metric map is build using a 3D LiDAR,

while this visual map (and also the semantic map) is built using cameras onboard

of agricultural robotic platforms. The extrinsic calibration of these modalities of

sensors enables the representation and correlation of all these types of maps.
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Abstract

Developing safe autonomous robotic applications for outdoor agricultural environments
is a research field that still presents many challenges. Simultaneous Localization and
Mapping can be crucial to endow the robot to localize itself with accuracy and, conse-
quently, perform tasks such as crop monitoring and harvesting autonomously. In these
environments, the robotic localization and mapping systems usually benefit from the high
density of visual features. When using filter-based solutions to localize the robot, such an
environment usually uses a high number of particles to perform accurately. These two
facts can lead to computationally expensive localization algorithms that are intended
to perform in real-time. This work proposes a refinement step to a standard high-
dimensional filter-based localization solution through the novelty of downsampling the
filter using an online clustering algorithm and applying a scan-match procedure to each
cluster. Thus, this approach allows scan-matchers without high computational cost, even
in high dimensional filters. Experiments using real data in an agricultural environment
show that this approach improves the Particle Filter performance estimating the robot
pose. Additionally, results show that this approach can build a precise 3D reconstruction
of agricultural environments using visual scans, i.e., 3D scans with RGB information.

Keywords: SLAM, Clustering, Agricultural robotics

1. Introduction

The Oporto vineyards, Fig. 1, are located in the Douro Demarched Region, the
oldest controlled winemaking region in the world, a UNESCO heritage place [1]. These
vineyards are built in steep slope hills, which brings several challenges to the development
of robotic solutions in this context. The hill’s characteristics cause a signal blockage
that decreases the accuracy of signals emitted by the Global Navigation Satellite System
(GNSS), making unreliable the use of, for example, the Global Positioning System (GPS).
Also, the terrain highly characterized by irregularities leads to high inaccuracy of sensors
like wheel odometry and Inertial Measurement Units (IMU)s. Due to all these factors,
there is a significant need to have a robotic localization system redundant to satellite-
based sensors and robust to the environment main challenges. Simultaneous Localization
Preprint submitted to Robotics and Autonomous Systems February 13, 2023



Figure 1: Typical steep slope vineyard in the Douro’s region.

and Mapping (SLAM) [2, 3] comes up as the most reliable and reasoning solution to
solve this. SLAM consists of estimating the location of a mobile robot in an unknown
environment while simultaneously mapping it [4]. Theoretically, SLAM was formulated
as a probabilistic mathematical problem. This method considers a set of controls U0:k
and observations Z0:k until the current time instant k to formulate a motion model in
the form

P(xk |xk−1, uk) (1)

i and an observation model in the form

P(zk |xk,m) (2)

where xk is the robot position at the instant k, uk is the control vector, zk is the set of
observation taken at the instant k, and m is the global map built so far. To estimate
the so-called joint posterior P(xk, m|Z0:k, U0:k, x0), i.e., the robot pose and the map, this
pipeline uses a recursive two-step approach: prediction and update. The prediction
step uses the control inputs to estimate the robot pose, and the update step uses the
observations to correct the first estimation. The map creation can also be addressed as
a mapping with known poses problem, where the map is built after computing the robot
pose, solving P(m|X0:k, Z0:k, U0:k).

With this formulation, several solutions for the SLAM problem emerged. The main
problem is to find a suitable representation for the motion and observation models.
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EKF-SLAM [5, 6, 7] was the first influential SLAM algorithm proposed and is based
on the extended Kalman Filter (EKF). This method represents the robot estimate as a
multivariable Gaussian distribution that contains the robot location and the location of
all the mapped landmarks. Another way of solving the SLAM problem is the graph-based
optimization techniques [8]. These build a graph composed by nodes - the robot locations
over time - and arcs - connections between nodes or between nodes and landmarks -
using the controls and observations. The graph is sparse in that each node is connected
to a small number of other nodes. So, this procedure computes a nonlinear sparse
optimization technique to solve the SLAM problem. Finally, as proposed in this work,
exist the particle filter- (PF)-based SLAM solutions [9]. In this context, FastSLAM [10]
was a huge mark in probabilistic SLAM research. This algorithm considers N particles
where each one contains the robot trajectory X0:k and a set of 2-dimensional Gaussians
representing each landmark on the map. After this version, FastSLAM2 [11] emerged
with an improvement in the proposal distribution. Both methods apply a technique
called Rao-Blackwellization by sampling the path posterior P(xi

k
|uk, zk) and representing

the map P(m|xi
k

, uk, zk) in a Gaussian form (here, i represents the ith particle). Based
on this Rao-Blackwellization concept, Grisetti et al. [12] proposed a grid-based SLAM
approach that intends to reduce the number of particle samples improving the filter time
performance. The great innovation of this work is an improved proposal distribution
that considers a scan-matching procedure. The scan-matching algorithm finds the rigid
body transformation that best aligns, in this case, a scan and a map. So, here particles
are drawn not only by the odometry controls but also by the scan matching result. This
highly improves filter performance, decreasing the required number of samples. Other
works came up with the implementation of Rao-Blackwellized PFs, such as, for example
the one proposed by Grisetti and Tipaldi [13].

As in [12], scan-matching is a popular technique used in SLAM algorithms in several
different ways, with many other purposes. In particular, Iterative Closest Point (ICP)
[14] is one of the most popular scan-matching techniques and is widely applied in SLAM.
For example, Nüchter el at. [15] uses ICP performing scan-to-scan alignment, i.e., align-
ing consecutive laser scans, and compute the robot 6-DoF pose and a heuristic-based
closed-loop detection to refine the estimation. Tiar and Lakrouf [16] implement the ICP
algorithm in a local ICP-SLAM manner. In this method, the global map is partitioned in
several local maps over time. The scan-matcher is applied in each one of them, reducing
the computational cost of the algorithm. In [17], an RGB-D camera system is used to ex-
tract dense 3D data, and a local ICP alignment is applied on subsampled range images.
In this work, different correspondence techniques are implemented in a visual SLAM
procedure. Results show that the point-to-plane approach has the best tradeoff between
efficiency and low error. Masahiro Tomono [18] proposes a robust 3D visual SLAM ap-
proach using edge features and a two-stage ICP algorithm. Here, the scan-matcher is
used to align successive frames. As this approach is susceptible to cumulative error, ICP
is also used to perform keyframe adjustment, i.e., a global alignment on selected frames.
Similarly, Holz et al. [19] propose an ICP-based incremental registration technique in a
SLAM pipeline. This method also implements a scan-to-scan alignment. To correct the
cumulative error that characterizes this approach and improve registration results, the
authors apply a heuristic based on the number of correspondences to reject wrong align-
ment estimates or large odometry drifts. Differently, [20], just like in [21], uses an EKF
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with an augmented state representation to perform visual scan-matching. So, instead
of using laser range data, the visual scan-matcher uses camera information to generate
3D visual range data with color specification. The 3D reconstruction can be denoted
as a visual scan. The authors propose the use of the Scale Invariant Feature Transform
(SIFT) [22] to extract visual features that are then projected into the 3D space to build
the visual scans. Then, a scan-to-scan alignment is applied, and the map is estimated
using the augmented EKF. In the same context, ICP and scan-matchers, in general, can
also be used to detect loop closure in SLAM frameworks. In particular, [23, 24] use ICP
to do so. The first, add new constraints to the robot path if a match is found between
the current feature scan and a previous one, eliminating drift. In the second, ICP is
used to detect loop closures in the robot path using the Euclidean distance between the
current and all the previous poses.

In this work, we propose a novel PF refinement step for 6-DoF robot pose estimation
that uses a clustering procedure to downsample the filter and applies an ICP algorithm
to refine the robot pose represented by each cluster. This refinement step uses a stereo
camera system to extract Speeded Up Robust Features (SURF) [25] and build a 3D
visual scan that is used in the ICP alignment for each cluster. This algorithm is applied
to a modified version of VineSLAM [26] that uses a standard PF to localize a robot in
mountain vineyards. At the best of our knowledge, this is the first work that applies an
online clustering procedure and a scan-matching approach to each cluster as a refinement
step to a PF. Our approach relates to [27, 28] in that it uses clusters to represent sets
of individual particles. However, the proposed method differs from both approaches
in several aspects: the first maintains the identity of the same cluster during all the
filter operation, the second merges overlapping clusters and splits diffuse ones, while our
method computes new clusters in each iteration; both approaches use the clustered PF to
represent the posterior while our approach works just as a refinement step of an ordinary
PF.

The remainder of this paper is organized as follows: Sec. 2.1 provides an overview
of the proposed system as well as the improvements in relation with the original VineS-
LAM approach; Sec. 2.2 includes information about the extraction and generation of
the feature observations used in this work; Sec. 2.3 details the implementation of the
online particles clustering procedure; Sec. 2.4 explains the refinement step applied to
the original PF; Sec. 3 compares the performance of the proposed algorithm in relation
with the original VineSLAM version; and finally, Sec. 4 summarizes the conclusions of
the work.

2. Particle Filter clustering for SLAM systems

This work proposes the addition of a feature-based 3D map to the multi-layer mapping
procedure proposed in VineSLAM [26] and a robot localization estimation refinement
based on a PF clustering procedure. The main contribution of this work is the refinement
step to standard high dimensional PFs, i.e., filters with a high number of particles, or
with a dense presence of input data. It is worth noting that this technique can be applied
in any other PF-based context than VineSLAM.
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2.1. System overview
The original version of VineSLAM uses a standard PF with the controls given by

wheel odometry and observations by a set of two feature types: semantic features and
features extracted directly from a 3D point cloud. Each particle represents the 6-DoF
robot pose [x, y, z, φ, ψ, θ]i. With this, for each particle, the observation probability is
computed by means of a standard normal distribution for each feature observation type
j with mean µ j and covariance Σ j as follows:

ωi
k :=

∏

j

N(zk, j|xi
k, µ j,Σ j) (3)

where ωi
k

represents the ith particle weight at the time instant k. As VineSLAM works in
Douro’s mountain vineyards, a challenging outdoor environment, the PF requires high-
quality observations and as many particles as possible to have a proper performance. This
leads to a high dimensional filter that can be computationally expensive. To overcome
this issue and add a new layer of features and more robustness to the robot localization
estimation on VineSLAM, this work refines the output of the PF using a scan-matching
procedure, applying an ICP to a set of clusters extracted from the global set of particles.
The work is segmented into three main stages: the extraction and generation of 3D visual
scans, the online clustering procedure, and the PF refinement step.

2.2. Visual observations extraction
To extract visual observations and build 3D visual scans was used the ZED stereo

camera1. In this process, using the reference RGB image of the stereo camera system,
the SURF [25] feature detector is applied, and 2D image features are extracted. Then,
a disparity image captures the depth information of the vineyard, as represented in Fig.
2. So, for each extracted 2D feature, the disparity image has its corresponding depth
information, allowing the conversion of the feature into a 3D point. So, for a feature
with coordinates [xc, yc] and depth d in the disparity image, the corresponding 3D point
in the local robot’s referential frame is computed as follows:


xr

yr

zr

 =
cTr



(xc − cx) · d
fx

(yc − cy) · d
fy

d

 (4)

where cTr is the homogeneous transformation that converts the camera referential frame
into the robot referential frame, [cx, cy] is the image principal point, and [ fx, fy] is the
respective focal length. It is worth noting that all the obtained 3D points have RGB
information since they were directly projected from the image. This allows the creation
of a visual scan that considers color information of the observed environment.

2.3. Online clustering procedure
To add the proposed visual scan map layer to VineSLAM, an online clustering pro-

cedure is applied to the PF. In this process, particles are clustered based on their 3D

1https://www.stereolabs.com/zed/
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Figure 2: Disparity image of a vineyard captured during tests.

spatial distribution, i.e., using their respective [x, y, z] states. To do so, this work pro-
poses a variation of the K-means++ [29], which we call equal-sized K-means++. One
of the limitations of K-means [30] and K-means++ itself is that they do not ensure that
the clusters’ size is the same. In this work, the number of clusters computed from the
entire set of particles at each instant is an input parameter of the system. This is due to
the direct influence of the number of clusters in the algorithm’s computational cost since
one scan-matching procedure is executed per cluster. To guarantee that the particles are
always clustered in equal-sized N different sets (as chosen by the user), it is proposed
an improvement to the original K-means++ algorithm. As said before, we named our
algorithm as equal-sized K-means++.

In this work, giving k particles in X and N desired number of clusters in C, the
equal-sized K-means++ is applied aiming to minimize the following function

γ =
∑

x∈X
min
c∈C
||x − c||2. (5)

To initialize the clustering algorithm, the cluster centroids and particles are computed
as follows.

Initialization:.
1. Choose the first centroid c1 randomly from X.
2. Choose a new center ci as x ∈ X with probability D(x)2

∑
x∈X D(x)2 proportional to the

distance to the nearest centroid D(x) already chosen.
3. Repeat 2. until we have chosen N centroids.
4. For each particle, compute the distance to all the centroids and build a heap with

this information.
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5. Draw particles from the heap, assigning them to the nearest cluster. If the cluster
is already full, assign to the next non-full nearest cluster centroid.

The innovation of equal-sized K-means++ is based on the guarantee that all the clusters
have the same number of particles. If, the number of particles and the desired number
of clusters are not multiples, some clusters will have an extra particle. The key idea is
that the size of the clusters is balanced as much as possible. To ensure that, steps 4.
and 5. of the initialization algorithm are proposed. In these, a heap data structure is
built to accelerate the clustering assignment procedure. The heap contains the ordered
distances of each particle to each cluster. With this information, each particle is assigned
to the closer non-full cluster in a faster way, comparing to traditional search approaches.
After initializing the clustering algorithm, Eq. 5 is minimized. Once again, equal-sized
K-means++ presents innovations so that the clusters size remain constant. To ensure
that, the algorithm requires a data structure to save swap proposals, i.e., particles that
are candidates to move to another cluster. This feature is added to the standard K-means
method, and the algorithm is proposed as follows.

Algorithm:.

1. Compute each cluster centroid ci as the center of mass of all the particles in the
respective cluster Ci as ci =

1
|Ci |

∑
x∈Ci

x.
2. For each particle, compute the nearest cluster centroid. If the found cluster centroid

is different from the one currently associated with the particle:
(a) If the target cluster size is smaller than the current cluster size, add the particle

to the target cluster.
(b) Otherwise, search for a swap proposal incoming from the target cluster. If

there is one, switch the particles and delete the swap proposal. If not, main-
tain the particle on the same cluster and create a swap proposal for a future
transition.

The algorithm ends if, for a given iteration, no swap proposals have been satisfied or if a
maximum number of iterations is reached. By this stage, each cluster is represented
as a Gaussian N(µi,Σi) where the mean µi and the covariance Σi for the ith cluster
are computed as a weighted mean and covariance given each particle weight. With
this, the cluster centroid is adjusted, taking into account the particles’ weight, i.e., this
subsampling procedure considers k clusters affected by the weight of the particles.

2.4. Particle filter refinement step
The PF refinement’s last and primary step consists of applying a scan-matching

procedure considering the computed clusters. The 3D visual scan global map is initialized
with the first observation of the stereo camera system. After that, the scan-matching
procedure is computed, aligning the local visual scan observation with the global map.
In this, the goal is to find the homogeneous transformation Tci = [R|t]ci that, given a set
of associations between the observed 3D visual feature points L = {lp,1, ..., lp,n} and the
global map m = {lg,1, ..., lg,n} computed using the SURF descriptors, minimizes the sum
of the squared error

E(R, t) =
1
n

n∑

i=1

||lp,i − Rlg,i − t||2. (6)
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After performing the clustering procedure, the 3D pose of each of the N clusters is used
as the initial guess to an ICP scan-matching algorithm. By minimizing the cost function
6, an homogeneous transformation Tci is obtained per cluster. A refinement procedure
is then applied in each cluster, as represented in Fig. 3, where the particles present in
each one are affected by the same homogeneous transformation. This procedure proves

Figure 3: Propagation of particles belonging to each cluster. The scan-matching procedure is computed
using the centroid of each cluster as initial guess. Then, all the particles inside each cluster are affected
by the same homogeneous transformation.

to refine the particles pose, as discussed in Sec. 3.
After refining each particle pose by the homogeneous transformation resultant in

each cluster, each scan-matching likelihood is computed to update the particles’ weight.
Clusters that do not represent the real robot pose will input an erroneous first guess
to ICP, leading to local minimum solutions on the scan-matching procedure. Thus, by
modeling the likelihood of the alignment resultant from ICP, the particles that belong to
clusters that do not represent the real robot pose can be penalized. To do so, based on
the algorithm present in [31] for computing the likelihood of a landmark measurement,
the likelihood of the ICP algorithm for each cluster is calculated. So, after computing
Tci for the ith cluster, the local 3D visual scan map is projected into the global map
referential frame applying the resultant homogeneous transformation. With this, a set
of associations is computed between the features on the projected map and the ones
present on the global map. Each visual feature is represented as [l, s] where l states for
its 3D location and s refers to its visual descriptor extracted using SURF detector. So,
considering n associations {[l, s]p,1, ..., [l, s]p,n} ←→ {[l, s]g,1, ..., [l, s]g,n} found, the likelihood
of each ICP alignment is computed as follows

P(zk |xi
k,Z0:k−1) =

n∑

j=1

∆l, j · ∆s, j (7)
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where

∆l, j =
1√

2πσl
exp

(−1
σl
· ‖lp, j − lg, j‖

)

∆s, j =
1√

2πσs
exp

(−1
σs
· ‖sp, j − sg, j‖

)
.

Figure 4 shows the representation of f = ∆l, j · ∆s, j. Here we can see that, the likelihood

Figure 4: Likelihood of the ICP alignment algorithm represented as a multivariable function. The
likelihood decreases exponentially with the increase of absolute difference between correspondences de-
scriptors l and spatial position s. The impact of each one of the variables in the final likelihood can be
controlled by their corresponding standard deviations.

of the ICP alignement decreases exponentially with the increase of absolute difference
between correspondences descriptors l and spatial position s. It is worth noting that,
each feature descriptor is a represented as a float-array of 64 positions, so ‖sp, j − sg, j‖
is a 64 float-array position-wise difference norm between correspondences. Also, Eq. 7
shows that for this specific observation type, the proposed SLAM framework computes
the likelihood of the observations similarly to FastSLAM1.0 [10], but instead of consid-
ering the entire robot path X0:k, we use only the current robot pose xk that in this case
is represented by the homogeneous transformation obtained from ICP. Finally, the likeli-
hood computed P(zk |xi

k,Z0:k−1) for each cluster is applied to each particle i of each cluster
at instant k in the following way

ωi
k,re f ined = ω

i
kP(zk |xi

k,Z0:k−1). (8)

After this, the resampling procedure takes place and the final robot pose is computed by
the average of all particle poses. With the robot pose, the local 3D visual scan map is
registered in the global map.

The following algorithm summarizes the entire procedure.
9



Initialization.

1. Draw particles’ initial pose from a standard Gaussian distribution.
2. Initialize the global map by registering the first visual scan observation.

Algorithm.

1. For each cluster:
(a) Apply the ICP algorithm minimizing Eq. 6.
(b) Compute the likelihood of the ICP alignment using Eq. 7.
(c) Refine all the particles weights in each cluster with the computed likelihood.

2. Compute final robot pose as the mean and covariance of all particles.
3. Register visual scan observation using the respective pose.

3. Results

To evaluate the validity of the ICP-based proposed approach, two experiments were
conducted using our robotic platform, AgRob V16 [32, 33] (Fig. 5), where GPS was used
as ground-truth. These sequences consist of two travelled paths by the robot in Aveleda

Figure 5: AgRoB V16 robotic platform.

vineyard. Figure 6 shows a satellite image with a top view of the entire vineyard and
two smaller images focusing on each sequence - 1 and 2. Table 1 summarizes the main
characteristics of each sequence. As can be seen, sequence 1 is more challenging than
sequence 2. In the first, the robot travels a longer path, performing three pure rotations
- points B, C and D of Fig. 7a. On the contrary, sequence 2 is much smaller and
approximately a straight path, as represented in Fig. 7b. It is worth noting that, both
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Table 1: Characteristics of the travelled sequences.

Travelled distance (m) Pure rotations Foliage stage
Sequence 1 ∼75 3 with
Sequence 2 ∼27 0 without

Figure 6: Satellite image of Aveleda’s vineyard. The sub-figures represent the sequences (1 and 2)
travelled by the robot.

sequences were recorded in different stages of the year, and, consequently, in sequence 1
the vines present high density of foliage, and in sequence 2 they do not have any.

To evaluate the performance of the proposed approach, results are divided into three
sections. Section 3.1 presents a brief overview of the clustering results, Sec. 3.2 analyses
the execution time of the proposed approach, Sec. 3.3 analyses the ultimate goal of this
work - the robot pose estimation performance, and finally, Sec. 3.4 shows some examples
of the generated vineyard maps using the proposed approach.

3.1. Particles clustering
The performance of the clustering procedure is crucial for the proper behavior of the

system. The application of the same homogeneous transformation to all the particles
in each cluster requires that both inter- and intra-dispersion of the clusters to be as
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(a) (b)

Figure 7: Schema of the approximated trajectory of the robot in both sequences.

precise as possible so that the localization system can perform accurately. Figure 8
presents four results of the clustering procedure applied to different distributions of sets
of particles. By analysis of this figure, it is possible to sense different levels of difficulty

(a) (b) (c) (d)

Figure 8: Spatial layout (in meters) of the particles clusters using (a), (b) three clusters and (c), (d) five
clusters.

on the clustering procedure, depending on the particles distribution. For example, in
Fig. 8a is represented the easy case, where three clusters are computed from three sets
of particles spatially separated. On the other hand, Fig. 8d represents a case where the
particles are clustered in five sets and there is no clear visual way of separating them.
Even so, the clustering procedure presents a good performance in this case, separating
the total set in sets composed of spatially related particles. As a final note, it is worth
noting that the restriction imposed in the proposed clustering method - equal-sized K-
means++ - of considering N equal-sized cluster, can lead to non optimal solutions. Even
so, the clustering algorithm presents a good performance, as represented in Fig. 8, in
the way that it always finds solutions that split the probability density function that
represents the particles distribution in well-defined groups.

In order to test the impact of the values of clusters in the final system performance,
the SLAM pipeline was tested in sequence 1 for 8 different numbers of clusters. The
number of particles was fixed to 500 in all the experiments. Figure 9 shows the RMS
error (m) for all the different number of clusters. Here, we can conclude that the number
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Figure 9: Absolute pose RMS error (m) of the VineSLAM-ICP approach in sequence 1 for different
numbers of clusters.

of clusters can impact the performance of the SLAM system. This is because a specific
number of clusters can be more suitable to split the particles probability density function.
This can vary with the input data of the system or with the particles innovation criteria.
For this reason, we consider that this hyperparameter should be tuned by the user for
any specific use case. The most important thing is that the clustering algorithm improves
the original SLAM approach performance, given the number of clusters chosen.

3.2. Execution time
The main goal of the clustering procedure is to allow the SLAM approach to use a

scan-matching procedure and still perform online. Here, the online concept is defined
by the AgRob V16 working loop frequency. In other words, the SLAM approach must
have an execution frequency lower than the robots’ loop frequency. In the use case
present in this paper, AgRob V16 has a working loop frequency of 10Hz. The scan-
matching procedure, and, specifically, ICP, can be computationally expensive, especially
when working with dense inputs. Thus, the proposed version of VineSLAM should
improve the original one, integrating ICP in the SLAM pipeline and considering the time
restrictions. To evaluate if the scan-matcher satisfies these restrictions, the execution
time per cluster was measured in the two test cases (sequences 1 and 2). Additionally,
the number of input observations in each SLAM iteration is also presented. From the
graphics present in Fig. 10, the extreme importance of the clustering procedure in the
new VineSLAM pipeline is outlined. From these, we can conclude that the scan-matching
algorithm presents an average execution time per cluster of approximately 4 milliseconds
and 1.4 milliseconds for, on average, 632 and 554 input observations in each iteration,
for sequences 1 and 2, respectively. If the SLAM pipeline executes one scan-matching
per particle, the number of particles has to be very limited so that the time restrictions
are not violated. For example, for sequence 1, with 25 particles the PF would waste, on
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(a) Sequence 1 (b) Sequence 2

Figure 10: Execution time per cluster (s), and the respective number of feature observations considered
in each scan-matching procedure.

average, the maximum cycle time imposed by the robot working rate (100 milliseconds),
only computing ICP. On the positive side, the clustering procedure allows integrating
the scan-matcher in the PF, considering the time restrictions. In this way, the filter can
consider a relatively dense number of input features, perform the ICP, and still save time
for other tasks such as the remaining routines of the PF and map registration.

3.3. Localization performance
The robot localization estimation is evaluated both in sequence 1 and 2 without the

ICP-based approach and with it, using three clusters and 500 particles. The proposed
approach is compared with the state-of-the-art SLAM algorithm, LeGo-LOAM [23]. This
method extracts features from 3D LiDAR scan data, and is based on a LiDAR odometry
algorithm, where consecutive 3D scans are matched to compute the relative 6-DoF pose
iteratively. It is worth noting that all the SLAM pipelines are evaluated in sequences
placed in vineyard long corridors, which constitutes the well known corridor translation
estimation problem. This happens due to the fact that data incoming from sensors can
be very similar along sequential robot positions over the corridor. So, this can lead to
translation underestimation or, in the worst case scenario, estimating that the robot
is stopped. In Aveleda’s vineyard corridors, this can be a real issue, since the vine
trunks are equally spaced and the corridor width is always constant. To evaluate the
performance of the proposed approach in both sequences and compare it with the original
VineSLAM algorithm, the robot localization estimation is described and represented in
several different ways. Firstly, the absolute pose error (APE) is plotted over time in each
sequence (Fig. 11), as well as its mean, minimum, maximum, median, root mean square
(RMS) and standard deviation values. Table 2 summarizes these results. Additionally,
the APE is mapped onto the robot trajectory in Fig. 12 to represent the displacement
of the localization estimation at each location, in relation with the ground-truth. As a
ground-truth, the GPS was used since it is the most accurate sensor present in AgRob
V16. In sequence 1 there is another reference that might help to evaluate the performance
of the methods, since the final robot position - point D of Fig. 7a - should approximately
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(a) Sequence 1 - without ICP. (b) Sequence 1 - with ICP.

(c) Sequence 2 - without ICP. (d) Sequence 1 - with ICP.

Figure 11: Representation of the APE obtained in both sequences with and without the ICP-based
approach. The graphics also show the values for the RMS error, the error median, mean and APE
standard deviation.

coincide with the first pure rotation where the robot faces the vineyard side - point B of
Fig. 7a. Finally, in Fig. 13 are represented all the trajectories in the same graphic for
each sequence including wheel odometry. Here, this last sensor is included to represent
the difficulties of computing autonomous driving in these agricultural places, also due to
the high wheel slippage.

For sequence 1, from Figs. 11a and 11b is possible to see that the ICP-based PF
refinement leads to a lower mean and RMS APE error than using the standalone VineS-
LAM approach. From Table 2 is possible to infer that the proposed approach reduces the
robot localization mean APE in 5 cm and RMS APE in 10 cm for this sequence. Look-
ing for the error mapped onto trajectory represented in Fig. 12 and, more specifically,
in Figs. 12a and 12b for sequence 1, it is possible to observe the improvement of the
localization performance with ICP (Fig. 12b) since the APE is lower for the same color
in comparison with Fig. 12a that represents the standalone VineSLAM solution. For se-
quence 2, the difference between the two configurations’ performance is more significant.
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Table 2: Absolute pose error evaluated using different metrics for the two configurations in both se-
quences.

APE (m) Maximum Minimum Mean RMS

Sequence 1
VineSLAM ICP 1.24 0.05 0.55 0.61

VineSLAM standalone 1.56 0.04 0.60 0.71
Lego-LOAM [23] 8.73 0.16 2.69 3.36

Sequence 2
VineSLAM ICP 1.08 0.06 0.50 0.56

VineSLAM standalone 1.48 0.09 0.65 0.76
Lego-LOAM [23] 10.81 0.21 5.57 6.29

(a) Sequence 1 - without ICP. (b) Sequence 1 - with ICP.

(c) Sequence 2 - without ICP. (d) Sequence 2 - with ICP.

Figure 12: APE mapped onto trajectory. The colorbar encodes the absolute deviation to the reference
that is mapped onto the localization estimation in every instant.

From Figs. 11c and 11d, as well as in sequence 1, is also possible to infer that the ICP
refinement leads to a lower mean and RMS APE error than using the standalone VineS-
LAM approach. Analyzing Tab. 2 leads to the conclusion that without the refinement,
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(a) Sequence 1. (b) Sequence 2.

Figure 13: Estimated robot path in both sequences versus the GPS ground-truth, wheel odometry, and
LeGo-LOAM [23].

VineSLAM has a mean APE higher in 15 cm and an RMS APE higher in 20 cm. As
in sequence 1, the error mapped onto the trajectory for sequence 2 shows that the RGB
color bar for the localization estimation with the ICP approach leads to a smaller error
during the robot path.

In what concerns to LeGo-LOAM [23], Table 2 and show that this method can not
perform accurately in this vineyard context. This algorithm is highly affected by the
corridor issue mentioned before. We can see that the performance in sequence 2 is highly
lower compared to sequence 1. This is because sequence 1 is placed in a side corridor,
with a nonsymmetric scene at the left (Fig. 6). On the other hand, sequence 2 is placed
in the middle of the vineyard, which leads to highly symmetric sensor data. For this
reason, in this sequence, LeGo-LOAM highly underestimates translation.

Overall, results show that the scan matching refinement procedure improves the robot
localization estimation performance. In this complex challenging outdoor environment,
this SLAM approach is capable of maintaining a reliable localization, outperforming
LeGo-LOAM [23]. Figure 13 presents a visual way of comparing all the configurations
performances. Although the theoretical higher difficulty of sequence 1 is in sequence 2,
where the original version of VineSLAM deviates more from the ground-truth. In this
sequence, the correction over wheel odometry by the original SLAM pipeline is lower. So,
it is here where the proposed refinement has more impact. At the moment where VineS-
LAM misses estimating a rotation, which makes it deviate, the scan matching procedure
corrects this performing an adjustment on the particle’s position of each cluster. Figure
13b also shows the low accuracy of LeGo-LOAM in this particular scenario. Due to the
presence of many adjacent corridors in sequence 2, this method frequently estimates that
the robot is stopped when it is actually moving.
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3.4. Vineyard mapping
Using 3D features with RGB information allows to perform a realistic 3D reconstruc-

tion of the vineyard corridors if the localization procedure is accurate. Figures 14 and 15
show different results of the 3D reconstruction performed in VineSLAM with the features
used by the scan matcher. Also, to be aware of the input data used by the pipeline, Figs.
14a, 14b, 14c, 15a, 15b, 15c show the robot view of the vineyard in both sequences.

(a) (b) (c)

(d) (e) (f)

Figure 14: Snapshots of the on-board visual sensor images and the generated map from several views in
sequence 1.

(a) (b) (c)

(d) (e) (f)

Figure 15: Snapshots of the on-board visual sensor images and the generated map from several views in
sequence 2.
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Here, the difference in the aspect of the vineyard with and without foliage is clear. From
Figs. 14d, 14e, 14f, 15d, 15e, 15f is visible the resultant 3D reconstruction of the agri-
cultural environment, resultant from the online map registration performed after each
execution of the PF. These results allow to validate the performance of the proposed
SLAM pipeline since the vineyard corridors 3D reconstruction is realistic.

4. Conclusion

Scan-matching algorithms can be computationally expensive when agents’ density
to align is high, making it difficult to use in online localization algorithms. This work
proposes a refinement step to standard high-dimensional PFs that can incorporate a
scan-matching algorithm in the SLAM pipeline using a designed online clustering proce-
dure. The approach uses a stereo camera system to extract features and build 3D visual
scans of an agricultural environment. Results show that the proposed PF refinement
step improves VineSLAM performance, a SLAM approach that uses a standard high-
dimensional PF to localize a robot in mountain vineyards. The experiments also prove
that the proposed approach can build accurate 3D reconstructions of the agricultural
environment with RGB information, the so-called 3D visual scans.

In future work, we would like to test our solution in different agricultural places such
as forests and orchards, and in more challenging conditions, to test the system with
different levels of illumination, speed, and wheel slippage. Also, we want to be able
to deal with the well-known problem of particle degeneracy, which will help improve
the final robot pose estimation. Finally, the integrated VineSLAM framework with the
proposed refinement will be integrated into the AgRob V16 navigation stack, aiming to
be the main localization and mapping system that allows the robot to perform missions
in agriculture.
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CHAPTER 5. VINESLAM: LOCALIZATION AND MAPPING ALGORITHM FOR AGRICULTURAL

ROBOTS

5.4 Topological map-based approach for

localization and mapping memory

optimization

After VineSLAM presenting robust localization and mapping processes, there is the

need to adapt the pipeline to the use in real agricultural applications. Robots that

operate in such scenarios usually need to cover extensive fields. One of the major

issues of SLAM algorithms is the increase need for memory resources over time due

to the growth of the map size as the robot discovers new spaces. As referenced in the

state-of-the-art review present in Chapter 2, localization and mapping algorithms

should work under large-scale and long-term conditions. This thesis approaches this

problem through the use of a topological map. This work was published in the Field

Robotics Journal and is entitled Topological map-based approach for localization

and mapping memory optimization (Aguiar et al., 2022b). The topological map

extraction was proposed in a previous work (Santos et al., 2020) and uses satellite

images to segment the space in a graph structure. This structure is used to perform

a more efficient mapping. The mapping pipeline only loads the necessary graph

nodes in each instant. The remaining nodes are stored in the processor system and

can be loaded at any time and be used to load the map, update it, and localize the

robot. Results show that this approach can maintain a memory allocation constant

over time, which means that VineSLAM can be executed without time restrictions,

and thus work in large-scale environments and long-term periods.
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Robotics in agriculture faces several challenges, such as the
unstructured characteristics of the environments, variabil-
ity of luminosity conditions for perception systems and vast
field extensions. To implement autonomous navigation sys-
tems in these conditions, robots should be able to operate
during large periods and travel long trajectories. For this
reason, it is essential that Simultaneous Localization and
Mapping algorithms can perform in large-scale and long-
term operating conditions. One of the main challenges for
these methods is maintaining low memory resources while
mapping extensive environments. This work tackles this is-
sue, proposing a localization and mapping approach called
VineSLAM that uses a topological mapping architecture to
manage the memory resources required by the algorithm.
This topological map is a graph-based structure where each
node is agnostic to the type of data stored, enabling the
creation of a multi-layer mapping procedure. Also, a lo-
calization algorithm is implemented, which interacts with
the topological map to perform access and search opera-
tions. Results show that our approach is aligned with the
state-of-the-art regarding localization precision, being able

*Equally contributing authors.
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to compute the robot pose in long and challenging trajecto-
ries in agriculture. In addition, we prove that the topologi-
cal approach innovates the state-of-the-art memory man-
agement. The proposed algorithm requires less memory
than the other benchmarked algorithms, and can maintain
a constant memory allocation during the entire operation.
This consists of a significant innovation, since our approach
opens the possibility for the deployment of complex 3D
SLAM algorithms in real-world applications without scale
restrictions.
K E YWORD S
SLAM, Agriculture, Topological Mapping, Memory Management,
Autonomous Robots

1 | INTRODUCTION
The development of autonomous robots in agriculture is a challenging and active research topic (Emmi et al., 2014).
To implement such systems, the autonomous navigation issue must be solved, i.e., robots should be capable of driving
autonomously within multiple environments (Shalal et al., 2013; Abdallah et al., 2007). Consequently, autonomous
robotic platforms should be endowed with robust localization systems that allow recovering their absolute pose in
the agricultural environment (Vougioukas, 2019). Simultaneous Localization and Mapping (SLAM) allows calculating
the travelled trajectory while mapping the environment simultaneously (Durrant-Whyte and Bailey, 2006; Bailey and
Durrant-Whyte, 2006; Lowe et al., 2021). In agriculture, the implementation of SLAM is essential since it leads to the
creation ofmaps that farmers and agriculture specialists can use in various tasks. Thesemaps can be saved and posteri-
orly analysed to extract relevant information about the crops, such as canopy volume, yield state, and geo-referenced
position of fruits, vegetables and trunks. Also, when robots have this mapping ability, they can perform autonomous
operations such as precision agriculture (application of fertilizers, nutrients and water), plant protection, harvesting,
monitoring, and planting (Roldán et al., 2018; Bergerman et al., 2016; Pinto de Aguiar et al., 2020). However, the chal-
lenging conditions of agricultural environments, such as characteristics of illumination and terrain irregularities, can
difficult the perception stages and therefore compromise the SLAM algorithms’ performance (Aguiar et al., 2021c).
In addition, localization and mapping approaches should be prepared to deal with large-scale environments since
agriculture is characterized by vast terrain extensions (Chen et al., 2021).

Large-scale localization and mapping bring several challenges, namely map memory management. When robots
operate in extensive environments, approaches that are not developed in a memory-efficient manner can try to allo-
cate more than the available memory resources of the processor that is being used (Suger et al., 2014). This challenges
the scalability of SLAM systems and puts at risk the possibility for robots to perform autonomous long-term opera-
tions (Li et al., 2018). Although the scalability of SLAM approaches to accommodate large-scale agricultural tasks is
still an open issue (Capua et al., 2018), there is already a state-of-the-art concept to decrease memory consumption
of SLAM algorithms. Bosse et al. (2003) propose a graph representation of the environment, called a Topological Map.
This concept allows SLAM approaches not to maintain a single and global coordinate frame but an interconnected set
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of local maps in a graph-like fashion. Topological maps consist of a graph of multiple local maps of limited size. Thus,
they allow intelligent map memory management by allocating only the strictly necessary graph vertexes. The graph
nodes store the local maps, and the edges represent the spatial transformation between nodes and can be used to
track the robot pose during the localization procedure (Garcia-Fidalgo and Ortiz, 2015). Figure 1 shows a possible
topological map architecture for a vineyard.

F IGURE 1 Topological representation of a vineyard characterized by an extensive area.

Topological-based localization and mapping bring several challenges into the development stage. In particular,
and looking at the agricultural scenario, one of the main research questions is how are topological maps extracted
given the characteristics of the environment. Also, there is the problem of minimizing the memory usage without
compromising the localization and mapping procedures. And finally, how to store, load, and update local maps visited
or re-visited by the robot. This work proposes a solution to these research questions with a localization and mapping
algorithm called VineSLAM that uses a topological mapping approach efficiently. Our approach innovates the state-of-
the-art by proposing a novel pipeline that enables SLAM algorithms to survive for unlimited amounts of time, without
memory restrictions. In a previous work we proposed the extraction of topological maps of agricultural places from
satellite images (Santos et al., 2020). In this work, we use this extraction procedure and propose a novel localization
and mapping system based on topological concepts. The contributions of this work are threefold:
1. The creation of a topological representation of the agricultural environment that divides the space in a graph

structure;
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2. A multi-layer mapping procedure where the top layer, the topological, is agnostic to the bottom layer;
3. A localization approach that uses the multiple mapping layers to track the 6-DoF robot pose.

The main novelty of this approach is the support for any type of map in the topological nodes. This abstraction al-
lowed us to create a multi-layer mapping algorithm, where the bottom layers are different representations of the
environment, and the top layer serves as a memory management agent. In this way, our previous localization solu-
tions (Aguiar et al., 2021a) is extended to the use of several types of feature maps and are adapted to deal with the
submap architecture imposed by the topological map.

The remainder of this paper is structured as follows. Section 2 reviews the current state-of-the-art on topological
localization and mapping. Section 3 details the contributions of this work. Section 4 presents the test and validation
of the proposed methods in experiments considering real data collected by our agricultural robots. Finally, Section 6
details the conclusions of this work.

2 | RELATED WORK
The mapping procedure is crucial for the localization performance (Nüchter et al., 2007; Fairfield et al., 2010). The
accuracy of the onboard sensors and the quality of the data post-processing algorithms dictate the quality of the
perception of the surrounding environment by the robotic platform. In agriculture, this is especially true since, in
most cases, the environment presents harsh conditions for robotics localization and mapping (Aguiar et al., 2020a).
When the localization and mapping algorithms succeed, robots can create several types of maps of the environment
that can be used by humans or even by other robots to operate.

Many techniques were proposed in the literature to solve the SLAM problem. Graph-based solutions (Grisetti
et al., 2010) are popular, especially in 3D SLAM. Folkesson and Christensen (2007) propose a SLAM approach for
outdoor applications where localization and mapping procedures are reduced to a graph problem. The algorithm was
successfully tested in an outdoor environment, operating at 5Hz. In the same context, Schuster et al. (2015) pro-
poses an online graph optimization solution to estimate the 6-DoF robot pose and 3D maps that are then used in
a multi-robot context. This is done through the use of an inertial-vision system. Le et al. (2019) propose a solution
based on (Zhang and Singh, 2014) and (Shan and Englot, 2018), adapted for agricultural robots. This work uses a
LiDAR odometry approach and a Graph-SLAM optimization procedure to localize the robot and map the environment.
The algorithm was successfully tested in agricultural scenarios. Besides optimization-based solutions, filter-based ap-
proaches are also considered in the literature, particularly the Extended Kalman Filter (EKF). For example, Cole and
Newman (2006) use an EKF to localize the 3D robot position in outdoor environments. The filter state is composed of
the entire robot trajectory, and LiDAR scan registrations are used to form measurements between the robot positions
over time. Although the state-of-the-art already solves the SLAM problem efficiently, robotic operations are not only
dependent on the localization and mapping accuracy but also on their ability to survive for large periods and exten-
sive trajectories. In other words, these classes of algorithms should have large-scale capabilities (Dellaert et al., 2010).
One of the critical aspects that can put at risk the large-scale operation of SLAM approaches is the map memory man-
agement (Labbé and Michaud, 2017). As the areas visited by the robot start to grow, the memory requirements are
incrementally more significant if the algorithm considers a single map memory allocation without any management
mechanisms. To address this issue, several techniques were already proposed in the state-of-the-art, as described in
Table 1. One of the popular approaches is to performmap compression (Van Opdenbosch et al., 2018; Contreras and
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TABLE 1 Approaches to address memory management optimization in large-scale environments.
Approach Description Advantages Disadvantages
Map compression Use standard compression

algorithms (lz41, Zstandard2,
image compression) to de-
crease the map memory re-
quirements.

Do not compromise time ef-
ficiency; can highly improve
memory management.

Possible loss of important
information; challenge to
restore original information
when decompressing data.

Hierarchical trees Popularized by KdTrees and
OcTrees - structures that re-
cursevely divide the space
into k sub-volumes.

Do not need to know the
map size a-priori; supports
multiple voxel sizes.

Despite efficiently storing
map data, memory require-
ments still grow over time.

Topological maps Partition of the map into a
graph structure; local alloca-
tion of graph nodes.

Constant memory resources
are required by allocating
only the necessary informa-
tion in each instant.

Increase mapping complex-
ity; possible slower access
and insert operations.

Mayol-Cuevas, 2017). For example, for visual information in video sequences, visual descriptors can be reused be-
tween frames and store only the differences found in the current frame (Baroffio et al., 2015). Also, data compression
algorithms can be applied to reduce the memory requirements of maps. In this scope, Pedrosa et al. (2018) compress
the map with state-of-the-art data compression techniques. The major innovation of this approach is a caching mech-
anism that avoids the compress-decompress penalty. Another possible approach is the use of memory-efficient data
structures such as hierarchical trees: OctoMap (Hornung et al., 2013) or KdTrees (Greenspan and Yurick, 2003). These
structures recursively divide the space into k sub-volumes until a minimum voxel resolution is achieved. One of the
main advantages of these structures is that the map’s extent does not have to be known a-priori. Instead, the map
is dynamically expanded as needed. Even with this intelligent management, the maps can grow to a size that is not
feasible to standard computer specifications for large-scale environments. Thus, the concept of topological map is
essential to solve the problem of memory management for robots operating in vast extensions. This data structure
organizes the map in a graph structure, i.e., it creates a set of nodes connected by edges that can store information
individually. Since map data is loaded from and saved to graph nodes considering their proximity to the robot, the
mapping resources can be maintained approximately constant over time. This consists of an essential breakthrough
for large-scale SLAM algorithms.

Several works that use the concept of topological maps have already been proposed in the literature, as referenced
in Table 2. The computation of the topological map can be either done before the robot operation, or in an online
manner, i.e., during the SLAM operation. For example, Heiwolt et al. (2020) extract the topological map from high-
resolution satellite images. This means that the map is pre-partitioned before the robot operation, which has two
main advantages: there is no need to spend time and resources computing the map nodes and edges during the
SLAM procedure; and, allows a validation of the map structure before its usage to optimize the memory management.
On the other side, Bernuy and Ruiz Del Solar (2015) propose an online topological map built incrementally from

1https://github.com/lz4/lz4
2https://github.com/facebook/zstd
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TABLE 2 Summary of the current state-of-the-art on outdoor topological-based localization and mapping.
Reference Extraction Localization and Mapping
Emmi et al. (2021) Semantic field place partitioning.

Categorization of a crop in four
classes, used to build the topological
map.

LiDAR- and camera-based localiza-
tion and metric mapping inside the
topological map.

Heiwolt et al. (2020) Automated topological map extrac-
tion from high-resolution satellite im-
ages.

N/A.

Khan et al. (2020) N/A. Particle Filter (PF) localization algo-
rithm. Topological map used to con-
straint the particles pose.

Bernuy and Ruiz Del Solar (2015) Topological nodes extracted using a
graph structure on the semantic rep-
resentation of images and context in-
formation.

Localization reduced to the problem
of finding the topological node cor-
responding to the observations ob-
tained by the robot sensors.

Schleicher et al. (2009) Online topological map creation by
travelling unknown environments.
Newly visited places are converted
in topological nodes.

Low-level metric SLAM approach us-
ing a visual system and GPS. High-
level topological procedure used to
maintain the global map consistency.

Bradley et al. (2005) Creation of topological database
with feature vectors for each image,
extracted in every iteration.

Topological information stored in the
database used for localization-only
in posterior runs of the algorithm in
the same environment.

Ehlers et al. (2020) Creation of topological nodes with
semantic meaning every time the
robot enters a new environment
(suitable for indoor and outdoor).

Localization and mapping with any
state-of-the-art SLAM algorithm -
topological structure agnostic to the
SLAM method.

He et al. (2006) Topological nodes created incremen-
tally by finding prototype image-
features that can represent any im-
age within a portion of the environ-
ment.

Visual mapping and localization us-
ing topological visual places as refer-
ence.

semantic information. In this work, only road scenarios are considered, and the map nodes are labelled as road and
non-road (environmental nodes). Schleicher et al. (2009) also present an online topological map creation by travelling
unknown environments. In this work, newly visited places are converted into topological nodes. The localization
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(a) AgRob robot. (b) Weta robot.

(c) Modular-E robot.
F IGURE 2 Autonomous robotic platforms used in the scope of this work.

procedure is divided into a low-level thread where SLAM is solved with a visual system and GPS and a high-level one
where the topological procedure is used to maintain the global map consistency. Compared with offline topological
map extraction algorithms, these approaches have the advantage of presenting a single solution that solves all the
problems: localizing the robot while mapping the environment with efficient memory management.

This work is inserted in the context of robotics in large-scale agricultural environments. The proposed solution is
deployed in our robot built from a commercial platform (Fig. 2a) and on our last generation and built in-house robots
Weta (Fig. 2b) and Modular-E (Fig. 2c). These built in-house platforms are specially designed for harsh environments
characterized by terrain irregularities, presenting a mechanical structure capable of surviving in such conditions. All
robots are equipped with cameras, LiDARs, RTK GNNS, and IMU sensors.

The implemented robots operate in vineyards with long corridors and vast extensions. For this reason, a memory
management procedure for the proposed SLAM system is essential. In this sense, we propose a topological map to
efficiently store the information and provide intelligent resource management.

3 | TOPOLOGICAL LOCALIZATION AND MAPPING
Besides the challenging conditions that agricultural environments bring to localization, a key research question is also
imposed by them: how to manage and optimize the memory consumption to map the entire environment without
restrictions? To address this issue, this paper proposes a solution based on a topological map to efficiently store the
map data during the Localization andMapping operation. This map is agnostic to the type of data stored in each node,
which enables the creation of a multi-layer mapping structure considering multiple modalities of map features. Finally,
we propose a localization approach that interacts with the topological map efficiently. This entire pipeline is called
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F IGURE 3 Satellite image from Aveleda vineyard (41°12’19.8"N 8°18’26.5"W) in Portugal.

VineSLAM, and all of these contributions are detailed below.

3.1 | Topological Map Extraction
The first stage of the proposed algorithm is the topological map extraction. In previous work, we proposed a topo-
logical map extraction procedure from satellite images for path planning algorithms (Santos et al., 2020). This work
briefly describes this approach and its adaptation to the SLAM context.

The main stages from the original satellite image (Fig. 3) until the final map are represented in Fig. 4. The first
step is the extraction of an occupancy map from the original RGB satellite image (Fig. 4a). For this, a Support Vector
Machine (SVM) classifier is used to classify pixels according to two classes: vegetation and path lines of the vineyard.
A descriptor based on the Local Binary Pattern codes (LBP), a gray-level invariant texture primitive, is used to perform
this classification. This step is essential for the proper extraction of the final map since the presence of obstacles in the
map will be used to compute the graph nodes. After having a reliable occupancy grid map, the next step is to extract
a Voronoi diagram (Fig. 4c), which consists of dividing the space by Voronoi segments. These segments represent all
the points in the plane that are closer to a given seed than to any other. Its construction originates from a beforehand
distance map (Fig. 4b), which contains the Euclidean distance of every cell to the closest obstacle. The development
of the algorithm was based on the work of Lau et al. (2010). The final step for the construction of the graph consists
of computing the set of interconnected circles (Fig. 4d) based on the Voronoi diagram and the distance map. Each
circle location corresponds to the corresponding Voronoi vertex, and its radius is computed through the distance map.
The next step consists of finding the connections between the circles. For that operation, all the pixels of each circle
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(a) (b) (c) (d)

(e) (f) (g) (h)
F IGURE 4 Step-by-step representation of the topological map extraction. This procedure starts by (a) the
extraction of an occupancy grid map, followed by (b) the computation of a distance map, (c) a voronoi graph, and
finally (d) a fully-connected topological map. Figures (e-f) are extractions of portions of figures (a-d), respectively.

will have associated a unique label. Then all the pixels containing a label are expanded until a different label is found.
This operation is similar to a recursive process of a morphological operation of erosion until there are no more pixels
without a label associated. The interconnection between graph nodes is then computed by finding the zones where
the labels change. This results in the topological map.

For the Localization and Mapping context, one of the key information is the area occupied by each node and
not only the graph morphology. For this reason, a place delimitation procedure is performed after extracting the
topological map. In this step, the algorithm takes advantage of the pixel labels extracted before to define delimited
places on the map. In our previous work, the place delimitation was performed by approximating each label to the
nearest not rotated rectangle. In other words, each set of pixels belonging to the same label is converted into a
single rectangle. Each rectangle is computed to contain all the pixels belonging to the same label without considering
rotation.

These rectangles will then represent a sub-map area that can be loaded and saved during the Localization and
Mapping operation. However, as seen in Fig. 5a, this approach is inefficient since it computes a lot of overlapping
areas between rectangles. Not rotated rectangles can not approximate the topology of the environment efficiently.
With this solution, this would mean that different graph nodes would contain the same information, which will lead to
an unnecessary allocation of memory resources. To solve this, in this work is proposed an adaptation of the algorithm
to consider oriented rectangles (Fig. 5b). Thus, each labelled area is approximated by the rectangle that best fits it.
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(a) (b)

(c) (d)
F IGURE 5 Place delimitation of the topological map. In our previous work (a,c) there was a lot of overlapping
between rectangles. To adapt this approach to the SLAM context, we propose (b,d) a more efficient place
delimitation where the overlapping area between rectangles is minimized. This will lead to a more efficient mapping
process since the overlapping memory allocation between nodes is minimized.

To do so, we find the minimum area rectangle that contains all the points of a given label, returning also the angle
of the oriented rectangle. Since this is performed at the image level, we make use of a state-of-the-art algorithm
implemented in the OpenCV framework3. This way, it is possible to minimize the overlapping between graph nodes
and have a more memory-efficient mapping procedure.

3.2 | Multi-layer Mapping
In this work, a novel multi-layer mapping architecture is proposed. This mapping structure was implemented due
to two main reasons: to obtain an efficient memory management algorithm since our robots are inserted in large-
scale agricultural environments; and to consider different types of features for the representation of the agricultural
environment. Figure 6 represents this architecture, where one can see that the manager of the map is the topological
graph. As we move down in the structure, the representation is increasingly lower-level until we access the cell data.

3https://theailearner.com/tag/cv2-minarearect/
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F IGURE 6 Multi-layer mapping structure. Each topological node Ni maintains a grid map consisting of a submap
that can be allocated and deallocated as needed. The topological map is agnostic to the type of features present in
the map since the grid map manages and defines the data structures present in each cell.

Here, the definition of cell can be of any type, which enables the support for any type of features and data structures
in this multi-layer mapping. This work shows our use case, a multi-layer mapping consisting of 3D features extracted
from LiDAR data and semantic features extracted from visual data.

Depending on the mapping approach, SLAM algorithms either have to pre-allocate all the memory required for
the entire mapping operation, or have to use more efficient data structures that allocate more memory over time to
fulfill the needs of the environment where the robot is located. The first approach is usually accomplished with grid
maps. These structures discretize the space into cells and provide fast and efficient access and search algorithms. To
access the data stored in each cell, a uni-dimensional operation is sufficient, i.e., each cell is accessed simply through
its index. More complex data structures such as Octomaps and KdTrees provide a slower access approach since they
are built using a tree structure, and to access a node is required to travel from the top of the tree through the parent
nodes. On the other hand, gridmaps aremore inefficient in terms ofmemory allocation because they require the entire
map memory to be allocated a-priori. In this work, we solve this issue using the topological map. Our localization and
mapping approach takes advantage of the fast and efficient access algorithm provided by grid maps and optimize the
memory allocation using the topological structure.

Figure 7 shows the mapping strategy implemented in this work. As seen, during the localization and mapping
process, three main operations are required: (1) access, to get the data stored on a given cell; (2) insertion, to update
the cell data given a new feature; and (3) deallocation, to store a given graph node into the external memory and free
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F IGURE 7 Mapping interaction flowchart.

the RAM memory used by the local map of the corresponding node. The access operation is critical since it dictates
the execution time performance of both the mapping and localization processes. This operation can be used either
to get a given cell data or update it by inserting new features. To access a given cell, we have to go from the higher to
the lower level, starting from the topological graph until the cell itself. As example, suppose that the mapping system
wants to insert a 3D feature with coordinates [xf , yf , zf ] into the map. The first step is to find the correct topological
node that will store the feature. The more straightforward solution would be to search for the node that contains the
cell that will store the feature. However, this solution is inefficient, especially when dealing with a high-dimension
graph, due to the high number of nodes. To overcome this, we implement a faster solution to get the topological node
correspondent to any feature. This implementation is based on a lookup table represented in an image, where each
pixel color is linked with a node. This image is a full representation of the topological map and is built using the place
delimitation procedure described in section 3.1. Using this information, each pixel inside a given rectangle extracted
in the place delimitation procedure is assigned to a numerical label corresponding to a given topological node. The
access to the lookup table is performed by converting the 3D point location to the image space. The topological node
corresponding to the given point is then given by only accessing the image at the transformed coordinates.

Thus, there is a function f (xf , yf , zf ) that maps the 3D location of a given feature to its corresponding node, only
by accessing the lookup table. If the node memory is already allocated, the process can continue. Otherwise, a query
is done to the external memory where the nodes’ information is stored. If the node is actually stored, the program
allocates memory and loads it into the topological map. After that, the grid map stored inside the topological node is
accessible and can be used. To insert the feature, the function h (xf , yf , zf ) retrieves the cell where it will be stored
by direct access. With this, the feature can be either inserted or updated if it already exists on the cell.

This configuration allows strategical memory management. In each iteration of the localization and mapping
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(a) (b) (c)

(d) (e) (f)
F IGURE 8 (a)-(c) Side and (d)-(f) top view of the online topological-based localization and mapping procedures.
The topological map is loaded by the SLAM algorithm and represented by oriented rectangles (green rectangles)
with a node location (blue spheres). This figure shows three separate iterations of the process. Active nodes are
represented as red rectangles, and allocates nodes in highlighted green. All the other nodes are inactive and without
allocated memory in these specific iterations.

procedures, the algorithm decides the active nodes and the allocated nodes. The active nodes are the ones that can
be loaded in each iteration and are computed by applying a distance threshold td , i.e., all the nodes that have their
center closer to the robot than td are considered active. The allocated nodes are active nodes that were already
used either to map or, as detailed later, for localization. For example, when the mapping process wants to insert a
feature in the active node i , the memory for this node is reserved, and this node passes to the set of allocated nodes.
On the contrary, if a feature is to be inserted, but the lookup table returns a node that is not currently active, the
insertion operation is discarded. At the end of the SLAM loop, when the robot localization is updated, the set of
active nodes is updated by deallocating the memory for nodes that are now more distant than td from the robot. The
data contained in these nodes is stored in individual files in the external memory so that it can be loaded later in
the process or for post-processing after the SLAM operation. With this implementation, it is intended that the RAM
memory used remains approximately constant during all the robot operations. The threshold td defines the range
allowed for mapping and has a direct influence in the memory used by the program. Figure 8 illustrates the multi-
layer mapping process. This figure shows three separate iterations of the SLAM algorithm, and one can see that only
the necessary nodes are allocated in each one (highlighted green rectangles). In this case, the mapping was performed
using 3D features extracted from a 3D LiDAR, and one can see that only the features stored in the allocated nodes
are visible in each iteration (yellow dots on Figs. 8(a)-(c)), since the others are stored in the external memory. This
entire operation is demonstrated in the following video: https://youtu.be/cy4wGZUzB2Q.

This architecture allows the algorithm to perform efficiently in large-scale agricultural environments. As men-
tioned in this work, each cell is defined by a set of semantic and 3D LiDAR features. In previous works, we proposed
the extraction of natural features from vineyards (Aguiar et al., 2020b, 2021b) and the inclusion of 3D features in the
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(a)
(b)

F IGURE 9 (a) Semantic features extracted from an image of a vineyard canopy, and (b) corner (yellow) and planar
(red) features extracted from 3D LiDAR data. The two types of features are stored in the proposed mapping
architecture, and are used to provide a rich representation of the environment.

SLAM process (Aguiar et al., 2021a). In this work, we use the proposed architecture to create a multi-layer mapping
procedure that considers both these semantic features and 3D LiDAR features. To do so, two different feature ex-
tractors are implemented. The first, represented in Fig. 9a, is based on a Deep Learning (DL) model trained to extract
vine trunks and grape bunches from images. These features are then converted from image to world coordinates and
stored in the topological structure presented before. The second, represented in Fig. 9b, are two types of features
extracted directly from a raw point cloud generated by long-range 3D LiDARs: corner and planar features. Corners
are features located on sharp edges, and the planar features are located along flat surfaces. With this, it is possible
to achieve a rich representation of the agricultural environment. It is worth noting that the mapping architecture is
agnostic to the type of data stored in the topological nodes, and thus each application can adapt the definition of grid
map cell to its own context.

3.3 | Localization using Topological Concepts
The localization procedure aims to compute the robots’ 6-DoF pose using the previously described feature extraction
andmapping algorithms. To this purpose, this work implements a PFwith the novelty of interacting efficiently with the
topological architecture proposed. The PF is used due to its modularity in that it can consider different modalities of
features and sensors just by adding newweight functions. Also, this filter can consider different types of noise models
besides Gaussian noise, which can be an advantage for environments characterized by more complex models. The
PF is standardly divided into three main steps: a prediction step where the particles are innovated through a motion
model, the particles’ weight calculation given the observed features and the resampling step to replace particles with
lower weight by others with higher weight. The major contribution of this work is in the weight calculation procedure
since it is in this step that the filter interact and use the topological structure.

To predict the particles’ likelihood distribution, they are innovated through a 6-DoF model proportional to an
estimated relative motion. To estimate the frame-to-frame robot motion, the control input ut is extracted from the
robot wheel odometry. Let us define the following matrices:
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• ∆T : the wheel odometry increment represented as an homogeneous transformation; and
• Tn : an homogeneous transformation matrix computed by sampling a minimal parameter space (6-DoF) from a

Gaussian distribution with standard deviation proportional to the norm of the displacement measured by the
wheel odometry.

Thus, a particle j is innovated at the instant t as follows:
Tj ,t = Tj ,t−1 ∆T Tn . (1)

After spreading the particles in a given iteration, each hypothesis is tested using the feature extraction described
before. In this work, the 3D LiDAR features are used to localize the robot. The system iteratively builds a map with
corners and planar features and uses the observations in each iteration to compute the best alignment with the global
map. Thus, the local N observations are converted to maps’ reference frame using each particle Tj ,t pose as follows:

m̃fi = Tj ,t mfi , i ∈ {1, . . . ,N }. (2)
The critical step in this calculation is to find correspondences between features observed in each iteration and the ones
present on the global map. This is the major novelty of the localization algorithm since, to find correspondences, the
nearest neighbor algorithm is implemented considering the topological architecture proposed. In this way, the access
operation represented in Fig. 7 is executed per particle for every feature. The graph node is chosen using the lookup
table method described, considering the projected feature position m̃fi . After having the node, the cell is searched
by indexing the grid map stored inside the node using the feature coordinates. Thus, each particle searches for the
cells where the correspondences of each feature should be. In each cell, it is possible to store multiple features, and
thus a search for the nearest correspondence is executed. Considering the set of K feature correspondences found
{m̃fi ↔ mf ,gi : i ∈ {1, . . . ,K }}, where the subscript g denotes for features in the global map, the point-feature
weight sub-function is computed by the following equation:

Wf =
1√

2πσf

K∑
i=1

exp
(
−1
σf

· | |m̃fi − m̃f ,gi | |
)
, (3)

where σf is the standard deviation of the point-feature measurement, and | |. | | represents the L2 norm. Equation 3
states that the particles weight increases exponentially with the decrease of distance between feature correspon-
dences and with the number of correspondences found.

The fact that the search for the topological nodes and the grid map cells is done by simply indexing a lookup table
and the grid map itself ensures the fastest access to the cell data as possible. Also, the topological architecture brings
another great advantage to the localization algorithm. Since the topological graph only loads the necessary portions of
themap (the ones closer to the last robot pose calculated), the number of local minimas is reduced. Consider a scenario
of a woody crop vineyard with successive long and symmetric corridors. If the portions of the map corresponding to
multiple vineyard corridors were loaded in the SLAM program, and if for some reason a particle is innovated to the
incorrect vineyard corridor, this would be a particle with high weight and with a wrong estimate of the robot pose. By
restricting the global map to the essential and necessary parts and considering a highly symmetric environment, we
are reducing the number of possible local minimas.

As referenced before, one of the advantages of this PF is its modularity, i.e., the capacity of considering multiple
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modalities of sensors by stacking the corresponding weight functions. Due to the harsh characteristics of the agri-
cultural environments where our robots are inserted, the PF allows the fusion of the 3D LiDAR with an Real Time
Kinematic (GNSS-RTK) and an Inertial Measurement Unit (IMU) sensor. To incorporate them, the weight function is
designed considering a negative exponential function for each one. In this case, the particle weight calculation can
be directly inferred without transformations since both sensors provide absolute observations. This being said, con-
sidering the RTK absolute robot position observationXr ,x y z and the j t h particle positionXj ,x y z , the particle weight
is calculated as follows:

Wr =
1√
2πσr

exp
(
−1
σr

· | |Xr ,x y z −Xj ,x y z | |
)
, (4)

where σr represents the standard deviation of the RTK position observation. It is worth noting that during the exper-
iments detailed in section 4 the GNSS-RTK was not used to perform a fair comparison of the proposed algorithm’s
localization precision with state-of-the-art approaches. For the IMU sensor, the weight function is adapted to work
with the Euler angle representation. Let L = {φ,ψ, θ } represent the three orientation degrees of freedom and XL
represent a vector with the three orientations. The particle weight is calculated applying the following equation:

Wu =
1√
2πσu

∏
η∈L

exp ���Xu,η − Xj ,η ���, (5)

where σu represents the standard deviation of the IMU observation, X.,η represents the extraction of a single orien-
tation component from the pose vectors, and |. | represents the absolute value. Thus, in this case, the particle weight
is computed as the product of differences between the IMU absolute orientations and the particle’s orientations.

To fuse all the weight subfunctions in a single function and compute the final particle weight, we multiply all the
sub-function results as follows:

W =Wf ·Wr ·Wu . (6)
The balance between the multiple modalities is controlled by the standard deviation of each observation.

After computing all the particles’ weights, they are resampled. The resampling step of the PF is used to substitute
low-weight by high-weight particles. In this work, the multinomial resample algorithm (Douc and Cappe, 2005) was
implemented to accomplish this. This approach drawsN samples from a uniform distribution ui and selects the particle
j for replication if

ui ∈
[ j−1∑
p=1

wp ,

j∑
p=1

wp

)
, (7)

where wp represents the particle’s p weight. To avoid the well-known problem of particle degeneracy that happens
when either all the particles are in the wrong place or they are highly condensed, resampling is not executed for all
iterations. This method is only employed when a significant robot motion is observed (either in translation or rotation
in the six degrees of freedom). The user can set the amount of motion required to perform resampling.
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3.4 | Implementation Details
This section intends to briefly describe some implementation details that were taken into consideration to optimize the
memory management of the algorithm. The algorithm is entirely implemented in the C++ programming language and
is designed on top of the ROS2 platform4. All the structure was implemented from scratch: the multi-layer mapping,
including the topological and grid map structures, and the PF-based localization algorithm. The key optimizations
performed were on the definition of the topological and grid map classes. These optimizations consist of the way of
declaring the members inside the classes. In this context, all the members are declared as pointers since each pointer,
considering that it does not have allocated memory, only occupies 8 bytes of RAM memory, whatever type it has. A
simple structure with two doubles would occupy twice the memory. Considering that the topological nodes and grid
map cells are complex structures, this approach boosts thememory performance of the algorithm. With this being said,
every topological node contains a pointer to a grid map. Thus, only the allocated nodes require memory allocation and
occupy more than 8 bytes. In the same way, each grid map is composed of an array of cells. To optimize the memory
allocation of the grid maps, each array index is a pointer to a cell. In this way, only non-empty cells are allocated. This
is of extreme importance because the cells can have complex definitions, and they can be hidden when are not in use,
through the use of pointers. Consider a graph node with a size of 10x10x10 meters and a resolution of 0.25 meters.
This would result in a grid map with 4000 cells. If, in average, each cell occupies 14 bytes of memory, this would
result in 56MB of allocated memory for the entire grid map. Now, consider that only 20% of the map is occupied and
that we use pointers to hide the information of non-allocated cells. With this, only 36.8MB would be needed. This
consists of a considerable memory saving and is highlighted in large-scale environments such as extensive vineyards.

4 | RESULTS
To test our approach we make use of two sequences correspondent to two different vineyards: Quinta da Aveleda
(41°12’19.9"N 8°18’26.6"W), and Quinta do Seixo (41°10’00.0"N 7°33’18.3"W), both located in the north of Portu-
gal. Both sequences are publicly available at https://doi.org/10.5281/zenodo.5142159 and https://doi.org/

10.5281/zenodo.5142003. Figure 10 shows our robotic platform navigating autonomously on the second vineyard.
As visible, this is a mountain vineyard that presents high hills and steep slopes, which are challenging conditions for
SLAM algorithms. The validation of the proposed approach is divided into three main categories:
• Memory management evaluation, where the topological architecture is compared with the usage of a standard

3D grid map;
• Execution time evaluation, where the proposed approach is extensively evaluated considering different number

of particles; and,
• Localization and Mapping evaluation, where the performance of the SLAM algorithm is tested using satellite

images as ground truth both for the localization and mapping stages.
Both sequences evaluate the large-scale capability of the proposed approach due to their high extension: 282.7

meters for sequence 1 and 337,1 meters for sequence 2. In addition, they present different challenges to the al-
gorithm: on the one hand, a woody-crop vineyard characterized by extensive corridors, and on the other hand, a
mountain vineyard composed of steep slope hills. Also, both sequences are composed of unstructured scenarios, that
are characteristic of agricultural environments. For all these reasons, the experiments are suitable and challenging for

4https://docs.ros.org/en/foxy/index.html
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F IGURE 10 Our robot navigating in Quinta do Seixo (sequence 2), a mountain vineyard characterized by steep
slope hills.

the evaluation of the proposed approach. It is worth noting that all the experiments were performed using a standard
computer with a Intel(R) Core(TM) i5-1030H @ 2.5 GHz CPU with 16 GB of RAM memory.

To benchmark our solution with the state-of-the-art, we test two LiDAR-based SLAM algorithms: LOAM (Zhang
and Singh, 2014) and LeGO-LOAM (Shan and Englot, 2018). We consider these two approaches key solutions regard-
ing 3D SLAM in outdoor environments. Both have been tested in publicly available datasets, showing high accuracy
on localization and mapping. We compare their performance against our own in terms of memory management, exe-
cution time and localization and mapping precision.

4.1 | Memory Management Evaluation
The biggest motivation of the topological proposal in this work is to improve the memory management procedure of
our SLAM algorithm. This would enable agricultural robotic platforms to navigate autonomously over larger periods
and more significant terrain extensions. This is a key requirement in the agricultural sector since the tasks developed
in the area are often performed in vast fields. In this section, we analyse the proposed approach in terms of memory
management, and in the next one, the execution time requirement is evaluated. To evaluate the capacity of the
topological approach to manage the memory resources in an efficient manner, twelve different experiences were
carried out regardingVineSLAM. Six of them consider the SLAMalgorithmusing the topologicalmap for three different
distance thresholds td (that is used to compute the active nodes of the graph). The remaining six experiments consider
the SLAM approach using a single grid map for each sequence. It is expected that the comparison between the
two approaches enhances the advantages of the topological map architecture. In addition, to compare VineSLAM’s
memory management performance with LOAM’s and LeGO-LOAM’s, the memory consumption of each algorithm
was captured for both sequences.

Figure 11 represents the memory consumption over time of the entire SLAM pipeline using the topological ar-
chitecture. This procedure generated six different subfigures, as represented, considering the experiments for the
two sequences and the three distance threshold values. Similarly, Fig. 12 represents the memory consumption of the
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(a) Sequence 1 (b) Sequence 2
F IGURE 11 Memory allocation by the SLAM pipeline during the robot operation on (a) sequence 1 and (b)
sequence 2 considering the topological architecture proposed. Three different values for the distance threshold to
consider active nodes were used.

SLAM algorithm considering a single grid map of fixed size pre-allocated at the beginning of the operation. In this
case, six experiments were also carried out considering the same two sequences and three grid map sizes.

(a) Sequence 1 (b) Sequence 2
F IGURE 12 Memory allocation by the SLAM pipeline during the robot operation on (a) sequence 1 and (b)
sequence 2 considering a pre-allocation of a single grid map. Three grid dimensions were used for each sequence.

As referenced in Section 3 the major aim while developing the topological architecture is that the memory con-
sumption remains approximately constant over time. The threshold value td defines the active graph nodes and the
deallocated ones in each iteration. In addition, only the grid map cells in use are allocated. From Fig. 11 one can
see that this goal was accomplished. This figure shows that for both sequences, the memory consumption remains
mainly constant during the entire operations. This procedure has an associated standard deviation due to several
reasons. First, the topological map is extracted from satellite images and takes into consideration the characteristics
of the environment. Thus, the topological nodes have different areas between them, which means that while the
robot travels, there will be zones that require higher or lower memory allocation. Second, the number of features
observed in each zone dictates the number of grid map cells allocated. This means that there will be zones where the
grid maps stored on the topological nodes will require more or less memory. Despite all of this, Fig. 11 shows that
the topological architecture can perform an efficient memory allocation. It is possible to observe that this approach
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achieves low memory consumption standard deviations, which proves the validity of the algorithm. Comparing the
results obtained for both sequences in this table, one can see that in sequence 2 we obtained a lower variation of
the memory allocation over time. This evidences the different topologies of the maps used. On the one hand, for
sequence 1, the higher the distance threshold, the higher the standard deviation, and on the other, for sequence 2,
the distance threshold does not have an impact on the memory consumption standard deviation. This means that in
sequence 1 some features are captured far away from the robot, which leads to the allocation of grid map cells of
topological nodes distant from the robot’s position.

The SLAM performance using a single grid map is represented in Fig. 12.As visible, this approach suffers from an
increasingly need for more memory resources over time. Also, the memory requirements are much higher compared
with the topological approach. In addition, as the robotmoves, new cells are allocated since new features and observed
and stored. This leads to an approximately linear memory increase over time, which reflects in the high standard
deviation.This leads to the conclusion that this approach is not suitable for long-term operations since, in the worst
case, robots are intended to operate continuously in agricultural environments without scale restrictions. This would
lead instantly to an overflow of memory resources of any standard computer, considering the allocation of a fixed-size
3D grid map. Thus, this proves the validity of the proposed topological approach, that has no scale restrictions, since
it is able to maintain an approximately constant memory consumption, independent of time.

Finally, Fig. 13 presents the memory management benchmark between VineSLAM, LOAM and LeGO-LOAM.
These two state-of-the-art approaches use a KdTree to store the 3D map and perform access and search opera-

(a) Sequence 1 (b) Sequence 2
F IGURE 13 Memory management benchmark between VineSLAM, LeGO-LOAM and LOAM algorithms for (a)
sequence 1 and (b) sequence 2.

tions during the localization process. This structure is implemented as a binary tree where data in each node is a
K-dimensional point in space. One of the advantages of this method is that it iteratively generates new nodes for
new and unvisited places that the robot discovers. Thus, it is more efficient than using a fixed size grid map that
assumes a fixed size for the global map before the robot starts exploring the space. However, for large-scale applica-
tions, the memory issue is still present since the KdTree will increasingly grow as the robot travels in the environment.
Figures 13a and 13b show that the topological architecture innovates and improves the state-of-the-art regarding
the memory consumption of SLAM algorithms. For both sequences, our approach requires much less memory than
LOAM and LeGO-LOAM. It is also worth noting that both state-of-the-art approaches present a positive derivative
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on the memory consumption curves. VineSLAM memory requirements remain approximately constant, especially for
sequence 2. It is expected that this difference in memory performance will be higher as longer are the trajectories
performed by the robot.

4.2 | Execution Time Evaluation
As referenced before, besides the memory consumption, the execution time is a key aspect of the success of a SLAM
algorithm. If one fails, the localization and mapping stages can be compromised. For this reason, this work evaluates
the execution time performance of the proposed approach considering the topological architecture. To do so, 30
different experimentswere carried out, varying the number of particles used in the localization algorithm. As explained
before, the localization uses the topological map to search for nearest neighbor features in the global map. Thus,
varying the number of particles N allows evaluating the performance of the topological implementation. Also, it
allows understanding how many particles are supported without compromising the robot loop frequency, which can
change between applications and robots. In our case, the robot requires a frequency loop equal to or higher than
10Hz. To benchmark our solution with the state-of-the-art, an analysis of the execution time performance for both
sequences is carried out for VineSLAM, LOAM and LeGO-LOAM.

Figure 14 shows the loop time spent by the entire SLAM pipeline considering 30 experiments with different
number of particles. As visible, the execution time increases almost linearly with the variation of the number of par-

F IGURE 14 Relation between the number of particles used in the localization process and the average
execution time of the entire SLAM loop.

ticles used in the localization procedure. The greater the number of particles N , the higher the number of operations
executed to compute the robot localization. Since the particle filter discretizes the 6-DoF space in N hypotheses
(particles), when N increases, the robustness of the filter also increases. This is true until a certain value of N where
the increase in the number of hypotheses does not bring new or relevant information to the filter. Thus, the most
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important aspect is to be able to choose N that optimizes the filter performance without compromising the robotic
loop frequency. From Fig. 14 one can see that the SLAM algorithm can perform with a frequency higher than 10Hz
for N ≤ 600. This shows that the algorithm implementation is efficient, being able to process 600 hypotheses for the
localization plus all the mapping pipeline in less than 100 milliseconds. Given all of the above, it is crucial that the
SLAM algorithm is precise for values of N lower than 600.

Figure 15 shows the execution time performance of VineSLAM using 300 and 500 particles, LOAM, and LeGO-
LOAM over time. The two state-of-the-art approaches use a localization algorithm based on two parallel processes. A

F IGURE 15 Execution time benchmark between VineSLAM using 300 and 500 particles, LOAM, and
LeGO-LOAM algorithms.

high-frequency LiDARodometry algorithm that calculates the frame-to-frame robot displacement, and a low-frequency
graph-SLAM approach that optimizes the robot pose and the 3D map. Also, their implementation is divided in four
different running threads related to LiDAR odometry, LiDARmapping, the calculation of the final robot transformation,
and feature extraction. For this comparison, we only measure the time required by the most expensive process, the
LiDAR mapping algorithm that is based on a graph-SLAM approach. As visible, LeGO-LOAM is the fastest approach,
followed by LOAM and VineSLAM. This result was expected since VineSLAM is based on a much more computation-
ally expensive localization algorithm, a PF. Nevertheless, VineSLAM can perform with a frequency higher than 10Hz
for almost all the time using 500 particles and with a frequency higher than 12.5Hz using 300 particles. This means
that this approach is suitable for execution on mobile robots, which usually require a frequency loop of 10Hz.

4.3 | Localization and Mapping Evaluation
In this section, we show the localization and mapping results of our approach (VineSLAM) and LOAM’s and LeGO-
LOAM’s for both sequences. For sequence 1, since it is a smaller trajectory without high variations on altitude or
rotation, we just show the 3D maps generated by the three algorithms. Sequence 2 is extremely challenging for
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SLAM algorithms. For this reason, we benchmark the three algorithms against a GNSS-RTK localization along the
entire trajectory. The localization performance is quantified in the three dimensions component-wise, and considering
the mean absolute error for the entire trajectory. This error is computed as follows:

ω =
1

N

N∑
i

e
(
XGi − Xi

)
, (8)

where e represents the euclidean distance operator, N represents the number of localization samples estimated by
the algorithms along the trajectory, XG

i
represents the ground truth 3D position at the instant i and Xi represents the

3D position estimated by the localization system at the instant i . Finally, to have a detailed validation of VineSLAM
performance, the maps generated by the algorithm are overlapped with satellite images of both vineyards. These
images are used as ground truth for the generated maps. This method allows the proper validation of mapping and
localization since both processes are interdependent. If we verify that mapping is successful, we can infer that we
have a precise localization, i.e., if one of the processes fails, the other will automatically fail.

Figure 16 presents the maps built by the three SLAM algorithms corresponding to sequence 1. Even without a
quantitative evaluation of the performance of each approach, in this case, it is visible that the three algorithms produce
similar 3D maps that characterize the environment realistically.

For sequence 2, a more detailed evaluation was performed. Figure 17 shows the maps generated by VineSLAM
and LOAM. Since LeGO-LOAM failed for this sequence, it could not provide a reliable 3D map of the environment. As
represented in Fig. 18, both VineSLAM and LOAM are able to estimate the robot pose for the entire sequence, while
LeGO-LOAM fails. It is worth noting that this is a challenging trajectory, with 337.1 meters of extension, where the
robot goes down and up more than 7 meters through steep slopes. Table 3 shows the error of the three algorithms in
comparison with the GNSS-RTK ground truth. As visible, LeGO-LOAM completely fails for this sequence. VineSLAM
and LOAM present low error, with the state-of-the-art approach achieving the lowest absolute error, 0.638 meters.
These results show that VineSLAM can achieve localization errors almost similar with one of the most robust state-
TABLE 3 Localization performance of the three algorithms against the GNSS-RTK ground truth.

Algorithm X error (m) Y error (m) Z error (m) Absolute error (m)
VineSLAM 0.400 0.710 1.496 0.902 ± 0.619
LOAM 0.202 0.586 0.929 0.638 ± 0.429

LeGO-LOAM∗ 1.402 17.756 3.953 16.844 ± 23.189
∗LeGO-LOAM lost track of the robot pose in this sequence.

of-the-art SLAM algorithms, without compromising the available memory resources in a long-term and large-scale
perspective. All the algorithms present higher error in the altitude component. The harsh terrain inclinations are
challenging for SLAM algorithms that, without an additional source of information to avoid this, present error in this
component.

Finally, to have a more clear perception of the performance of VineSLAM’s localization andmapping, the 3Dmaps
generated were overlapped with satellite images for both sequences. As visible in Fig. 19, both for sequence 1 and
2, there is a clear alignment between the 3D maps and the ground truth satellite images. This can be mainly seen by
the external agents to the vineyard, such as trees in sequence 1, and the house in sequence 2 that clearly matches
the satellite image. This proves the validity of VineSLAM to localize the robot and map the environment in harsh
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(a) VineSLAM

(b) LOAM (c) LeGO-LOAM
F IGURE 16 3D maps generated by the three SLAM algorithms for sequence 1.

conditions such as the ones presented in this paper.

5 | DISCUSSION
As stated by Bresson et al. (2017) SLAM algorithms should be able to work continuously with constant memory usage.
This scalability challenge is still an open topic in the literature. As shown in this work, even robust SLAM algorithms
for 3D outdoors navigation (LOAM and LeGO-LOAM) can still not solve this issue. Besides the problem of localization
and mapping being sufficiently tackled in the state-of-the-art, most approaches can not be used in real applications
without time and scale restrictions. This is crucial to solve the scalability issues of SLAM without compromising
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(a) VineSLAM

(b) LOAM
F IGURE 17 Inside view of the 3D maps generated by the VineSLAM and LOAM algorithms for sequence 2.

localization and mapping performance because it will open the possibility for the application of such algorithms in
real applications. For all these reasons, we consider the proposed approach of high relevance for the evolution of
autonomous mobile robots.

As shown in section 4, our approach can maintain the memory requirements constant over time. On the contrary,
state-of-the-art approaches, besides using efficient data storage structures (tree-based), increasingly require more
memory resources over time. This is not suitable for real-world large-scale applications. Even so, these approaches
are well-known in the literature for being extremely accurate in terms of localization and mapping. For example,
LOAM occupies the third place in the Kitti dataset Geiger et al. (2012) regarding SLAM evaluation, and LeGO-LOAM
is an improved version of LOAM. Thus, an approach that presents similar localization and mapping results to LOAM
and LeGO-LOAM, solving the SLAM scalability challenges, consists of a significant innovation of the state-of-the-
art. For this reason, we also compare the three approaches in terms of execution time and localization and mapping
performance. As shown in the results section, LOAM and LeGO-LOAM are faster than VineSLAM. These algorithms
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(a) Top view - xOy plane. (b) Side view - xOz plane.
F IGURE 18 Evaluation of the trajectory estimated by the three algorithms against the GNSS-RTK ground truth.
The figure shows (a) a top view perspective where a 2D trajectory can be observed and (b) a side view perspective
where the altitude estimation can be evaluated.

are based on a Graph-SLAM efficient approach. This was the expected outcome since our approach is based on a
PF that is natively more computationally expensive. We chose the PF for two main reasons: first, as shown before,
this approach is under-explored in the literature, especially in outdoor 3D SLAM. Second, the morphology of the PF
is extremely parallelizable. Our main goal in the future is to deploy VineSLAM in dedicated hardware with Graphical
ProcessingUnit (GPU) optimizations. Without these optimizations, ourmain goal in thisworkwas to develop a solution
that, besides being slower than optimization-based state-of-the-art algorithms, does not compromise the robot loop
frequency. As shown, our approach presents a frequency higher than 10Hz, which is suitable for deployment on our
robotic platforms.

In terms of localization, we tested the three approaches in harsh conditions, especially sequence 2 since it presents
steep slopes, challenging inclinations, and navigation over long vineyard corridors. These conditions are reflected in
LeGO-LOAM’s performance, which fails (lost track of the robot motion). As analyzed before, to evaluate the localiza-
tion performance, the trajectory estimated by each algorithm was benchmarked against an GNSS-RTK localization.
VineSLAM and LOAM can track the robot motion with low error during the entire trajectory, being able to deal with
the challenging conditions present in this agricultural scenario. Besides LOAM presenting the lowest absolute error
in relation with the RTK sensor, VineSLAM can also maintain low errors with the advantage being scalable for larger
environments since its memory requirements are independent of the operation time. Results also show that the future
of localization algorithms should focus on dealing with high altitude variations. Both LOAM and VineSLAM present
higher errors in this component, since they accumulate drift when the robot is going up or down along the steep slope
hills.

6 | CONCLUSIONS
Agriculture robotics brings the challenge of scalability. The implementation of robotics in these environments requires
that robots are autonomous along the vast terrain extensions considering the limited resources of the processors
used. One of the major limitations of the state-of-the art of 3D localization and mapping algorithms are the memory
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(a) Sequence 1 (b) Sequence 2
F IGURE 19 Overlap between the 3D maps generated by VineSLAM and satellite images of the vineyards
corresponding to the two sequences.

management procedures. The majority of the algorithms require more memory to store the maps as it grows.
This work proposes a localization and mapping algorithm suitable for operation in real robotic applications pro-

viding a memory management algorithm that is constant over time. This structure enables a memory consumption
almost independent of time, and lower than the required by the current state-of-the-art algorithms. Also, results show
that our approach presents a localization precision aligned with the state-of-the-art and is more efficient in terms of
memory consumption.

The localization algorithm presented is based on a PF, which is a computationally expensive approach. As de-
scribed in section 4, VineSLAM has a frequency loop lower than LOAM and LeGO-LOAM. For this reason, in future
work, we will accelerate our SLAM algorithm in a GPU with parallelization techniques. Additionally we will deploy the
algorithm on robots that are intended to perform agricultural tasks such as spraying and pruning.
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5.5 Final remarks

VineSLAM formulates the localization and mapping problem in a way that allows

agricultural robots to: localize themselves in 3D; reconstruct the environment

considering point- and polygon-based features; create semantic maps and visualize

them on top of the 3D reconstruction; and operate without time or scale limitations

through the use of a topological map. This approach opens the door to the

implementation of autonomous precision agriculture tasks and represents a step

forward regarding autonomous navigation in agriculture. It is worth noting that

the algorithm was not only tested in agricultural environments such as vineyards

and orchards, but also in indoor scenarios. On the other hand, forest environments

were not considered, and should be approached in the future. In addition, the

algorithm does not provide a loop closure approach which should be researched and

implemented in the future. This will allow the correction of accumulated drift when

robots navigate in large extensions.
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6 Conclusions and future work

The overall thesis achievements, its limitations and its conclusions are presented in

this chapter. Then, the guidelines for a continuation of the work proposed in this

thesis are presented.

6.1 Research Achievements

Chapter 1 defined the main statement of this thesis: it is possible to localize

a robot and simultaneously map the environment in long-term and

large-scale considering metric, semantic, and topological information by

the fusion of different types of sensors. To fulfil this statement, this work

partitioned it in five main goals:

G1 - An approach for automatic extrinsic calibration method to calibrate

the main sensors used in the proposed localization and mapping

algorithms - cameras and 3D LiDARs

The multi-layer mapping architecture proposed in this thesis imposes the use of two

main sensors: cameras and 3D LiDARs. Since it is intended that VineSLAM works

in any robotic platform with any physical sensor configuration, it is important that

the extrinsic calibration between the cameras and LiDARs is made automatically.

267
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This approach is more precise and robust than finding the physical relationship

between sensors manually. In this way, sensors can be positioned in any way,

and the extrinsic calibration procedure is responsible for estimating and providing

the proper spacial relationship between them. Thus, this thesis contributed to a

general calibration toolbox called ”ATOM - A Calibration Framework using the

Atomic Transformations Optimization Method” by implementing an algorithm for

the simultaneous calibration of multiple cameras and LiDARs. Results show that

the algorithm is able to calibrate simultaneously two cameras and one 3D LiDAR,

also estimating the intrinsic parameters of the cameras. The published paper

proved that ATOM has a similar or better performance than conventional pairwise

calibration methods even when calibrating the entire sensing system simultaneously.

For camera-to-camera calibration it achieved an RMS error of 0.97 pixels, and for

camera-to-LiDAR 3.81 pixels. This work made possible the use of any camera-to-

LiDAR configuration, enabling sensor fusion on VineSLAM. Thus, G1 was achieved

with success.

G2 - An approach for a perception system that can recognize and detect

semantic elements in agricultural environments

One of the key roles of VineSLAM is to have a semantic perception of the agricultural

environments. The creation of maps of the crops with the position of natural agents

and their corresponding labels is extremely important for precision agriculture tasks

such as spraying, harvesting, or pruning. This thesis explores the use of lightweight

DL models to detect vine trunks and grape bunches aiming to create semantic

maps of the vineyard. Four papers were published in this scope. Three of them

regarding vine trunk detection and one regarding grape bunche detection. These

papers evidence an evolution of the approach, with the increase of the dataset size

over time, the exploitation of new models and hyperparameters, and the benchmark

between different devices to execute the perception system. This research resulted

in a perception system that is executed at the Edge, i.e., in a dedicated hardware

device, and that is capable to detect vine trunks and grape bunches in different

growth stages. For this reason, the semantic system conceptualized in G2 was

achieved with success. Results demonstrated that vine trunks are detected with an

average precision of 84.16% and grape bunches with 44.93%. The lower detection

precision of grape bunches is a limitation of the semantic perception system, that

should be overcomed in the future.
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G3 - An approach for a 6-DoF localization approach based on 3D metric

information considering the geometry of the environment

The multi-layer mapping architecture must be supported by a robust localization

system. In addition, one of VineSLAM’s main goals is to enable agricultural robots

to be autonomous. They require a precise localization to be able to perform

precision agriculture tasks. Agricultural environments present many challenges

for localization systems such as terrain irregularities, unstructured scenes, among

others. Also, crops located along mountain hills present additional challenges

such as the recurrent unavailability of GNSS due to signal blockage or multi

reflection. VineSLAM’s localization system should be robust to all these conditions

to be generalized for any kind of agricultural environment and enable autonomous

processes. Chapter 5 shows that the proposed approach can localize robots using

metric features such as points and polygons. The addition of semiplanes to

the conventional point features consists of a major innovation since it enables

to continuously estimate the ground plane and vegetation walls considering that

these planes are finite due to the lack of structure in agriculture. To reduce the

computational cost associated with the PF, a refinement step was also proposed

using point clouds generated from stereo cameras that allows the increase of

performance without needing to increase the number of particles. Results in the

four published/submitted articles show that VineSLAM can localize robots with

precision even under these challenging conditions without using a source of GNSS

information. VineSLAM was formulated to work in agricultural contexts, but is

general enough to operate in other contexts, namely indoor environments. This

approach was tested in multiple robots and contexts, being proved that it works

with at least three LiDAR models, and that can localize robots with precision in

vineyards, orchards and indoor environments. Due to all of this, G3 was completed

successfully. It is worth noting that VineSLAM does not provide a loop closure

procedure, which can be a limitation, especially when working without an absolute

positioning sensor (like GNSS) since the localization error is cumulative which can

lead to drift on the pose estimation.

G4 - An approach for semantic mapping to create maps of agricultural

environments with meaningful information in different growth stages

The thesis statement emphasis the importance of developing a semantic mapping

algorithm. After having a robust localization approach and a perception system,

all the required inputs to create semantic agricultural maps are available. The
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designed mapping approach uses a monocular camera for the semantic detections

and fuses them with the metric map that is simultaneously being build by VineSLAM

to calculate the depth of grape bunches and vine trunks. Since the dataset built

considers the different vineyard states, the semantic mapping approach can map it

considering different fruit growth stages. This semantic feature mapping is then

presented on top of the metric map to improve the visualization quality and further

analysis of the crop state. A part of the multi-layer mapping architecture is here

evidenced. With this, the goal proposed in G4 was achieved with success. It

should be noted that the semantic mapping process is agnostic to the type of

semantic elements detected, and thus it can be used to create semantic maps of other

environments besides agriculture. The evaluation of the semantic mapping precision

was performed by comparing multiple maps of the same crop in different stages. This

technique is not the most suitable for quantifying the effective performance of the

mapping, and should be improved in the future by collecting the real position of the

semantic elements and comparing them with the generated map.

G5 - An approach for a multi-layer mapping algorithm that is suitable

for long-term operations and large-scale environments without time and

scale limitations

One of the main goals of this thesis is to implement VineSLAM on robots that

will develop precision agriculture operations in large extensions. A state-of-the-art

problem related with SLAM systems is their large-scale capability. Many algorithms

degenerate over time since they consume all the memory resources available on the

processors that execute them. VineSLAM solves this by adding a new layer to the

mapping architecture, a topological map. This map, extracted from high-resolution

satellite images, partitions agricultural environments in a graph structure. This

graph enables the SLAM algorithm to efficiently load parts of the map located in

each node instead of considering the entire map extension in each time instant. The

non-allocated map nodes are stored into the system and can be loaded, deallocated,

or updated at any time. Results show that this method can maintain a memory

consumption constant over time, which enable VineSLAM to be executed without

time or scale restrictions. This fulfils with success the G5.

Overall, all the goals were achieved with success and, consequently, the thesis

statement was proven. The developed solution achieved a high level of maturity, with

an innovative multi-layer mapping architecture and a robust localization system.
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Most importantly, this thesis is a step forward to the implementation of autonomous

robots in agriculture, solving many issues that were listed in the state-of-the-art.

This work proposed several novelties and resulted in many scientific publications

and publicly available datasets that can be used and improved. Moreover, the

implementation of this thesis is entirely open-source123. The contributions made to

the calibration toolbox ATOM and the VineSLAM framework can be downloaded,

tested, and improved. Finally, one of the greatest achievements of this thesis was

the deployment of VineSLAM in three different agricultural robots, making them

autonomous in two different agricultural contexts. The robots AgRob, Modular-E,

and Weta were developed in R&D European projects aiming to perform tasks such

as spraying, mowing, pruning and harvesting.

6.2 Future Directions

The work developed in this thesis has several limitations and opened several research

topics that were not approached. Besides the future work proposals presented in

the articles, others can be considered.

Regarding the extrinsic calibration procedure, this approach is a simultaneous

calibration between multiple sensors. However, the algorithm does not consider

the calibration in relation with the robot reference frame. This means that

after calibrating the robot’s sensor topological tree, at least one sensor-to-robot

transformation has to be manually measured. In the future, the calibration

procedure could consider the robot reference frame to eliminate all the required

manual measures.

Regarding the semantic perception system, the future work could consider using

more complex DL models to achieve higher precision and recall levels. The idea of

this system is to be executed on the Edge using embedded hardware devices, which

limits the possible size and complexity of the models. In the future, more powerful

embedded devices could be considered to achieve a more robust semantic perception

system without loosing its cost-effective and time-effective characteristics.

In relation with the localization system, one of the future goals is to unify

1https://gitlab.inesctec.pt/agrob/vineslam_stack/vineslam
2https://zenodo.org/record/5362354
3https://github.com/lardemua/atom

https://gitlab.inesctec.pt/agrob/vineslam_stack/vineslam
https://zenodo.org/record/5362354
https://github.com/lardemua/atom
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the developed software solution in an embedded hardware device with GPU

optimizations. This will allow VineSLAM to be a plug-n-play solution that can

be easily installed in any robotic platform by simply connecting a network and

a power cable. Since the embedded device will have limited CPU resources, and

due to the high parallelization level of the PF algorithm, the GPU can be used to

accelerate the localization process. Additionally, a loop closure algorithm should be

researched and integrated to account for the correction of drift accumulating during

the navigation.

Regarding the semantic mapping algorithm, its main limitation is the validation

process used. In this, the maps built during different growth stages were compared

and the error was calculated. Although this metric is valid, it does not provide

a ground truth for the localization of the semantic objects. In the future, a

methodology can be developed to geo-reference every semantic element present in

the crop, so that the mapping error can be directly calculated. Additionally, the

semantic mapping should be tested with different semantic elements to generate

maps of different crops, or even non-agricultural environments.

Finally, in what concerns the topological mapping procedure, one key aspect could

be developed in the future. The topological structure was used in this thesis only for

mapping purposes. One interesting research topic would be to include this structure

in the localization loop. In particular, this structure can impose constraints to the

robot’s localization and improve its performance. For example, in woody crops

with highly symmetric corridors, localization systems can fail to determine in which

corridor the robot is. The topological map can constrain the robot pose to a

single corridor by not loading adjacent corridor sub-maps. Also, since the nodes

are interconnected, it is expected that the robot transitions only for adjacent nodes.
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Aguiar, A. S., Magalhães, S. A., dos Santos, F. N., Castro, L., Pinho, T., Valente,

J., Martins, R., and Boaventura-Cunha, J. (2021c). Grape bunch detection

at different growth stages using deep learning quantized models. Agronomy,

11(9):1890. 134

273



274 REFERENCES

Aguiar, A. S., Monteiro, N. N., dos Santos, F. N., Pires, E. J. S., Silva, D., Sousa,

A. J., and Boaventura-Cunha, J. (2021d). Bringing semantics to the vineyard:

An approach on deep learning-based vine trunk detection. Agriculture, 11(2):131.

112

Aguiar, A. S., Santos, F. N. d., Santos, L. C., Sousa, A. J., and Boaventura-Cunha,

J. (2022b). Topological map-based approach for localization and mapping memory

optimization. Journal of Field Robotics. 232

Aguiar, A. S., Santos, F. N. D., Sousa, A. J. M. D., Oliveira, P. M., and Santos, L. C.

(2020b). Visual trunk detection using transfer learning and a deep learning-based

coprocessor. IEEE Access, 8:77308–77320. 78

Andresen, T., de Aguiar, F. B., and Curado, M. J. (2004). The alto douro wine

region greenway. Landscape and Urban Planning, 68(2):289 – 303. International

Greenway Planning. 3

Bailey, T. and Durrant-Whyte, H. (2006). Simultaneous localization and mapping

(slam): part ii. IEEE Robotics Automation Magazine, 13(3):108–117. 5

Billingsley, J., Visala, A., and Dunn, M. (2008). Robotics in Agriculture and Forestry,

pages 1065–1077. Springer Berlin Heidelberg, Berlin, Heidelberg. 3

de Aguiar, A. S. P., dos Santos, F. B. N., dos Santos, L. C. F., de Jesus Filipe, V. M.,

and de Sousa, A. J. M. (2020). Vineyard trunk detection using deep learning –

an experimental device benchmark. Computers and Electronics in Agriculture,

175:105535. 92

de Oliveira, M. A. R., Pedrosa, E. F., de Aguiar, A. S. P., Rato, D. F. P. D., dos

Santos, F. B. N., de Jesus Dias, P. M., and dos Santos, V. M. F. (2022). Atom:

A general calibration framework for multi-modal, multi-sensor systems. Expert

Systems with Applications, page 118000. 42

Duckett, T., Pearson, S., Blackmore, S., Grieve, B., Chen, W.-H., Cielniak, G.,

Cleaversmith, J., Dai, J., Davis, S., Fox, C., From, P., Georgilas, I., Gill, R.,

Gould, I., Hanheide, M., Hunter, A., Iida, F., Mihalyova, L., Nefti-Meziani,

S., Neumann, G., Paoletti, P., Pridmore, T., Ross, D., Smith, M., Stoelen,

M., Swainson, M., Wane, S., Wilson, P., Wright, I., and Yang, G.-Z. (2018).

Agricultural robotics: The future of robotic agriculture. 3



REFERENCES 275

Durrant-Whyte, H. and Bailey, T. (2006). Simultaneous localization and mapping:

part i. IEEE Robotics Automation Magazine, 13(2):99–110. 5

Fahimi, F. (2009). Autonomous robots. Modeling, Path Planning and Control. 5

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,

Andreetto, M., and Adam, H. (2017). Mobilenets: Efficient convolutional neural

networks for mobile vision applications. 78

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2015). You only look once:

Unified, real-time object detection. 92

Robotics, E. (2014). Strategic research agenda for robotics in europe 2014–2020.

IEEE Robot. Autom. Mag, 24:171. 3

Santos, L. C., Aguiar, A. S., dos Santos, F. N., Valente, A., and Petry, M. R. (2020).

Occupancy grid and topological maps extraction from satellite images for path

planning in agricultural robots. Robotics, 9:77. 232

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2015). Rethinking

the inception architecture for computer vision. 92




	Resumo
	Abstract
	Graphical Abstract
	Acknowledgments
	Contents
	List of figures
	Glossary, acronyms and abbreviations
	Introduction
	Context and motivation
	Thesis statement and goals
	Scientific contributions
	Thesis organization

	Related work
	Localization and mapping for robots in agriculture and forestry: A survey
	Final remarks

	Camera to LiDAR calibration
	A Camera to LiDAR calibration approach through the optimization of atomic transformations
	Final remarks

	Deep Learning-based semantic vineyard perception
	Visual trunk detection using transfer learning and a Deep Learning-based coprocessor
	Vineyard trunk detection using deep learning - An experimental device benchmark
	Bringing semantics to the vineyard - An approach on Deep Learning-based vine trunk detection
	Grape Bunch Detection at Different Growth Stages Using Deep Learning Quantized Models
	Final remarks

	VineSLAM: localization and mapping algorithm for agricultural robots
	Localization and Mapping on Agriculture Based on Point-Feature Extraction and Semiplanes Segmentation From 3D LiDAR Data
	Semantic Mapping of Grape Bunches and Stems using Sensor Fusion and a Robust Localization Algorithm
	Particle filter refinement based on clustering procedures for high-dimensional localization and mapping systems
	Topological map-based approach for localization and mapping memory optimization
	Final remarks

	Conclusions and future work
	Research Achievements
	Future Directions

	References

