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Abstract: A sensing system in the near infrared region has been developed for ammonia sensing 
based on the wavelength modulation spectroscopy (WMS) principle. The WMS is a rather sensitive 
technique for detecting atomic/molecular species, presenting the advantage that it can be used in the 
near-infrared region by using the optical telecommunications technology. In this technique, the laser 
wavelength and intensity were modulated by applying a sine wave signal through the injection 
current, which allowed the shift of the detection bandwidth to higher frequencies where laser 
intensity noise was typically lower. Two multi-pass cells based on free space light propagation with 
160 cm and 16 cm of optical path length were used, allowing the redundancy operation and 
technology validation. This system used a diode laser with an emission wavelength at 1512.21 nm, 
where NH3 has a strong absorption line. The control of the NH3 gas sensing system, as well as 
acquisition, processing and data presentation was performed. 
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1. Introduction 

Ammonia (NH3) is a colourless gas composed of 

nitrogen and hydrogen with a sharp, penetrating 

odour. Sensitive and continuous monitoring of NH3 

is relevant in several applications such as 

environment monitoring to quantify NH3 emissions 

from coal waste piles in combustion [1], DeNOx 

processes, which are widely used in power plants 

and incinerators to reduce NOx emissions [2], or in 

medicine to analyse breath NH3 levels as a 

diagnostic tool [3]. 
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The main optical gas sensor technologies are 

based on absorption spectroscopy of fundamental 

bands in the 3 µm–25 µm spectral region, near 

infrared vibrational overtone, and combination 

bands from 1 µm–3 µm [4, 5]. Various NH3 analysers 

and measuring methods have been developed, 

including the differential optical absorption 

spectrometer [6], tuneable diode laser absorption 

spectrometer [7], photo acoustic spectroscopy [8], 

cavity ring-down spectroscopy [9], Fourier 

transform infrared spectroscopy [10], and others 

[11–15]. NH3 has a rich spectrum in the near 

infrared region, in the spectral range from 1450 nm 

to 1560 nm. Recently, several works have been 

developed which use the absorption lines at 1532 

nm and 1512 nm as the operating wavelength for 

NH3 sensing [16]. The wavelength modulation 

spectroscopy (WMS) technique has also been 

demonstrated in a system using a distributed 

feedback (DFB) laser diode with an emission 

wavelength at 1532 nm in conjunction with hollow 

optical waveguides [17]. Such waveguides were 

used as long-path sample cells (optical path length 

of 3 m) which were coiled to reduce the physical 

extent of the system. A portable diode-laser-based 

sensor for NH3 detection, using vibrational overtone 

absorption spectroscopy at 1532 nm (optical path 

length of 36 m), was described using a fiber-coupled 

optical element that made a trace gas sensor rugged 

and easy to align [16]. The gas sensor was used 

primarily for NH3 concentration measurements. An 

NH3 sensor based on the combination of resonant 

photo acoustic spectroscopy and direct absorption 

spectroscopy techniques with a DFB laser diode 

operating at 1532 nm, was also described [18]. 

Another photo acoustic spectroscopy sensor using a 

laser diode emitting near 1532 nm, combined with 

an erbium-doped fiber amplifier, was developed for 

NH3 trace gas analysis at atmospheric pressure [19]. 

An instrument based on off-axis integrated cavity 

output spectroscopy and room-temperature near 

infrared diode lasers, with an emission wavelength 

at 1532 nm, was applied for measurement of several 

gas species [20]. In this case, the combination of 

high-finesse optical cavities with the simplicity of a 

direct-absorption-spectroscopy technique results in 

fast, sensitive, and absolute gas measurement. A 

compact cavity ring-down spectroscopy was 

reported for the measurement of atmospheric toxic 

industrial compounds such as hydrides and 

hydrazine’s derivate of NH3 [21]. The system used a 

DFB laser diode with an emission wavelength at 

1527 nm, and it was directly modulated to produce 

the ring-down waveforms.  

The current work reports the development of an 

NH3 gas sensing system based on the WMS 

principle. This system uses a diode laser with an 

emission wavelength at 1512.21 nm, where the 

absorption coefficient of NH3 is approximately twice 

its value at 1532 nm [22]. The proposed sensing 

system also allows the selection of two multi-pass 

cells based on free space light propagation with 160 

cm and 16 cm of the optical path length. 

2. Wavelength modulation spectroscopy  

Absorption spectroscopy is based on a unique 

signature attenuation of spectral intensity caused by 

the gas to be monitored. It happens when light 

radiation interacts with molecular species and it is 

represented by the Beer-Lambert Law [23, 24]: 

    ( )
0  L

tI I e                (1) 

where   tI   and  0I   are the transmitted and 

incident light intensities at wavelength λ of the laser 

diode, respectively, and L is the interaction length or 

path length that the light has to pass through the gas. 

The absorption coefficient     is that by [23, 24] 

   C                 (2) 

where C is the gas concentration, and     is the 

specific absorptivity of the gas. The WMS is a rather 

sensitive technique based on absorption 

spectroscopy for atomic/molecular species detection, 

presenting the advantage that can be used in the 

near-infrared region [23, 24]. A typical experimental 
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configuration of WMS is composed by a 

wavelength-tuneable DFB laser diode, a function 

generator, a gas chamber, a photodetector, and a 

lock-in amplifier, as illustrated in Fig. 1. 

 

Fig. 1 Generic configuration for WMS showing detected 
signals: laser scan through a single gas absorption line (left side 
wavelength spectrum). Synchronous detection of the first and 
the second harmonic of the laser modulation through a lock-in 
amplifier (right side wavelength dependent responses of the 
measurement setup). 

This technique consists in applying a sine wave 

modulation signal, at a frequency of a few kHz, 

superimposed on the laser bias current, which in turn 

modulates both the wavelength and the intensity of 

the laser light. A ramp signal is added to sweep the 

laser frequency across the gas absorption line. The 

sinusoidal modulation in the operational kHz range 

shifts the detection bandwidth to higher frequencies 

where laser intensity noise is lower [23, 24]. 

From Fig. 1 (see left side wavelength spectrum), 

the modulated laser light interacts with the 

absorption line of the target gas and two possible 

situations may be observed: (1) the modulated 

frequency is doubled when the laser light is tuned to 

the center of absorption line and (2) the frequency 

remains unchanged when the laser is tuned out of 

the center of the absorption line. Therefore, this 

interaction between the modulated laser light and 

absorption line of the target gas generates signals at 

different harmonics of the applied modulation 

frequency—see the wavelength dependent responses 

of the measurement setup at the right side of Fig. 1 

[23, 24]. 

Gas concentration is typically detected by the 

recovery of the second harmonic (2f) of the laser 

modulation frequency through a synchronous 

detection, using a lock-in amplifier and reading its 

amplitude [23, 24]. The forms of the first and the 

second demodulated harmonics are shown in Fig. 1 

(see the wavelength dependent responses of the 

measurement setup at the right side), where the 

amplitude of the second harmonic (2f) of the laser 

modulation frequency is proportional to the gas 

concentration. The first harmonic (f) is proportional 

to the first derivative of the gas absorption line and 

equals zero when the wavelength modulated laser 

light is centered at the NH3 gas absorption line, 

therefore providing a rather sensitive mechanism to 

tune the central laser wavelength to this line [23, 

24]. 

3. Sensing system design 

The NH3 gas sensing system proposed in this 

experiment was based on the WMS principle 

(Section 2) and it was composed by two free-space 

light-propagation multi-pass cells. Such cells, with 

distinct optical path lengths, namely, 160 cm and 

16 cm, (see Fig. 2) were selected through an optical 

switch. 

 

Fig. 2 Schematic diagram of sensing system for NH3 gas 
sensing using WMS. 
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A reference gas cell in order to fine tune the 

wavelength emission of the DFB laser diode was 

also used, with an optical path length of 5.5 cm and a 

pressure of 0.263 atm at room temperature. 

The control of the NH3 gas sensing system 

presented in Fig. 2, as well as acquisition, processing, 

and data presentation was performed using a 

LabVIEW® application. 

The DFB laser diode provided 7 mW at 1512.21 

nm with a specified line-width < 2 MHz. The fiber 

was spliced to a 99/1(%) directional coupler with the 

99% power arm sent to the optical switch. The 1% 

power arm was used as the reference beam passing 

through the reference NH3 gas cell. 

Figure 3 shows the NH3 gas absorption line for a 

concentration of 100% in the 1511.2 nm–1513.6 nm 

region, a temperature range of 16.1 ºC–27.4 ºC, and 

for the current range of 27.5 mA–103 mA. As a 

result, the NH3 absorption line detected had a central 

wavelength of 1512.21 nm and a full width at half 

maximum (FWHM) of 59 pm. 

 

Fig. 3 DFB laser emission wavelength shift as function of 
the bias current, for a specific temperature, of the detected 
absorption line at 1512.21 nm. 

The laser wavelength and intensity was 

modulated by applying a sine wave signal with a 

frequency of 5 kHz. The initial injection DC current 

(laser bias) and temperature were set in the laser 

controller to 61.3 mA and 21.58 ºC, respectively, in 

order to tune the emission wavelength DFB laser 

diode to the desired wavelength of the NH3 

absorption line (1512.21 nm).  

To lock the laser wavelength to the NH3 gas 

absorption central line, the experimental setup had a 

feedback-loop that consisted in part of the emitted 

light passing through the reference gas cell. This 

means that, on Channel B of the lock-in amplifier 

(Fig. 2), the amplitude of the first harmonic must 

equal zero, thus tuning the laser wavelength to the 

targeted gas. 

The amplitude of the second harmonic (channel 

A of lock-in amplifier), which was proportional to 

the gas concentration, was normalised by the 

average laser intensity read by the photodetector, 

therefore providing compensation for undesirable 

optical power fluctuations. 

4. Ammonia sensing 

Real-time concentration measurement was 

performed by introducing NH3 gas inside the 

multi-pass cells, with 16 cm and 160 cm of optical 

path length, and sealed at the room temperature and 

atmospheric pressure (1 atm). The different NH3 gas 

concentrations were achieved by mixing a calibrated 

NH3 sample in an N2 environment. Figure 4 

illustrates the obtained results. 
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Fig. 4 Output of the sensing system versus ammonia 
concentration using the multi-pass cells of 16 cm and 160 cm. 

The proposed sensing system shows linear 

responses in the ammonia concentration range from 

0 to 10%. The limit of detection (LOD) was 0.12% 

and 0.06%, for the multi-pass cells with 16 cm and 
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160 cm, respectively. The limit of detection was 

defined according to [25]: 

 LOD b
b D

S

k
S




               (3) 

where b  and b  are the mean and the standard 

deviations of the blank measures (0% of 

concentration), respectively, and Dk  is a factor 

chosen according to the confidence level desired 

( Dk  was chosen to equal 3 that corresponds to a 

confidence level of about 90%). The sensitivity of 

the proposed system SS  is the slope ( WMSS C  ) 

of the calibration curve, where C  is the NH3 

concentration and WMSS  is the normalized signal 

measured by the sensing system that is proportional 

to gas concentration. This signal ( WMSS ) was 

obtained through division of the lock-in amplifier 

signal by the average value of the photodetector 

signal. In this case, the sensitivity obtained was 

0.73/% and 1.8/%, for the multi-pass cells with 16 

cm and 160 cm, respectively. The interaction of light 

with gas in the optical path length is higher for the 

multi-pass cell with 160 cm, thus causing an increase 

in sensitivity. 

The resolution of the system was also measured 

for each multi-pass cell. The results are depicted in 

Fig. 5. 
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Fig. 5 Resolution of the system obtained using the multi-pass 
cells of (a) 16 cm and (b) 160 cm of optical path-length. 

The change in the signal ( WMSS ) associated with 

a step change of 3% was measured by the system. 

Based on the step changes and rms fluctuations, 

resolutions of 0.014% and 0.028% were achieved 

for the multi-pass cells with 16 cm and 160 cm, 

respectively. The shorter cell presented better 

resolution because the number of total internal 

reflections (one internal reflection) was inferior to 

the one with 160 cm (ten internal reflections), 

therefore increasing the optical loss with the 

associated degradation of the signal-to-noise ratio. 

For the system resolution to benefit from the larger 

length interaction of light with gas in the case of the 

160 cm multipass cell, an increased level of optical 

power would be required, which could be achieved 

considering optical amplification. 

This sensing system also shows a fast response 

and recovery time below 1 s. Table 1 summarizes the 

system parameters for ammonia sensing. 

Table 1 Summary of the system parameters for ammonia 
sensing. 

Gas Ammonia (NH3) 

Optical path length (cm) 16 160 

Sensitivity (1/%) 0.73 1.80 

LOD (%) 0.12 0.06 

Resolution (%) 0.014 0.028 

5. Conclusions 

In this work, an ammonia gas sensing system in 

the near infrared region has been developed based 

on the WMS principle. The sensing system was 

composed by two multi-pass cells sensing heads 

based on free space light propagation with 16 cm 

and 160 cm of optical path length, permitting 

redundancy operation and technology validation. 

The DFB laser diode used in the sensing system 

worked at the wavelength of 1512.21 nm, where the 

NH3 gas has a unique absorption response and a 

stronger absorption line when compared to the 1532 

nm region, which has been used in most systems 

reported in the literature, to detect ammonia in the 

infrared region. The experimental results showed 

that the best sensitivity (1.80/%) as well as the best 

limit of detection (0.06%), were achieved with the 

multi-pass cell with 160 cm of optical path length. 

However, the cell with 16 cm presented better 

resolution (0.014%) when compared with the one 
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with 160 cm. This sensing system also showed a fast 

response and recovery time below 1 s allowing its 

use in harsh environments were concentrations 

between 15% and 28% by volume may be found. 
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