
The Modelery: A Model-Based Software
Development Repository1

Rui Couto, António Manuel Nestor Ribeiro and José Francisco Creissac Freitas Campos
Department of Informatics, University of Minho, Braga, Portugal

Abstract
Purpose – This paper presents the Modelery, a platform for collaborative repository to support model-based
software development. The Modelery is a web platform, composed both by a webpage and webservices for
interoperability.
Design/Methodology/Approach – By performing a study in the existing platforms, it was possible to
achieve a set of issues to tackle. The issues enabled the possibility to define a set of requirements. That
allowed us to design a new platform, and to perform a model driven software development process, which
started from the requirements until reaching the final software solution.
Findings – With this work it was possible to perform a survey on the currently available artifacts
repositories, categorize them and identify their shortcomings. Such was essential to define the set of
requirements for a new platform to overcome the identified issues. This process leads to a platform able to
improve the currently available solutions, and validated in the scientific community. In this paper we explore
also the applications of the repository. First, we use the Modelery to replace an older models repository.
Second, we have enabled the communication between other tools and the Modelery via webservices.
Originality/value – This work presents a new web repository for software artifacts aimed at supporting
researchers and software developers. The presented platform is an improvement over other platforms on
the integration of artifacts repository, social functionalities and scientific publications integration. We
conclude this paper by comparing the achieved platform in terms of functionalities, against the other
analyzed platforms.
Keywords: Model Driven Development, Web Information System, Models Repository, Collaborative Web
Repository, Software Engineering, Model Based Software Development, Model Driven Engineering,
Advanced Web applications, Communities on the Web
Paper type: Research Paper

1. Introduction

Research into software development processes typically produces large amounts
of artifacts, from documentation and different kinds of models to the actual code.
Organizing and sharing those artifacts has shown to be somehow a difficult task,
due to the lack of effective support. We are particularly interested in the
development of tools and techniques to support software engineering and
reengineering (c.f. Couto et al., 2012, Campos et al., 2012, Campos and
Harrison, 2009), and the problems faced by teams applying them. The amount of
produced artifacts when using these tools, and (in many cases) the distributed
nature of the teams, begs the question of how to adequately store, catalog,
archive and share such artifacts. It becomes all too easy to lose track of existing
versions, the relations between artifacts, and even the artifacts themselves.
																																																								
1	This work was carried out in the context of project Languages And Tools for Critical rEal-time Systems
(Ref. NORTE-07-0124-FEDER-000062), financed by the North Portugal Regional Operational Programme
(ON.2 - O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European
Regional Development Fund (ERDF), and by national funds, through the Portuguese funding agency,
Fundação para a Ciência e a Tecnologia (FCT).
	

The use of standard version control systems (such as Subversion (SVN)) has
shown to be inadequate (France et al., 2006a). In fact, it is not our objective to
have a system with version control capabilities, as delta updates. Instead, we aim
towards a repository for a diversity of artifacts. By artifacts, we are referring to the
inputs and outputs of a software (re)engineering process, but mostly models.
Examples of artifacts include different types of models, test cases, pattern
catalogs, processes descriptions, software prototypes, meta-models, or database
schemes. Despite being a repository able to store generic software engineering
artifacts, we will mainly refer to models in this paper.

Three main functionalities are considered relevant in this context: repository
functionalities (archive, catalog, categorize, search, explore and share
capabilities); social functionalities (groups support, associating groups with
artifacts); scientific publications support (management and association with
scientific publications). We classify such platform as a collaborative Web
repository. On the one hand, it allows multiple researchers to collaborate in a
project through a Web environment. On the other hand, it provides archiving
capabilities (i.e., a repository). We consider a Web information system to be the
best solution to access this type of system. It ensures that the users will be able
to access it from almost any device with a Web browser, without the need to
install any software. Some Web 2.0 functionalities, such as dynamic content and
user supported contents (i.e., forums), improve both the interaction of the users
with the platform, and among them.

In this paper we present and discuss the implementation of the Modelery, a
platform aimed at providing the functionalities just discussed. A previous version
of the platform was described by Couto et al., 2014a. This paper extends that
work by reviewing the related work introducing new platforms, and presenting the
improvements on the Modelery over the last version. Improvements include a
new presentation framework (Java Server Faces), which lead to the
reimplementation on part of the tool and implementation of the major
functionalities as web services. The reimplementation lead also to simplification
and refination on some functionalities, as for instance the artifacts search.

The paper is structured as follows: Section 2 reviews related work, with the
analysis of a number of similar tools; Section 3 builds on that to present the
requirements for the platform; in Section 4 the tool is described; we then present
an applicability study of the framework in Section 5; finally, Section 6 presents
some discussion about what has been achieved, and Section 7 concludes the
paper with some pointers for further work.

2. Related work

Current collaborative repository tools can be categorized into two main
approaches: data repositories and process model repositories. In this section we
analyze existing tools in each category, evaluating how suitable for our purposes
they are. This analysis provides also valuable input regarding the requirements
for this type of platform. Table 2 (see Section 6) presents the comparison of the
discussed platforms regarding their functionalities. This section presents the
most relevant tools.

2.1. Data Repositories

Data repositories are common among the database research communities. They
are the extension of a database management system, with emphasis on
metadata management. The repository consists in a “shared database of
information about engineered artifacts produced and used by an enterprise”
(Bernstein and Dayal, 1994). Model management systems are also related with
data repositories, addressing problems of models representation and processing
(Dolk and Konsynski, 1984).

ReMoDD (Repository for Model Driven Development) is a Web platform
developed by the Colorado State University Department of Computer Science
and Engineering (France et al., 2006b). This platform aims to support ways to
share models, information, case studies and knowledge among multiple
audiences, for instance teachers, researchers and students. The platform
provides the basic repository functionalities. It has artifacts listing and browsing,
sorted by several criteria: name, description, categories, author(s) or update
data. There are no further artifacts’ discovery functionalities. By opening a model
it is possible to visualize its details, post comments and download it. The artifacts
details provide only general information, and lack for instance the authoring tool,
scope and version. The groups functionality is also not deeply integrated. Finally,
at the moment, the platform is not accepting registrations.

The Software-artifact Infrastructure Repository (SRI), from the University of
Nebraska, is another repository in this case specifically for software artifacts. It is
meant for “supporting rigorous controlled experimentation with program analysis”
(Do et al., 2005). It contains Java, C, C++ and C# software systems. It supports
storing and searching artifacts, as well as showing details and downloads. This
repository is not directly suitable for our needs, as it allows only four types of
documents. Also, the search and browsing functionalities are somehow limited.

A number of other platforms include some form of repository but are more
focused in supporting specific aspects of a software engineering process. The
ATL Transformations zoo, is a static repository of ATL (a model transformation
language (Jouaulta et al., 2006)) transformation programs, presented in the form
of a list of artifacts. It is accessible both in a Web page and via the Eclipse IDE.
Despite its static nature, the integration with the IDE is a feature that we found
interesting and worth exploring. GenMyModel (Dirix et al., 2013) provides model
editing and storing functionalities. This commercial platform is more focused in
model editing than in the repository functionalities. Colex is a model repository
that focuses in model versioning and conflict resolution (Brosch et al., 2010).
This repository targets specifically models expressible in XMI (OMG 2014).

Software Engineering is not the only area where repositories have been used.
ECOBAS is a Web information system designed for ecology and environmental
sciences (Cavalcanti et al., 2002). It supports online modeling and simulation, but
also offers some interesting repository functionalities. It provides both a Web
interface and local client. The Web interface allows users to search a model by
name, by subject or by free-text. Viewing the models’ information is similar to
other repositories. It is possible to select a model from a list, and its details are
presented. The focus of this platform on ecological and environmental context
makes it unsuitable for our purposes. However, analyzing the tool made us
aware of the importance of having an open platform. A flexible platform should
provide support for a large variety of models, regardless of their application area.
Another limitation of ECOBAS is the information shown about each model, which
despite being detailed misses some relevant information such as a visual
representation.

We consider model organization, storing and categorization as the core of a
model repository. Such functionalities are also found in books managing
systems, as is the case of Shelfari. This platform provides a digital library to store
and organize books. Book entries can be searched, listed, added, removed and
rated. Cataloging is done through several aspects, such as subject, author and
tags. The concept of group is also present, where a set of users sharing the
same interests about a particular subject can discuss it. While not directly usable
for our needs, the tool provides useful hints for developing a new platform, as the
task of cataloging artifacts shares some concepts with cataloging books.

2.2. Business Process Model Repositories

Business process model repositories, are based in workflow and conceptual
modeling. They provide a repository and execution environment for those models
(Rosa et al., 2011).

Apromore (Rosa et al., 2011) is one example of Business Process Model
repository. While it was possible to test a first version of the repository, that
version has since then been deprecated and taken offline. A new version of the
tool is under development but is currently unavailable to test. Hence the current
analysis refers to the deprecated version. Apromore provides model storage and
management functionalities (both view and create/edit). The models’ discovery
functionalities are adequate, as they support listing, searching and filtering of
models (by criteria). All the models’ details are available, and it supports rating
the models. This tool provides an intuitive user interface for model management.
However, groups are not supported, and all models exist at the same level, being
available to all users (there is no visibility concept). This platform is closer to a
repository than to a collaborative environment. Additionally, it supports only the
storage of models created directly in the platform.

A number of commercial platforms exist which provide some level of repository
functionality, although that is not their main focus. Examples include ARIS, an
enterprise architecture management with an emphasis in business process
models; Adonis (Karagiannis and Kühn, 2002), which is focused in business
process management; and ModeleR (Pérez et al., 2012), an example from the
environmental management and ecological research domains. One of the
features of this latter system is its support for model execution. We are not
considering server side model execution at this stage.

2.3. Discussion

None of the analyzed tools was found suitable to fulfill the needs of a
collaborative Web repository which can fully support the archiving, sharing and
dissemination of models or other software engineering artefacts. Briefly, it is
possible to say that the tools are either for a specific domain, for a specific
language, are closed (for registration), or are too limited in functionalities. A
platform that seems promising is ReMoDD. However, a set of limitations (not the
least of which is the fact that it is currently not accepting further registrations)
makes it inadequate for our objectives. Additionally, the platform lacks Web 2.0
functionalities to encourage collaboration between researchers (Brosch et al.,
2010).

3. Requirements for a collaborative Web repository

Combining the functionalities we had initially identified with the information
extracted from the analysis above, allowed us to define a set of requirements to
guide the development of a new community supported (i.e., the models are
provided) Web repository. This section presents these requirements.

To start with, the platform will require what Rosa et al., 2011 designate as the
standard repository functionalities, which include data storage, access control,
and simple search queries. Those requirements are not enough when developing
a new system, if we want it to be better than existing solutions. Hence, it was
decided that the new platform should include some other functionalities, such as
advanced search functionalities.

3.1. Artifacts repository

The main functionalities that we look forward in a repository are model archiving
and cataloging. Archiving models in a centralized platform will help keep track of
their location, and their sharing with others. Cataloging the models allows storing
them in a meaningful manner, and eases the process of finding them at a later
stage. Cataloging enables also the possibility of other people finding the models.
While a user account is required to upload and manage models., read access to
the repository is open to all.

Searching models by text is the most direct approach to perform searches. It is
the norm in repositories and search engines in general. Textual search should
support finding models through either their name or description. This approach
will increase the probability of finding models within the repository.

Models are prone to changes and updates, and such factor is essential when
developing a repository. In order to support such behavior we propose supporting
several versions of the same model.

The decision of making a model public (accessible to everyone) or private is left
to the user. Hence, the user might decide to keep a model private, for instance
while in development, or only available to a subset of users. If a model is public,
it should be accessible by anyone. If a model is private, only the author should be
able to see and modify it. Lastly, in order to support collaboration, it must be
possible to restricted a model’s access to a group.

Users with access to a model should also be allowed to add comments and
ratings, as well as being notified when new versions are deposited in the
platform. This is where the collaborative functionalities start, in the sense that
different users may cooperate in the development or improvement of a model.

We consider interoperability between applications to be essential. While using
the Web page to interact with the repository might be the easiest way for human
interactions, the same is not true for applications communications. Also, the
interoperability allows to further extend the platform and to allow alternative
methods to access the models (as is the example with ATL zoo). In order to

support the interoperability we propose the implementation of a set of web
services to perform the most common operations in the repository.

3.2. Publications management

The main approach to disseminate scientific results is through scientific
publications. As space is typically limited it becomes useful to be able to point to
outside sources for models and other artefacts resulting from the research. In
this context it makes sense to manage references to scientific publications inside
the platform, supporting their association with available models. As a model
might also be referred in several articles, we propose a bidirectional relationship
between models and publications. With this functionality it should then be
possible to reference or search for models related with specific publications, or
conversely, search publications related with specific models.

3.3. Collaborative functionalities

It is common for the research process to involve interaction among several
persons and ideas as well as with previous works. It is also well known that
collaboration and sharing of information improves research results. From multiple
people, different approaches emerge and sometimes best results are found by
combining several peoples’ ideas. This is the basis of collaborative platforms
(Wang et al., 2010).

One solution to support collaboration in the repository would be to integrate
social functionalities with the models. The concept of groups of users, allied with
forum functionalities, seems an appropriate requirement. By creating groups
where the users can discuss ideas, and associating models to them, we aim to
foster a collaborative behaviour amongst the users of the platform.

In the same way that models have a visibility option, it makes sense to have the
same option for groups. Hence, it should be possible to make a group (as well as
its models) restrict to a set of users. With this approach only the subset of
persons related with the project will have access to the group’s information. This
is especially useful for private projects, or projects still under development.
When a model is part of a group, it would be adequate to allow both the author
and the members of the group to update it.

3.4. Levels of sharing

Not all models and groups are developed for the same purpose. Some of them
are intended to be public, other restricted to a subset of persons (and updateable
by all these persons, or by the author only) and other completely private. Also the

groups may themselves either be public or private. The distinction between all
these visibility levels is crucial to cover a broader audience of developers. Also,
an author might decide to keep a model private while developing it, and make it
public once finished. Thus retaining control over the development process.

3.5. Version Control

It is easy to think in version control functionalities (e.g. for models) as adequate
for the platform. However, at this point, such functionality will not be considered.
Firstly, implementation of version control functionalities is known as a hard task
(France et al., 2006a). Then, models can be described in many languages (some
of them domain, community or research group specific), which results in known
versioning problems (France and Rumpe, 2007). By merging these two factors
we face a complex problem that we decided not address at the moment.
Furthermore we are more interested in cataloging models (where the models
should be more stable and ready to be used by other users), than in a centralized
development tool as is the case of control version systems. Instead of managing
version control, the platform should support users in performing version control
themselves, allowing them to manually register new versions of the models.
These versions are to be sequentially numbered.

Figure 1 The Modelery’s main page.

4. The Modelery

In order to answer the above requirements we have developed the Models

Refinery (Modelery)2 platform. Our platform combines the proposed
functionalities in a Web environment accessible through the browser as depicted
in Figure 1. Additionally, it offers a set of web services for supporting
interoperability and integration with external modelling environments. The
platform was developed according to a model driven methodology, and used the
Modelery itself to keep track of the source models.

4.1. Artifacts repository

The models (artifacts) repository functionality was the major concern in designing
and developing the platform. The Modelery archives and makes available, not
only the models, but also their meta-data. This meta-data (see Table 1)
constitutes the model’s entry, provided by the user when submitting to the
repository.

Item Description

Name The name of the artifact

Author The author of the artifact, automatically associated

Date Date of submission

Description A description of the artifact

Institution Institution where the artifact was produced

Tool Tool which originated this artifact

Tags A set of tags, associated with the artifact

Language The language in which the artifact was created (for instance,
programming language)

Publications List of publications associated with the artifact

Visibility Visibility of the artifact: Only to author, to group, or public

Updateable Whom may update the artifact: only the author, or the group

Group The group which the artifact may belong

Image An image representing the artifact

																																																								
2	http://modelery.di.uminho.pt		
	

File The artifact file itself

Table 1 Artifact Meta-data.

While any user might search and view (public) models, registration is required in
order to create a new one. Figure 2 presents the user interface for adding a
model. Mandatory fields are signaled with an asterix (“*”). Hence, for example, a
model must always have a name and an author. The model file must be also
specified, and it is then uploaded and stored online in the platform. The model’s
author is able to both update the model (by submitting a new version - with the
previous version being kept on record), and to edit the models’ meta-data.

Figure 2 Adding a model.

In accordance with the identified requirements, the platform supports a number of
features that help manage and share models: groups, publications and visibility
options.

Two complementary ways to specify the context of a model are provided. Firstly,
a model can be part of a group. This possibility enables us, not only to aggregate
a set of models in a specific group, allowing for their categorization, but also to
restrict access to a set of persons which may view or update them, the members
of the group. Secondly, the platform provides also a means to identify the
publications in which a model is involved. This constitutes a further dimension
through which to classify and access models.

A visibility level can be defined for each model. The visibility level defines if the
artifact is visible to everyone, visible to the group members, or visible only to the

author. Besides visibility levels, the platform supports also the definition of which
users might update the model. Here, the owner of a model may let a group
update it, or restrict updates to himself/herself. The visibility level and who may
update a model are independent properties, since the model may be visible to
the group, but only the author might have permission to update it.

Once the models have been added, they can be searched for. By selecting the
search option, a listing of the existent models is presented, as depicted in Figure
3. The user may then input some text, and the listing will be filtered according to
the search criteria, presenting only those models whose name or description
match the text being input.

Because models can evolve over time, a user might wish to follow the progress
of a specific model he/she has found or added to the platform. In order to ease
the user’s access to those relevant models, the platform implements a model
“tracking” functionality. Users they provided with a list of references to the models
they have chosen to follow. Other functionalities aimed at providing an overview
of the state of the repository include a dynamic main page, which presents
information such as the last submitted models and most downloaded models,
and a tag cloud. This provides an overview of the contents of the repository,
emphasizing most relevant models.

Figure 3 Searching for a model.

4.2. Publications management

As mentioned above, the Modelery supports the management of publication

entries. The publications are registered with their name, abstract and URL for the
article location, as shown in Figure 4. Contrary to what is provided for models,
publications management does not support uploading the publication itself into
the platform. We consider this to be a more efficient approach, as the platform’s
focus is not the publications themselves. Since publications may have more than
one author, they are not automatically associated with the user which created
them. Information of the authors is in the publication document itself.
Publications’ data can be input manually or obtained from a DOI. The information
can be exported to LaTeX.

Figure 4 Adding a publication.

The relation between the models and the publications can be explored starting
from different dimensions in the repository. On the one hand, publications may
refer a specific model or list of models, and it is possible to list the models
associated with a publication. On the other hand, a model may be referred to in
multiple publications, and it is possible to view all its associated publications. This
functionality provides a convenient way to explore publications along with
models, and at the same time provides more information for a given model. The
same is also true for the tools, i.e., view the tool associated with a model, or the
models associated with a tool. It allows also exploration of the support material
(i.e. the models) of the publications. Besides this browsing facilities the textual
search functionality is also provided for publications.

4.3. Collaborative functionalities

Collaborative functionalities are achieved by using Web 2.0 functionalities to

promote interaction among users (Pérez et al., 2012). This is achieved through a
number of means. Users are automatically associated with any group, model,
comment or update that they create. This allows other users to know who is the
author of a given model, or the owner of a specific group.

A functionality that is essential for promote collaborative behaviors is the
possibility of users to exchange messages inside the platform. The Modelery
supports both personal one-to-one messages, and more public messages in the
groups. The groups have a forum like message system which can be either
public or private. Finally, it is also possible to comment the models.

Interaction between the users is also supported through the models in the
platform. Registered users may interact with a model by adding comments (for
example, suggesting improvements, which will fosters the evolution of the
models). Additionally, users might rate models on a 1-5 scale, thues expressing
their assessment of the models.

4.4. Implementation

The Modelery was developed according to a multi-layer architecture, using a
model driven approach. The business layer is composed by three main parts: the
model (repository), which includes the models and all the related information; the
user, which handles user related data, such as accounts; and the groups, which
supports the groups (forum) functionalities. The Modelery class diagram is shown
in Figure 5. The persistence is achieved through the Hibernate framework, plus
MySQL database.

Figure 5 Modelery business layer class diagram.

The presentation layer was initially implemented using Java Server Pages (JSP)
and servlets over the business layer. Due to the relevance of usability
considerations for the platform’s success, an effort was made to create a
responsive user interface (for instance, avoiding full page reloads for small
requests) in order to improve the experience of the users. In a first iteration of the
platform this was mainly achieved resorting to Ajax (Zakas et al., 2006), by
performing modular page loadings. This also enabled us to provide more
lightweight Web pages and reduced bandwidth usage. Resorting to a
combination of HTML5 (Crowther et al., 2014), Cascading Style Sheets version 3
(CSS3) and jQuery, we are able to improve the user interface by, for instance,
providing early error detection when filling fields in the Web page, and better
feedback (including animations when performing changes to the page contents).
In the second iteration the usage of Primefaces3 components with Java Server
Faces has contributed to a more responsive and efficient interface.

Additionally, the Web interface was developed according to Responsive Web
Design (Ethan, 2011) concerns, thus taking into consideration compatibility with
old browsers. Even if the visual aspect is not kept (mainly due to lack of CSS3
compatibility) all the functionalities remain usable.

Following a multi-layer approach enables improvements or changes to specific
platform components with minimal or no impact on the others. Such was the case
in the second version of the platform, were the Java Server Faces (JSF)

																																																								
3	http://primefaces.org/	(visited	November	7,	2014).	

framework replaced JSP (at the user interface level), and a set of web services
were added (see the next section).

4.5. Interoperability

For all its benefits, using a Web-based repository means using a an additional
system. Storing, loading and updating models might be easier to do inside the
applications used for developing the models themselves. With that in mind, in the
second iteration of the platform set of REST web services were developed,
based on JSON (Javascript Object Notation), to allow other applications to
interact with the Modelery. The Modelery’s multi-layer architecture eased the
integration of the web services component. A servlet was developed which
handles the HTTP POST requests.

Web services are grouped according to the business entities: groups, models
and publications. For each, there is a class which handle the specific requests,
with each method in the class corresponding to a specific web service. The
servlet then forwards the requests to the corresponding classes and methods.
For this to work, which class and method is requested must be specified in the
POST message. Alternatively, we could have created a servlet for each request
type, but such would have increased the complexity of the solution.

Figure 6 shows an example of an HTTP POST request and corresponding JSON
response. At the top, the architectures of the Modelery and uCat (an external
application, see Section 5.2) are shown. The Modelery web services allow
communication with uCat, via the Modelery Connect and HTTP. The HTTP
request is shown below, where it is possible to see the several web service
parameters such as the method and class. Also, at the bottom the corresponding
response for the given request (e.g. a model entry) is shown.

Figure 6 Architecture of Modelery and uCat, and resective json Response and HTTP POST request.

The web services are meant to be used as an integration of the Modelery core
functionalities in third party applications. Hence, we consider that some
functionalities, such as creating user accounts should be left in the web page
itself.

The list of available web services is:

● List artifacts: Allows to list artifacts, filtered by the tool which originated
them or by name;

● Get an artifact: Allows to retrieve all the information related with an artifact;
● Create an artifact: Allows to create a new artifact;
● List tools: List the tools existing in the Modelery;
● Create a tool: Add a new tool;
● List the categories: List existing categories;
● List the group: List existing groups;
● List the languages: List existing languages;
● List the publications: List submitted publications;
● Create an update: Add an update to a model;
● Get a model update: Get a given model update.

This list of web services is enough to support interaction with other applications,

as we show in the next section.

Alongside the web services a Java library, the ModeleryConnect, was developed
which creates an abstraction layer over the usage of the web services by
providing methods that corresponding to the above described functionalities.

5. Applications

This section describes two examples of use of the Modelery platform. In one
case, the platform was used to replace an existing repository, the main interest
being to provide access to models developed by the team and external
collaborators in the specific topic of Human Computer Interaction (HCI). The
other case, illustrates a concrete example of the integration of repository
functionalities, via the ModeleryConnect library, into our own tools. With this it
was possible to further analyze how well the web services allow an integration of
the tool with the Modelery.

5.1. HCIspecs repository

The use of models to reason about interactive computing systems or Human
Computer Interaction is an active field of research with different modelling
languages and tools being used (see Bolton et al., 2013 for a review of the area).
HCIspecs is a repository focussed specifically on this type of models. It grew out
of a need to make available models in such a way that they could be easily
shared and referenced to (for example in publications). The goal was also to
make it available to the community at large.

The first version of the platform presented models organized by tool and by
paper. However, that fact that it was implemented on top a general purpose Web
content management system (phpwcms4) meant that a very specific approach to
adding content had to be devised so that the end result was the one intended.
Despite the platform’s qualities, achieving the intended result meant using it in
ways it had not been designed to. The end result was that adding models and
papers to the platform was a non trivial process making it hard to maintain the
platform and unrealistic to provide writing access to other users.

Adopting the Modelery as the new platform for HCIspecs is simply a matter of
installing the platform and migrating the models. By adopting the modelery we
immediately gained the possibility of enabling others to add models to the
platform Additionally we gained the possibility of supporting discussions on the
models, fostering interaction between the community. We are currently in the
																																																								
4	http://www.phpwcms.de	(last	visited	5/12/2014)	

process of migrating the models from the previous platform to the new one.

Additionally, we have added the capability of directly adding models to the
repository from our modelling tools. The next section discusses one such case.

5.2. Use Cases Analysis Tool

The Use Cases Analysis Tool (uCat) is a tool to support automatic data
extraction from use case specifications (Couto et al., 2014b). Usage of the tool
starts with the input of use case specifications. Such specifications are then
translated into OWL, making it possible to perform data inference on the Use
Case, namely requirements pattern inference. Such patterns enable the
automatic generation of the architecture of software prototypes for the described
system. In uCat use case are input as descriptions (persisted as XML files). Such
files are the models, which we wish to store in the Modelery. We have integrated
the uCat tool with the Modelery by integrating the developed Java library in the
tool, in order to provide model registration and search functionalities. Figure 7
illustrates adding a model to the repository. In the figure it is possible to see the
several required field. At the top, the user should specify the Modelery username
and password. Next, the user should provide the Modelery web service URL and
the model metadata details.

Figure 7 Uploading the login use case in uCat.

Once the models are uploaded, they can be seen and interacted through the
Web interface as any other model. It is also then possible to list and download
the models in the Modelery from inside uCat, as presented in Figure 8. This
functionality takes advantage of the web service’s support to listing the models
which match a given tool only (uCat, in this case). In the left hand side of the
figure, it is possible to see the previously uploaded Login use case. When a
model is selected, its details are presented (see right hand side window) and it is
possible to select a specific version to download. In this case it is possible to see
that we have only the base version of the model.

Figure 8 Listing and downloading a model from the Modelery.

Next we create another use case scenario, (for instance, a logout functionality).
As the model was downloaded from the Modelery, further uploads must be done
as updates. Again this can be done from inside uCat. Figure 9 shows the
interface to upload a new version of the model. We introduce the new version
code and a short description, and upload it.

Figure 9 Adding a new version to the Login use case.

Our model has now two versions (the base, and the version with the logout
functionality). If a model has several versions, it is possible to list them and
download a specific one. In Figure 10 it is possible to see that now we have both
the 0.2 and the base versions.

Figure 10 Downloading the version 0.2 of the use case from the Modelery.

6. Discussion

The Modelery is now a fully functional platform, which we consider implements
the more relevant functionalities identified in Section 3.

An alternative approach to achieve a similar platform would have been to
conjugate several other platforms into a single environment. For instance, a
Concurrent Version System (CVS) (such as SVN or GIT) for models’
management, along with an online forum (such as phpbb) for discussion issues.
However, the approach taken presents advantages over the integration of
multiple platforms. First, CVS system are mainly used and optimized for textual
documents (such as source code). They lack model targeted functionalities, and
it is harder to add functionalities (such as an online model editor) later on.
Furthermore, CVS systems are not targeted for sharing and cataloging. Using an
online forum for our objectives suffers from similar issues as the usage of a CVS
for the models, with the inability to provide specific functionalities. Integrating
visibility levels in a CVS, or groups, managed by the users, in the forum, would
have been a very hard and time consuming tasks. Combining these
functionalities to collaborate together, by providing a platform as coherent and as
practical as ours would have been more costly than developing this one. Finally,

a poor integration of these technologies might easily lead to an unpractical
platform, and result in a project failure.

Some of the repositories discussed in Section 2 offer online models’ editing. That
is an interesting functionality. However, not suitable for our repository at the
moment. Since we allow any kind of model in our repository, supporting editing
functionalities would require either a restriction on the type of supported models
(by imposing a metamodel, for instance), or selecting a subset of models for
online editing support. We have chosen to ignore this functionality for now, since
it would not lead to a solid and robust editor.

Comparing our platform against other repositories, it is possible to draw some
conclusions. There are some similarities between our tool and ReMoDD, since
our objectives are somehow similar. However, we provide some improvements
with The Modelery. First, our platform provides a larger group of functionalities
without requiring registration. An unregistered user is free to explore all the public
information, from groups to models and publications. ReMoDD is considerably
more restricted in model browsing. The only way to search content in the site
(any kind of content) is by textual search. Another possibility is to list all of the
models. The platform provides also a forum, however completely disconnected
from the models. Finally, it provides a workshop catalog system, once again,
disconnected from the models. Viewing a model’s information is very limited,
since only few informations are displayed. ReMoDD claims to be a repository for
model driven development, however our platform might provide a better support
for model driven methodologies by overcoming some of ReMoDD shortcomings.

ECOBAS has different purposes, being aimed at a specific area and focusing on
modelling and simulation. In what concerns management of models, ECOBAS is
somewhat limited in terms of the search functionality, since it only supports the
listing of models by name, or performing a textual search. Opening a model’s
entry provides a large amount of information, but lacks some of the details we
consider relevant, such as a visual representation of the model or the author.
ECOBAS lacks also other functionalities such as publications management and
discussion groups. From this point of view, the Modelery provides a more
complete environment as a model repository.

The Apromore platform shares some of our objectives, but it is currently in a
preliminary phase of development. The platform allows public models’
submission only, limiting the models’ scope. The model entries do not provide
very complete information, since apart from its name, it is only possible to view
their language, domain, ranking, version and author. The platform offers an
interesting online model editor. However that editor is language specific, allowing

only to edit one kind of model. Also, Apromore provides no other functionalities
than a model repository. At the moment, this platform has limited browser
support. Modelery provides a more usable option, since it is ready for use. Users
are free to register (contrary to Apromore), and submit any model, as well as
their relevant information.

Table 2 summarizes the comparison of the platforms.

Tool

Fu
lly

 W
eb

Li
st

V
ie

w

C
om

m
en

t
s D

ow
nl

oa
d

P
ub

lic

ac
ce

ss

G
ro

up
s

A
dv

an
ce

d
S

ea
rc

h

O
pe

n
pl

at
fo

rm

S
of

tw
ar

e
or

ie
nt

ed

ReMoDD ✔ ✔ ☐ ✔ ✔ ✖ ☐ ☐ ✖ ✔

ECOBAS ✖ ✔ ☐ ✖ ☐ ✔ ✖ ✔ ✔ ✖

Apromor
e (prev.)

✔ ✔ ✔ ✖ ✖ ✔ ✖ ✔ ✔ ✖

Shelfari ✔ ✖ ✔ ✔ ✖ ✔ ✔ ✔ ✔ ✖

SRI ✔ ✔ ✔ ✖ ✔ ✖ ✖ ✖ ☐ ✔

GenMyM
odel

✔ ✖ ✔ ☐ ✖ ☐ ✖ ✖ ☐ ☐

Modelery ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ☐ ✔

Table 2 Comparison of the analyzed repositories.

7. Conclusions

In this paper we have described a collaborative repository for software artifacts,
with a special focus on models, patterns and catalogs. We presented the
Modelery, a platform which combines an online artifact repository, publication
management and collaboration functionalities. The presented functionalities
came mainly from our needs to store, manage, catalog and make the artifacts we
produce during our research projects, available online. Also, with this platform we
have created a new means to discuss the artifacts within discussion groups. After
experimenting with a first version of the platform (Couto et al., 2014a), we have

introduced to major improvements. Firstly, we have used Java Server Faces
(JSF) to improve the interaction with the user. Secondly, we have provided a set
of web services to support connectivity of the platform with other tools.

We are now using the repository for our own needs. In the longer run we
consider the possibility to include other functionalities in the platform. Namely,
the possibility of integrating editors or the generation of graphical representations
for particular modelling languages, and also integration with verification and
validation tools (e.g. for certification purposes). The addition of web services to
the platform allows to open new horizons. We are considering the possibility to
develop standalone applications for certain functionalities, such as a desktop
application for keeping some models locally. In the same line, we are also
considering further improving the web services with more functionalities.

Acknowledgments

This work was carried out in the context of project Languages And Tools for
Critical rEal-time Systems (Ref. NORTE-07-0124-FEDER-000062), financed by
the North Portugal Regional Operational Programme (ON.2 - O Novo Norte),
under the National Strategic Reference Framework (NSRF), through the
European Regional Development Fund (ERDF), and by national funds, through
the Portuguese funding agency, Fundação para a Ciência e a Tecnologia (FCT).

References

Bernstein, P. A. and Dayal, U. (1994) An Overview of Repository Technology. In
Proceedings of the 20th International Conference on Very Large Data Bases,
San Francisco, CA, USA, pp. 705–713.

Bolton, M. L., Bass, E. and Siminiceanu, R. (2013) Using formal verification to
valuate human-automation interaction, a review. In IEEE Transactions on
Systems, Man, and Cybernetics, Part A: Systems and Humans, no. 99, pp. 1–16.

Brosch, P., Langer, P., Seidl, M., Wieland, K. and Wimmer, M. (2010) Colex: a
web-based collaborative conflict lexicon. In Proceedings of the 1st International
Workshop on Model Comparison in Practice, New York, NY, USA, pp. 42–49.

Campos, J. C. and Harrison M. D. (2009) Interaction engineering using the IVY
tool, in ACM Symposium on Engineering Interactive Computing Systems (EICS
2009), New York, NY, USA, pp. 35–44.

Campos, J. C., Saraiva, J., Silva, C., and Silva, J. C. (2012) GUIsurfer: A
Reverse Engineering Framework for User Interface Software. In Reverse
Engineering -Recent Advances and Applications, A. C. Telea, Ed. InTech, pp.
31–54.

Cavalcanti, M. C., Mattoso, M., Campos, M. L., Llirbat, F. and Simon, E. (2002)
Sharing scientific models in environmental applications. In Proceedings of the
2002 ACM symposium on Applied computing, New York, NY, USA, pp. 453–457.

Couto, R., Ribeiro, A. N., and Campos, J. C. (2012) A Patterns Based Reverse
Engineering Approach for Java Source Code. In Software Engineering Workshop
(SEW), 2012 35th Annual IEEE, pp. 140–147.

Couto, R., Ribeiro, A., Campos, J. (2014a) The Modelery: A Collaborative Web
Based Repository. In Computational Science and Its Applications – ICCSA 2014,
vol. 8584, B. Murgante, S. Misra, A. C. Rocha, C. Torre, J. Rocha, M. Falcão, D.
Taniar, B. Apduhan, and O. Gervasi, Eds. Springer International Publishing, pp.
1–16.

Couto, R., Ribeiro, A. N. and Campos, J. C. (2014b) Application of Ontologies in
Identifying Requirements Patterns in Use Cases. In Proceedings 11th
International Workshop on Formal Engineering approaches to Software
Components and Architectures, FESCA 2014, Grenoble, France, pp. 62–76.

Crowther, R., Lennon, J., Blue, A. and Wanish, G. (2014) HTML5 in Action.
Manning.

Dirix, M., Muller, A. and Aranega, V. (2013) GenMyModel: An Online UML Case
Tool. In Joint Proceedings of Tools, Demos & Posters: 14.

Do, H., Elbaum, S. and Rothermel, G. (2005) Supporting Controlled
Experimentation with Testing Techniques: An Infrastructure and its Potential
Impact. In Empirical Softw. Engg. 10, 4, pp. 405-435.

Dolk, D. R. and Konsynski, B. R. (1984) Knowledge Representation for Model
Management Systems. In Softw. Eng. IEEE Trans. On, vol. SE-10, no. 6, pp. 619
–628.

Ethan, M. (2011) Responsive Web Design. A Book Apart.

France, R., Bieman, J. and Cheng, B. (2006a) CRI: Collaborative Project:
Repository for Model Driven Development (ReMoDD), Colorado. State
University.

France, R., Bieman, J. and Cheng, B. (2006b) Repository for model driven

development (ReMoDD). In Proceedings of the 2006 international
conference on Models in software engineering, Berlin, Heidelberg, pp. 311–
317.

France, R. and Rumpe, B. (2007) Model-driven Development of Complex
Software: A Research Roadmap. In 2007 Future of Software Engineering,
Washington, DC, USA, pp. 37–54.

Jouaulta, F., Allilairea, F., Bézivina, J. and Kurtevb, I. (2006) ATL: A model
transformation tool. In Science of Computer Programming, Volume 72,
Issues 1–2, 1, pp. 31-39.

Karagiannis, D. and Kühn, H. (2002) Metamodelling Platforms. In Proceedings of
the Third International Conference on E-Commerce and Web Technologies,
London, UK, UK, p. 182–.

OMG (2014) XML Metadata Interchange (XMI) Specification.

Pérez, R., Benito, B. M. and Bonet, F. J. (2012) ModeleR: An environmental
model repository as knowledge base for experts. In Expert Syst Appl, vol.
39, no. 9, pp. 8396–8411.

Rosa, M., Reijers, H. A., van der Aalst, W. M. P., Dijkman, R. M., Mendling, J.,
Dumas, M. and García-Bañuelos, L. (2011) APROMORE: An advanced
process model repository. In Expert Syst Appl, vol. 38, no. 6, pp. 7029–
7040.

Wang, H., Johnson, A., Zhang, H. and Liang, S. (2010) Towards a collaborative
modeling and simulation platform on the Internet. In Adv Eng Inf., vol. 24,
no. 2, pp. 208–218.

Zakas, N., McPeak, J. and Fawcett, J. (2006) Professional Ajax. Wrox.

