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Abstract 

This work presents a methodology to manage Electric Vehicles (EVs) charging in 

quasi-real-time, considering the participation of EV aggregators in electricity markets 

and the technical restrictions of the electricity grid components, controlled by the 

distribution system operator. Two methodologies are presented in this paper to manage 

EV charging, one to be used by the EV aggregators and the other by the Distribution 

System Operator (DSO). The methodology developed for the aggregator has as main 

objective the minimization of the deviation between the energy bought in the market 

and the energy consumed by EVs. The methodology developed for the DSO allows it to 

manage the grid and solve operational problems that may appear by controlling EVs 

charging. A method to generate a synthetic EV data set is used in this work, providing 

information about EV movement, including the periods when EVs are parked and their 

energy requirements. This data set is used afterwards to assess the performance of the 

algorithms developed to manage the EV charging in quasi-real-time. 

Keywords: Aggregators; Distribution System Operators; Electric Vehicles; Electricity 

Markets; Load Management; Quasi-Real-Time Management. 

1. Introduction 

The foreseen deployment of Electric Vehicles (EVs) will considerably affect the way 
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distribution grids will be managed and operated in the future. The extra amount of 

power they will demand from the grid will oblige Distribution System Operators (DSO) 

to understand the impacts resulting from EV connection to distribution grids. Several 

approaches to this problem have been presented in literature.  

In [1][2], the authors analyzed the changes in the load diagrams of distribution networks 

for increasing penetration of EVs. Lopes et al., in [3][4], also studied the impacts of 

EVs on distribution grids. The innovation introduced by these authors was the 

evaluation of the EV charging impact on the grid technical constraints, like voltage and 

branches’ congestion levels. Papadopoulos et al., in [5], also addressed the technical 

challenges related to the EVs integration in a Low Voltage (LV) grid. Clement et al., in 

[6][7], analyzed the Plug-in Hybrid EV (PHEV) impacts on energy losses and voltage 

deviations in distribution grids. Although the methodologies proposed in papers [1] to 

[7] revealed to be interesting approaches to evaluate EV impacts, they do not provide an 

adequate method to determine the optimal EV charging schedules in quasi-real-time.  

It should be noted that for the purpose of this work, the term “quasi-real-time” is used in 

the sense of monitoring the grid and managing EVs in a short period of time, around 5 

to 10 minutes (or even less, depending on the effectiveness of the communication 

infrastructure). 

Several other works have been developed with the main purpose of determining the 

optimal (or near optimal) EV charging schedules, [8] to [11]. However, some of these 

approaches consume a lot of computation time, being unpractical for quasi-real-time 

applications. Additionally, the majority of these methods were designed focusing on a 

single specific goal, such as minimizing violations of the grid technical restrictions, 

peak load, energy losses, or violations of the EV owners’ requests, among others.  

It should be noted that the works [3][4][6][7], referred previously, also presented 
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methods to determine optimal EV charging schedules, but they were designed focusing 

only on the optimization of the grid operating conditions. They do not take into account 

the eventual existence of energy retailers, like EV aggregators, [12], or the existence of 

electricity markets. This problem was tackled, in part, in [13], by Sanchez-Martin et al.. 

These authors presented a model to control EV battery charging in real-time, but the 

methodology proposed was developed only for EV parking facilities.  

In [14], Deilami et al. also proposed a method for the EVs load management in real-

time. It focuses on the minimization of the cost of producing the extra needed energy 

plus the energy losses, taking into account the voltage constraints. Yet, it does not 

consider the existence of aggregators, nor their economic interests, which are not 

interrelated with the optimization of the grid operating conditions. 

This paper presents an innovative approach that uses a holistic methodology to manage 

EV charging in distribution grids in quasi-real-time, taking into account the concerns of 

all the players involved in the process: the technical restrictions of the grids (DSO 

concern), the periods during which EVs are parked (aggregators’ concern), the EV 

owners’ energy requests (EV owners’ concern) and the operational requirements of 

electricity markets. The development of this work involved the creation of two 

expeditious methodologies to be used by aggregators and DSO to manage the EVs 

charging in quasi-real-time, which allow, respectively:  

1. Minimizing the aggregators’ penalties for the deviations between the energy 

they bought in the markets and the energy sold to EV owners (imbalance 

settlement), thus contributing to increase the aggregators’ profit;  

2. Solving technical problems related to voltages violating operational limits or 

overloading of branches that might appear in the grid.  

In order to assess the performance of these methodologies, a synthetic EV data set was 
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used. This dataset was created with an algorithm that uses a Markov chain to simulate 

the EV movement, as well as their power requirements.  

In section 2 the framework required to enable the EVs charging management in quasi-

real-time is described. A description of the methodologies developed to manage the EVs 

charging is provided in section 3. Section 4 describes the method used to generate the 

synthetic EV data set. The grid used as case study is described in section 5, together 

with the description of the studies performed. The main results obtained from the 

simulations are presented in section 6. Finally, the main conclusions are presented in 

section 7. 

2. EVs Integration Framework 

Moving from a “fit-and-forget” policy to an active EV charging management context 

implies the creation of a suitable technical/commercial framework capable of dealing 

with the technical aspects of electricity grids and the markets operation. 

2.1 Control Structure to Manage EVs in Quasi-Real-Time 

Under this new framework, when operating the grid in normal conditions, EVs will be 

managed by a new entity – the aggregator – whose main functionality will be grouping 

EVs, according to their owners’ willingness, to exploit business opportunities in the 

markets [12]. If EVs entered the market individually, their visibility would be small and 

due to their stochastic behavior their participation in the market would be nearly 

impossible. Yet, if an aggregator exists, then the services potentially provided by EVs 

would be more significant and the confidence on its availability much higher.  

Yet, even considering the EV aggregators’ activities, a high degree of uncertainty will 

still exist related to when and where EVs will charge. Due to these uncertainties, and 

assuming that grids will evolve towards a decentralized generation paradigm, the 
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existence of a grid monitoring structure, such as the one developed for micro-grids and 

multi-micro-grids, will be required [15]. This structure will be controlled by the DSO 

and should be capable of acting over EV charging in abnormal operating conditions, i.e. 

when the grid is being operated near its technical limits, or in emergency operating 

modes, e.g. islanded operation [15]. This system should follow a hierarchical structure, 

from a central Distribution Management System (DMS) down to specific EV controllers 

to be housed in EV charging points [8].  

It is important to stress that the aggregator should always take into account the EV 

owners’ requests, which should provide information about the energy required and 

connection period via, for instance, the smart metering infrastructure [8]. The 

aggregator should have a hierarchical structure similar to the grid management 

architecture used by the DSO, as described in [15], to be capable of communicating and 

managing EV charging in quasi-real-time. Both technical and market layers will require 

an advanced communication infrastructure to enable information exchange between all 

the involved players. 

2.2 Charging Levels Considered 

There are several types of EV charging solutions being currently adopted, [16], which 

involve distinct power levels:  

1. Level 1 – Around 3 kW that can be obtained through common domestic outlets; 

2. Level 2 – 10-20 kW that can only be obtained through dedicated outlet/wiring; 

3. Level 3 – More than 40 kW that can only be obtained through dedicated outlet 

and wiring and using a dedicated off-board charger for DC fast charging. 

The charging type classified as slow refers to level 1, while the fast charging refers to 

level 3. Level 2 is an intermediate level. All the three levels were considered in this 
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work, being assumed that slow charging corresponds to level 1 – LV connections, while 

fast charging includes level 2 and 3 – Medium Voltage (MV) connections. 

Although not considered in this work, there are several studies suggesting that battery 

swapping can be an effective alternative to battery charging [17 – 22]. According to 

[23], swapping a battery can take less than 2 minutes while charging in a fast charging 

station can take up to 30 minutes. Nevertheless, this alternative also has some 

drawbacks, namely the capital expenditure of building the stations and having sufficient 

batteries in stock. Better Place filing for bankruptcy shows that this business model may 

be flawed [24]. Additionally, the need for standardization of battery dimensions, shape 

and chemistry across different manufacturers is another important issue for battery 

swapping that remains unsolved.  

It should be noted, however, that battery swapping stations will need to absorb power 

from the grid for charging the batteries in stock. So from the grid point of view, a 

battery swapping station is not much different from a fast charging station – both are 

loads. For this reason, battery swapping stations could be easily integrated in the 

methodologies proposed in this paper, provided that the respective load diagram was 

available. As the batteries in stock do not have necessarily to be charged at a given time, 

swapping stations could even be modeled as flexible loads since the power they absorb 

from the grid can be controlled in order to cope with the needs of the DSO. 

2.3 Charging Schemes Considered 

Depending on the type of application, EV controllability may vary and, therefore, 

several control schemes may be adopted. In the solutions involving fast charging (level 

2 or 3), a full charge might take less than 1 h [16]. Due to the urgent needs from the user 

of these types of services, especially level 3 clients, no controllability is envisaged. On 
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the other hand, depending on the EV battery State-of-Charge (SOC) and capacity, full 

charge solutions involving level 1 might take up to 12 h [16]. In this charging 

alternative, it is assumed that EV owners can choose between three options: two passive 

or non-controlled (dumb charging and multiple tariff) and one active or controlled 

(smart charging), [8].  

3. Quasi-Real-Time Management of EVs Charging 

3.1 Aggregators´ Management 

The main objective of the proposed methodology is to define which smart charging 

adherents should charge at each time step, in order to minimize the deviations between 

the energy bought in the market by the aggregators and the energy consumed by EVs. It 

should be stressed that it was assumed that the power charging rate for level 1, for smart 

charging adherents, could be controlled between 0 and 3 kW. 

To achieve the intended objective, it is required to find a set of n load values, being n 

the number of smart charging adherents, which can be defined as optimal in the sense 

that they allow minimizing the deviations referred above.  

This problem may be formulated as the optimization problem shown next. 

       (1) 

Subject to 

    (2) 

         (3) 

         (4) 

         (5) 

          (6) 
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where: 

 i represents the “flexible EVs1” index; 

 t represents the current time index;  

 n is the nr. of “flexible EVs” under the aggregator control;  

  (Energy Bought by the Aggregator) represents the average power during ½ 

h, in kW, related with the energy bought in the day-ahead market by the 

aggregator for time period between t and t+1; 

; 

  (Total Inflexible EV Load) represents the “inflexible EVs2” load, in kW, 

in time step t;  

  (Flexible EV Load) represents the power absorbed by “flexible EVs” i, in 

kW, in time step t (the n  are the decision variables of the optimization 

problem; they can assume continuous values in the interval [0,3]);  

 td represents the time step at which a given “flexible EV” will be disconnected 

from the grid by its owner;  

  (State-of-Charge) represents the EV i battery SOC, in percentage, in time 

step t;  

  (State-of-Charge Requested) represents the battery SOC required by the 

owner of EV i, in percentage, in time step td;  

  represents the battery capacity, in kWh, of EV i;  

  represents the efficiency of the EVs charging process. 

Equation (2) is used to assure that the EVs battery SOC, required by the EV owners at 

the moment of disconnection, is always possible to attain when considering a maximum 

                                                           
1 “Flexible EV” are the EV whose owners have adhered to the smart charging scheme. 
2 “Inflexible EV” are the EV whose owners adhered to the dumb charging or multiple tariff schemes. 
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charging rate of 3 kW. The condition implemented in Equation (3) assures that only 

charging rates between [0,3] kW will be attributed to “flexible EVs”, as it was assumed 

that a “flexible EV” is a smart charging adherent that is charging either in a residential 

or industrial area at level 1. Equations (4) and (5) are used to guarantee that the required 

EV battery SOC and EV battery SOC in the time step t are always within the interval 

[0,100]%. Equation (6) assures that the time of disconnection always takes place after 

time step t+1. 

The objective of this optimization problem is then to minimize the sum of the absolute 

value of the deviations3. It is a linear optimization problem, which is suitable for quasi-

real-time applications since it is very fast to solve and does not require any type of 

forecasted data. It is only needed to know, for the current time step (t), the energy 

bought by the aggregators, the power consumed by the “inflexible EVs”, the moment of 

disconnection of the “flexible EVs” that are plugged-in and the energy required by their 

owners during the connection period. At this stage grid restrictions are not limiting EV 

charging, since the problem is being dealt only taking into account the market operation.  

3.2 DSO Management 

After defining which “flexible EVs” should charge and its charging rate at each time 

step, the grid operating conditions should be analyzed to detect eventual technical 

problems that may occur. If operational restrictions are violated, the DSO needs to 

define the amount of load that is required to decrease in order to bring voltages and 

ratings of branches back to the allowable limits and to define which of the “flexible 

EVs” should decrease their charging rates in order to achieve the desired load reduction.  

                                                           
3 There are two types of deviations: positive and negative. In this work, it is assumed that positive deviations are 
referred to the situations where the energy bough by the aggregators in the market is higher than the EV 
consumption, whereas negative deviations are referred to the opposite situation. 
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An effective procedure to tackle these problems was developed for this purpose, which 

is capable of tackling simultaneously multiple low voltage and lines overloading 

problems, whether these problems occur in separate feeders or in the same feeder of a 

given network. Despite only providing near-optimal results, it allows a rapid 

identification of solutions to solve technical problems in the network (by changing EVs 

load) with very satisfactory results. This approach is based on a heuristic that comprises 

two stages: 

A. On the first stage all the load data is gathered and, having knowledge of the grid 

topology and characteristics, a power flow is run to evaluate its operating 

conditions. Then, a list of problematic buses is identified and these buses are 

sequentially analyzed. A bus is flagged as problematic if it has a voltage value 

below minV  or if it is located in the upstream end of a branch with a rating above 

maxS . For each problematic bus, the feeder that contains the bus under analysis is 

selected and the amount of load that is required to decrease in each of the 

feeder’s buses is calculated. This calculation is performed iteratively, by 

decreasing in fixed value steps, in this case assumed to be 10%, the existing EV 

load in each of the buses in a feeder. Yet, it should be noted that a different load 

step decrease can be adopted. 

B. On the second stage, the “flexible EVs” that should reduce their charging rates 

are selected, in order to decrease the amount of power calculated in the first 

stage. As this methodology was developed for MV and LV networks, 

considering three-phase balanced operation, the loads resulting from the EV 

batteries charging were modeled as three-phase balanced loads. Thus, all the 

“flexible EVs” charging downstream to a feeder that contains problematic buses 

are eligible to reduce their charging rates. Yet, only “flexible EVs” that are 
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capable of effectively contributing to solve the grid problems identified before 

may be selected (this depends on their location in the grid). 

It should be noted that in a first phase this heuristic process only reduces the charging 

rates of “flexible EVs”, always taking into consideration their owners’ requests in what 

regards the battery SOC required in the moment they will disconnect from the grid. 

Nevertheless, when low voltage and branch overloading problems are so severe that the 

emergency operating state is triggered, this heuristic reduces the charging rates of all the 

EVs located in the problematic areas of the grid, disregarding if they are “flexible EVs” 

or “inflexible EVs”, in order to avoid jeopardizing global system security. 

For MV grid studies, the EVs charging at level 1 are assumed to be connected to one of 

the LV grids that are downstream the MV grid. Yet, as in this simulation the MV grids 

were modeled up to the MV/LV substation, the loads of the EVs that are connected to a 

given LV grid are grouped and represented as a single load in the respective MV bus of 

the substation. When charging at levels 2 or 3, EVs are assumed to be directly 

connected to the MV grid and thus their load will be allocated to the respective MV bus.  

The implementation of this heuristic is illustrated in Figure 1. After processing the load 

data and running a power flow, the buses 31 and 45 are flagged as “problematic buses” 

and feeder 4 and 5 are flagged as “problematic feeders” (Figure 1). The total load that 

is required to decrease is then calculated (first stage), by simulating that the EVs load in 

the buses that belong to feeders 4 and 5 is decreased by 10%. After, a power flow is run 

to verify if the low voltage and lines overloading problems were solved. If so, the total 

amount of load that is required to decrease in the buses that belong to feeders 4 and 5 is 

computed. If not, the EVs load in the buses that belong to feeders 4 and 5 continues to 

be iteratively decreased in steps of 10%, until feasible operating conditions are attained. 

After calculating the amount of power that is required to decrease in the buses of the 
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problematic feeders, it is defined which “flexible EVs” should decrease their charging 

rates to achieve the desired load reduction (second stage). In order to avoid interfering 

repeatedly with the same EVs charging in buses 31 and 45, as branches overloading and 

voltages under the allowed limits are problems that usually appear recurrently in the 

same locations of the grid, all the “flexible EVs” charging in the “problematic feeders” 

are considered to be eligible to decrease their charging rates in order to solve the 

network problems. Thus, all the “flexible EVs” charging downstream feeders 4 and 5 

are considered to be eligible to decrease their charging rates. 

Figure 1: Illustration of the approach used to solve grid technical problems. 

The two problems referred above (low voltage and lines overloading) could have been 

solved using an Optimal Power Flow (OPF)-like method for distribution networks. 

However, as the resolution of this type of problems is usually very time-consuming, 

[26], the expeditious approach presented in this section was chosen over the OPF-like 

option since the latter is rather impractical for quasi-real-time applications, [27]. 

4. Generation of the Synthetic EV Data Set 

The first step to generate the EV data set was to characterize all the EVs assumed to be 

enclosed in a MV grid used as case study (further details are provided in section 5).  

Then, the movement of the EV fleet was simulated for one week according to common 

traffic patterns (data from a region in the north of Portugal [28] was used). Having the 

EVs movement defined, their power requirements were computed and the data obtained 

was used in the case study of section 5. 

4.1 Characterization of the EV Fleet 

Each EV was initially characterized in terms of battery capacity, charging power, 

energy consumption and battery SOC in the beginning of the simulation (t=0). These 
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values were defined according to truncated Gaussian probability density functions, 

whose average, standard deviation, maximum and minimum values are shown in Table 

1. The maximum and minimum values of the functions were introduced in order to 

avoid unrealistic values for these variables when making the draw for each EV. 

While the initial battery SOC values were assumed for the purpose of this work, the 

remaining values were gathered from the information made available by 42 different EV 

manufacturers. It was assumed that the efficiency of the charging process was 90%. 

Table 1: Truncated Gaussian Distributions for EVs Characterization. 

A driver behavior was also assigned to each EV. The behaviors considered in this paper 

were obtained from a survey made within the framework of the MERGE project [16]. 

The results revealed that there are three major types of behaviors regarding EV 

charging: EV charge at the end of the day (57%), EV charge only when it needs (23%) 

and EV charge whenever possible (20%). For the drivers who charge their EVs only 

when it needs, it was assumed that the battery SOC that triggers the need for charging 

was 40%. 

4.2 Simulation of the EVs Movement 

The movement of the EVs during a week was simulated using a discrete-state, discrete-

time Markov chain, as described in [29], to define the states of all the EVs for each time 

step (in this case with a duration of 30 minutes). It was assumed that, at every unit of 

time, each EV can be in one of the following states: in movement or parked in 

residential/commercial/industrial area. After defining the EV states, a network bus 

location was attributed to parked EVs, according to a probability distribution 

proportional to the load installed in each bus. For the EVs in movement, a procedure 

was developed to account their energy consumption and the respective reduction in the 

battery SOC, as defined in [29].  
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At each time instant, the battery SOC is updated according to the energy spent in 

travelling or absorbed from the grid. It was assumed that EVs parked in 

residential/industrial areas charge at 3 kW (level 1), EVs parked in commercial areas 

charge at 12 kW (level 2) and the charging power in fast charging stations is 40 kW 

(level 3). When an EV is parked, the decision to plug it in for charging, or not, is made 

considering its driver behavior and its current SOC. 

4.3 Output Data 

The methodology described in sections 4.1 and 4.2 allows obtaining, for the period of 

one week, the following data: the periods during which EVs are plugged-in and 

available to charge, the network bus to which EVs are plugged-in, the EVs power 

absorbed in each 30 min interval, the EVs battery SOC evolution and the EVs travelled 

distances. 

5. Case Study 

The single line diagram of the MV grid from a rural area (15 kV) used as test case in 

this research can be found in [31]. It is composed by residential, industrial and 

commercial areas, thus allowing tracking each EV while commuting to and from work 

and to and from leisure activities. The power factor assumed for the conventional load is 

0.96, whereas the specified voltage in the feeding point is 1.05 p.u.. 

There is a total of 7035 conventional cars enclosed in the geographical area covered by 

this grid and it was assumed that only one fast charging station exists, located in a 

robust area of the grid (bus 231), not prone to technical limit violations. 

In order to perform the simulations, a typical weekly load diagram for this network was 

used. This diagram, depicted in Figure 2, was obtained by aggregating the load 

diagrams of the different types of consumers within the network. The network has 309 
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buses, from which 115 have loads connected. The peak load of this network is 7.3 MW 

(without EVs consumption) and the energy consumption during a typical week is 789 

MWh. 

Figure 2: Load diagram of a typical week (the pie chart shows the energy consumption per sector). 

Regarding the studies performed, three simulations were run, considering all EVs as: 

smart charging adherents (to evaluate the performance of the approach developed for 

the EVs charging management performed by the aggregators), dumb chargers, and 

multiple tariff4 adherents (to evaluate the performance of the approach developed for the 

EVs charging management performed by the DSO). For these studies, an EV integration 

level of 25% was considered (meaning that 1759 EVs were considered to exist in this 

area). In each simulation two situations are evaluated: the presence and absence of the 

grid monitoring performed by the DSO. While in the former the DSO might reduce EV 

load to avoid the violation of the grid components’ technical limits, in the latter it is 

assumed that the DSO never interferes with EV charging. These two situations were 

evaluated for comparison purposes, with the objective of analyzing the influence that 

the DSO might have over the EVs charging. 

6. Results 

6.1 Mobility Patterns 

The journeys distribution during a week and a weekend day for the dumb charging, 

multiple tariff (22h – 8h) and smart charging scenarios are presented in Figure 3. As it 

can be observed, the curves for the three charging strategies follow the same trend. This 

is, in fact, an expected result, as the same assumptions were used to simulate the EVs 

movement in all the scenarios addressed (the discrete-time, discrete-state Markov chain 

                                                           
4 The lower electricity price period assumed was that of the dual tariff policy currently implemented in Portugal: 22h 
to 8h. More information can be found in: http://www.edpsu.pt/pt/particulares/tarifasehorarios/ (in Portuguese). 

http://www.edpsu.pt/pt/particulares/tarifasehorarios/
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described previously). During the week day, three peaks are clearly noticeable in the 

figure, two most likely related with household – work commuting (around 8h and 18h), 

and the third, slightly after noon, probably related with people leaving their working 

places to have lunch somewhere else. In the weekend days, probably due to the absence 

of the household – work commuting, the journeys are more distributed during the day. 

Figure 3: Journeys distribution for the dumb charging, multiple tariff and smart charging scenarios. 

In order to provide some insights about the locations where the EVs stay parked during 

the day, the number of EVs parked in residential, commercial and industrial areas is 

presented in Figure 4. In what regards residential areas, as expected, there is a large 

number of EVs parked during the night period, both on the week and on the weekend 

days. During the day, the number of EVs parked in these areas is considerably lower 

during the week than during the weekend, probably due to the fact of most of the people 

not working during the weekend. The results are quite different for commercial and 

industrial areas, where the number of EVs parked reaches the highest values during the 

day, both on week and weekend days. Nevertheless, while the number of EVs parked in 

commercial areas reaches almost the same maximum value during all the days of the 

week, the number of EVs parked in industrial areas is considerably lower during the 

weekend than during the week. 

Figure 4: Nr. of EVs in movement and parked in the smart charging scenario. 

Three more charts are presented below, showing the power absorbed by EVs in level 1, 

2 and 3 charging facilities in the dumb charging, multiple tariff (22h – 8h) and smart 

charging scenarios. In the dumb charging scenario, Figure 5, the EVs tend to charge at 

level 1 mostly at the end of the day, which is the time period when people arrive home 

from work. The amount of power requested by the EVs during these periods would 

provoke some violations of the voltage limits of several network nodes and, in order to 

avoid them, the DSO would have to curtail part of the EVs load (dotted blue line). 
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When the system enters in the emergency operating state, the DSO tries to solve the 

problems detected only by curtailing load from EVs charging at level 1. Then, if this 

measure is not enough, the DSO might also curtail load from EVs charging at level 2 (in 

commercial areas) and at level 3 (in fast charging stations). However, it should be 

stressed that in the present case, only load from EVs charging at level 1 was curtailed. 

Regarding charging at level 2, as expected, the power absorbed by EVs follows the 

trend of the number of EVs parked in commercial areas, as it can be observed in Figure 

4.  

In the multiple tariff scenario, Figure 6, the EVs only charge in level 1 and 2 charging 

facilities between 22h and 8h, which is the period when the energy prices are assumed 

to be lower. For this reason, there are a high number of EVs connecting to the grid for 

charging at 22h and the amount of power requested provokes the violation of the 

technical limits of several network components. In order to avoid them, as it happened 

in the dumb charging scenario, the DSO would have to curtail part of the EVs load 

(dotted blue line).  

The results obtained in the smart charging scenario, Figure 7, are very similar to those 

obtained with the dumb charging, namely in what concerns level 2 and 3 power 

consumption. The only relevant differences are related with the power consumption at 

level 1, where it is clear a shift of the EVs consumption from the 19h – 24h period to 

the 2h – 7h period. 

Figure 5: Power consumption by EVs in the dumb charging scenario. 

Figure 6: Power consumption by EVs in the multiple tariff (22h – 8h) scenario. 

Figure 7: Power consumption by EVs in the smart charging scenario. 

6.2 Changes in Load Diagrams 

Figure 8, Figure 9 and Figure 10 show the load diagrams changes for the scenarios 
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simulated, assuming an EV integration of 25%. 

As shown in Figure 8, with the dumb charging, the EVs tend to charge mostly at the 

end of the day. The amount of power requested by the EVs causes a very large increase 

in the peak load, leading to the violation of the technical limits of several grid 

components. In order to avoid these violations, the DSO would have to override the 

aggregators’ control signals and reduce 25.7 MWh of the energy demanded by EVs 

during the week (black areas in Figure 8). The load reduction is calculated according to 

the heuristic described in section 3.25. 

Figure 9 shows the changes in the load diagram for the multiple tariff case. The EVs 

only charge at level 1 (slow charging) between 22h and 8h, which is the period of time 

when the energy prices are lower. For this reason, there is a high number of EVs 

connecting to the grid for charging at 22h and the amount of power requested leads to 

the violation of the technical limits of several network components. In order to avoid 

these violations, the DSO would have to reduce 21.1 MWh of the energy demanded by 

EVs during the week (black areas in Figure 9). Again, this value was obtained using the 

heuristic described in section 3.2. The remaining EVs load that appears outside the 

period 22h – 8h, is due to EVs charging at level 2  (commercial areas) and at level 3  

(fast charging station). 

In what regards smart charging, the existence of aggregators was assumed; these are 

responsible for the EVs charging management in normal operating conditions. Seeking 

to maximize their profit, the aggregators will try to buy energy in the markets in the 

periods when its price is lower and manage the “flexible EVs” charging accordingly. 

For illustration purposes, it was assumed that the energy bought by the aggregators 

corresponds to the “valley filling” curve represented by the black line in Figure 10. The 

                                                           
5 This heuristic was coded in Python programming language, whereas the power flows were run in the PSS/E 
software. 
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“valley filling” curve was obtained in two steps. First, a simulation was run considering 

all EVs as dumb charging adherents in order to quantify the average amount of load 

required by EVs during one typical week. Then the total amount of EVs load obtained 

was distributed through the week in a way that minimizes the sum of the square of the 

total load in the grid, in each time interval of ½ hour.  

On the following day, if deviations between the energy bought by the aggregators 

(“valley filling” curve) and the energy consumed by EVs are registered, the aggregators 

will be penalized in the imbalance settlement. Thus, the maximization of the 

aggregators profit cannot disregard the minimization of the referred deviations. The 

light grey area in Figure 10, referred to as aggregators’ smart charging, shows the 

results obtained with the “flexible EV” charging management performed by the 

aggregators. The “flexible EV” charging management was performed according to the 

optimization problem described in section 3.16. As no technical violations were detected 

with the smart charging, no EV load reduction was requested by the DSO, meaning that 

the DSO does not interfere with the aggregators’ profit in this case. 

Figure 8: Load diagram in the dumb charging scenario. 

Figure 9: Load diagram in the multiple tariff (22h – 8h) scenario. 

Figure 10: Load diagram in the smart charging scenario. 

6.3 Deviations from the Energy Bought by the Aggregators 

The deviations between the energy bought in the markets by the aggregators (black line) 

and the energy effectively consumed by the EVs (grey line), in the aggregators’ smart 

charging, are shown in Figure 11 (dashed black line). When the energy bought by the 

aggregators is higher than the EVs consumption, it means that no further “flexible EVs” 

are available for charging and thus the aggregator will have an energy surplus that 

                                                           
6 This linear optimization problem was solved using the simplex method available in the LINGO 13.0 software. More 
information can be found in: 
http://www.lindo.com/index.php?option=com_content&view=article&id=2&Itemid=10 

http://www.lindo.com/index.php?option=com_content&view=article&id=2&Itemid=10
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should be sold in the intraday market. Conversely, when the EVs consumption is higher 

than the energy bought, it means that the availability restrictions imposed by some of 

the “flexible EVs” exhausted the possibility of the aggregator to postpone further their 

charging. Thus they will start charging immediately. In these situations the aggregator 

will have an energy deficit that can be compensated by buying extra energy in the 

intraday market. It should be noted that these deviations would be greatly reduced if 

adequate forecasting techniques were used to determine “flexible EV” availability.  

Figure 11: Deviations between the energy bought in the markets and the energy consumed by EVs. 

6.4 Battery SOC Evolution 

In order to exemplify the battery SOC evolution of a smart charging adherent, Figure 

12 describes how the battery SOC is influenced by the charging management performed 

by the aggregator and by the DSO. Figure 12 shows three situations: when the EV 

charging is not controlled, i.e. when the EV behaves as a dumb charging adherent (black 

line), when the EV charging is only controlled by the aggregator, in normal operating 

conditions, according to the market negotiations (black dashed line) and when the EV 

charging is controlled by the DSO under emergency operating conditions. As it can be 

observed, in the first situation, the EV charging starts immediately after the EV is 

plugged-in, while in the other situations the charging is postponed according to the 

needs of the aggregator or the restrictions the DSO has to deal with. 

Figure 12: EV battery SOC evolution of a smart charging adherent. 

6.5 Voltage Profiles 

The highest peak load registered in the iterations performed for each scenario was 

analyzed, and the corresponding voltage values were plotted in Figure 13.  

The data presented in Figure 13 refers to the voltage profile of one feeder (buses 

downstream bus 107) during one day (the day selected was Wednesday). The top left 
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figure refers to the scenario without EVs, the top right figure to the aggregators’ smart 

charging, the center left figure to the dumb charging without DSO monitoring, the 

center right figure to the dumb charging with DSO monitoring, the lower left figure to 

the multiple tariff without DSO monitoring and the lower right figure to the multiple 

tariff with DSO monitoring. 

The extra power demanded by EVs causes a significant voltage drop in this feeder, 

namely during the periods when the demand is higher, that, as Figure 13 shows, violate 

by far the lower limit of 0.90 p.u. (voltage level stipulated by EN 50160 [29]) in the 

dumb charging (center left) and multiple tariff (lower left). These are the violations that 

trigger the emergency operating state and that obliges the DSO to reduce some of the 

EVs load. After running the DSO management algorithm and reducing the EVs load 

required, the voltages obtained for the dumb charging (center right) and multiple tariff 

(lower right) do not violate the lower limit specified. The voltage drop is greatly 

reduced in the aggregators’ smart charging (top right), where no violations were 

detected. 

Figure 13: Voltages downstream bus 107. 

7. Conclusions 

The integration of EVs in distribution networks is expected to impact the management 

and operation of distribution grids. In order to avoid large capital expenditures in 

network reinforcements, methods to manage the EVs charging will be required. In this 

sense, two methodologies were presented in this paper to manage EVs charging in 

quasi-real-time, one to be used by the EV aggregators and the other by the DSO.  

The approach developed for the aggregator proved to be an efficient method to 

minimize the deviation between the energy bought in the market and the energy 

consumed by EVs. Even so, some deviations were recorded in the case study analyzed, 
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which would oblige the aggregator to buy or sell the extra energy in the intraday market 

in order to avoid high penalizations in the imbalance settlement. Nonetheless, as 

referred previously, these deviations would probably be greatly reduced if adequate 

forecasting techniques were used to determine the “flexible EVs” availability. 

The approach developed for the DSO also proved to be very efficient, since it allowed 

the performance of the grid monitoring and the management of EVs in order to solve all 

the voltage problems detected (see Figure 13). It should be mentioned that no branch 

overload was detected in this network, not even in the scenarios with EVs. 

Both methodologies are suitable for quasi-real-time applications since they are capable 

of defining optimal (in the case of the aggregator management presented in section 3.1) 

or near-optimal (in the case of the DSO management presented in section 3.2) EV 

charging schedules in a very short period of time. The time needed to run the algorithms 

in a 3.16 GHz Intel Core 2 Duo CPU with 4.00 GB RAM, for this case (grid with 309 

buses and 1759 EVs), was always lower than one minute for the 336 time steps. 

For the DSO, the algorithm presented in section 3.2 can be used as a tool to detect the 

grid components that are subject to the more demanding operating conditions and that 

might need to be upgraded, to perform the grid monitoring and evaluate its operating 

conditions and manage the EVs charging in quasi-real-time to mitigate voltage or line 

overloading problems. For aggregators, the algorithm of section 3.1 can also be very 

helpful, as it allows defining the optimal bids for the day-ahead markets and managing 

the EVs charging in quasi-real-time with the purpose of minimizing the deviations 

between the energy bought in the market and the energy consumed by EVs (when the 

system is in the normal operating state). 

It should be noted that the Markov chain proposed for simulating EV travelling patterns 

and energy requirement also proved to be efficient in performing a realistic evaluation 
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of the commuting patterns and impacts that may result from the integration of EVs in 

distribution networks. It is important to notice that the model can be used for both plug-

in hybrid and full electric vehicles, as it allows specifying a wide range of 

characteristics for each vehicle that is considered in the simulation. The proposed tool 

uses a stochastic method to simulate the EV movement, allowing exploring different 

scenarios in a coordinated way. This methodology grants the possibility of obtaining 

detailed knowledge on EV individual daily routes, as well as other global indicators 

such as the electricity grid impacts provoked by the EV battery charging. It also allows 

creating prospective EV uptake scenarios, which can be used to plan the future of the 

transportation sector and of the power distribution systems. Additionally, the accurate 

quantification of the EV fleet mobility patterns and energy needs can also be used to 

evaluate the global fleet energy requirements, environmental impacts and recharging 

infrastructure needs.  

Regarding future work, the integration of the V2G mode of operation in the 

methodology developed for the EV aggregators and the impact that the network 

management performed by the DSO might have on the aggregators’ profit will be 

addressed. 
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Figure Captions 

 

Figure 1: Illustration of the approach used to solve grid technical problems.  

Figure 2: Load diagram of a typical week (the pie chart shows the energy consumption per sector).  

Figure 3: Journeys distribution for the dumb charging, multiple tariff and smart charging scenarios.  

Figure 4: Nr. of EVs in movement and parked in the smart charging scenario.  

Figure 5: Power consumption by EVs in the dumb charging scenario.  

Figure 6: Power consumption by EVs in the multiple tariff (22h – 8h) scenario.  

Figure 7: Power consumption by EVs in the smart charging scenario.  

Figure 8: Load diagram in the dumb charging scenario.  

Figure 9: Load diagram in the multiple tariff (22h – 8h) scenario.  

Figure 10: Load diagram in the smart charging scenario.  

Figure 11: Deviations between the energy bought in the markets and the energy consumed by the EVs.  

Figure 12: EV battery SOC evolution of a smart charging adherent.  

Figure 13: Voltages downstream bus 107. 



26 
 

 

Figures 

1

2 7 8 17 41

3 9 42

4 19 43

5 11 20 29 44

6 12 21 37

13 22 38

14 23 34 39

15 24 40

16 25

26

27

Swing Bus

Thermal Power Plant Hydro Power Plant

Wind 
Farm

28

18

35

4530

10

36

Feeder 1

Feeder 2

Feeder 3

Feeder 4

Feeder 5
32

33Branch with 
congestion 
problems

Bus 
selected

Bus with 
voltage 
below 

the limit
Bus 

selected

Feeders flagged as 
“problematic feeders”

EV charging downstream buses 29, 31, 33, 34, 37, 39, 41, 44, 
45 are eligible to decrease their charging in order to solve 

the problems identified in the network
(Buses 28, 30, 35, 32, 36, 38, 40, 42 and 43 do not have 

“Flexible EV” charging downstream)

31

24 Bus

Load

Power Plant

Line

Fleet of 
“Flexible EV” 
Charging 
Downstream 
a Given MV 
Bus

 

Figure 1: Illustration of the approach used to solve grid technical problems. 
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Figure 2: Load diagram of a typical week (the pie chart shows the energy consumption per sector). 
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Figure 14: Journeys distribution for the dumb charging, multiple tariff and smart charging scenarios. 
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Figure 15: Nr. of EVs in movement and parked in the smart charging scenario. 
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Figure 16: Power consumption by EVs in the dumb charging scenario. 
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Figure 17: Power consumption by EVs in the multiple tariff (22h – 8h) scenario. 
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Figure 18: Power consumption by EVs in the smart charging scenario. 
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Figure 8: Load diagram in the dumb charging scenario. 
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Figure 9: Load diagram in the multiple tariff (22h – 8h) scenario. 
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Figure 10: Load diagram in the smart charging scenario. 
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Figure 11: Deviations between the energy bought in the markets and the energy consumed by the 
EVs. 
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Figure 12: EV battery SOC evolution of a smart charging adherent. 
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Figure 13: Voltages downstream bus 107. 
 


