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Abstract — This paper aims to describe a new tool to solve the 

Transmission Expansion Planning problem (TEP). The Non-

Dominative CHA-Climbing Genetic Algorithm uses the 

standard blocks of Genetic Algorithms (GA) associated with an 

improvement of the population building block using 

Constructive Heuristic Algorithms (CHA) and Hill Climbing 

Method. TEP is a hard optimization problem because it has a 

non convex search space and integer and nonlinear nature, 

besides, the difficulty degree can be further increased if it 

includes more than one objective. In this work, a multi-objective 

TEP approach is detailed using an AC Optimal Power Flow to 

generate the set of Pareto solutions using the investment cost 

and the level of CO2 emissions, i.e. two conflicting objectives.  

Index Terms — Transmission Expansion Planning, Multi-

objective approach, Pareto solutions, AC Optimal Power Flow. 

I. INTRODUCTION 

The global warming in recent decades has been conducting 
several researchers from different areas to deepen their 
knowledge on mitigating the emission of greenhouse gases 
(GHG). According to the International Energy Agency (IEA), 
the electricity sector has a fundamental importance in this 

context [1], since it is responsible for about 40% of the 
2CO   

emissions (in conjunction with heat). As shown in Fig. 1, it is 
therefore the sector responsible for the largest share of these 
emissions. 

 

Figure 1: 
2CO emissions by sector in 2013 (Source: IEA) 

The large amount of 
2CO  emissions associated with the 

electricity sector can be clearly understood analyzing the 
graph in Fig.2, in which the world power mix includes about 
70% of power stations using fossil fuels [2]. 

 

Figure 2: Fuel Share of Electricity Generation in 2012 (Source: IEA) 

Therefore, it becomes trivial that the GHG mitigation 
challenge in the electricity sector is directed to the use of 
renewable energy sources rather than fossil fuels. Nevertheless 
in order to enable the increase of the penetration of renewable 
sources it becomes necessary, in many cases, the construction/ 
installation of new equipment (transmission lines, cables, 
transformers, etc) connecting the generating stations to the 
consumer centers, which means that a long-term transmission 
expansion planning exercise is in many cases required. 

Transmission Expansion Planning (TEP) is one of the 
most challenging problems in power systems. The goal of this 
problem is the identification of the branches that should be 
reinforced or installed (or new paths to be built) and the most 
adequate schedule to expand them, to increase the power flow 
transmission capability and to alleviate network congestion. 
However, solving this problem is an extremely complex task 
since its search space has a discrete nature. Several solution 
approaches solve a relaxed continuous version of the original 
problem that is rounded at the end. This procedure does not 
ensure the identification of the global optimum. On the other 
hand, addressing the original discrete problem can lead to the 
explosion phenomenon in its search space.  
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Generally, the TEP problem considers the expansion cost 
as its objective function to be minimized. However, it can also 
be using a multi-objective approach and that should attend, 
among others, to the following objectives: 

 Alleviate transmission congestion; 

 Minimize the risk associated to the investments; 

 Minimize the investment and operation costs; 

 Increase the reliability of the network; 

 Increase the flexibility of system operation while 
reducing the network charges; 

 Minimize the environmental impacts; 

 Allow better voltage level regulation. 

In this paper, the TEP problem was modelled with two 
conflicting objectives: the investment cost and the level of 

2CO  emissions. These objectives were considered in the scope 

of a new tool that is also detailed in this paper: The Non-
Dominative CHA-Climbing Genetic Algorithm (NDCCGA). 
This tool includes the fundamental genetic algorithm blocks 
and an extra block to improve the population using 
Constructive Heuristic Algorithms (CHA) and Hill-Climbing 
(HC) techniques. Apart from that, it also includes a Tabu list 
to control the population diversity. This approach was 
developed using the AC power flow operation models, bearing 
in mind the gap between the AC and DC models [3]. Using 
this approach Transmission System Operators (TSO) will have 
more sounded information when analyzing possible solutions 

to the TEP problem, namely having different values of 
2CO  

emissions and investments costs. 

Regarding the structure of the paper, following this 
Introduction, Section II presents the AC model for the TEP 
problem and Section III provides a brief description of the 
multi-criteria approach. Section IV details the developed 
NDCCGA tool for this approach and Section V presents the 
results obtained in the simulations. Finally Section VI includes 
some comments and provides the conclusions about this work. 

II. MATHEMATICAL FORMULATION OF THE TEP 

PROBLEM 

The AC model is the most adequate model to represent the 
operation conditions of the network in the scope of the TEP 
problem, because, it has the following main characteristics:  

• It considers the reactive power; 

• Losses are inherently included in the approach. If the 
DC model was used then an estimate of network losses 
had to be obtained for instance using the approach 
detailed in [4]; 

• It takes into account the voltage limits on the bars. 

However, the use of the AC model leads to a complex 
nonlinear programming problem that requires an efficient 
optimization technique to be solved. The AC model was used 
in [5]–[7] to solve the TEP problem. In this paper the AC-OPF 
was conducted using the dispatch merit order related with the 

2CO  emissions of each power plant ( 1F ), so that the planner 

is concerned with the minimization of these emissions thus 
leading to the AC-OPF given by (1) to (9). 

Min 
1 .i GiF E P  (1) 

subject to        ( , , ) 0G DP V n P P     (2) 

( , , ) 0G DQ V n Q Q     (3) 
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In this formulation ( , , )P V n  and ( , , )Q V n  are 

calculated by (10) and (11),  and the bus conductance G and 

susceptance B are given by (12) and (13). 
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The apparent flows 
fromS  and 

toS  are calculated by (14) 

and (15) where 
from

ijP ,
from

ijQ , 
to

ijP  and 
to

ijQ  are given by 

(16) to (19). 
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In the objective function (1) 
iE  represents the 

2CO  

emission rate for generator i, 
GP  is the real power generation, 

GQ  is the reactive power generation, DP  is the real power 

demand vector, DQ  is the reactive power demand vector, 

V is the voltage magnitude vector, 
,to fromS  are the apparent 

power flow vectors in the branches in both terminals, ijg is 

the conductance in branch i-j and ijb is the susceptance in 



 

branch i-j. 

Apart from the level of CO2 emissions, each solution to 

the TEP problem is also characterized by the operation cost 

given by (20) and the investment cost calculated by (21). In 

these expressions  are coefficients of a generator cost 

function, 
ijc is the cost to install a network equipment in path 

i-j and ij  is the number of equipments of that type to install 

in parallel in that path. 
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2 1 2 3. .i i i i iF P P      (20) 

3 .ij ijF c n  (21) 

As indicated before, the multi-objective problem is 

formulated using objectives F1 (level of emissions) and F3 

(investment cost). In the current application, the operation 

cost is used to evaluate the feasibility of each solution 

because if a non-zero Power Not Supplied value occurs, then 

the F2 value is highly penalized and the corresponding 

solution is be most likely discarded in the scope of the 

Genetic Algorithm to be detailed in Section IV. 

It is important to note that the DC model has been widely 

used because of the larger computational effort involved with 

the AC model. However, in recent years computer processors 

experienced an exponential technological advance, 

dramatically decreasing the processing time. In addition, 

some researchers reported a gap between DC based and AC 

models, even if heuristic approaches are used to cope with the 

increased complexity of AC models.  According to [3] TEP 

solutions obtained using DC based models can significantly 

underestimate the expansion cost and are eventually 

unfeasible if they are analyzed using a complete AC power 

flow model.  

III. MULTI-CRITERIA APPROACH   

As previously mentioned, TEP problem usually has more 
than one objective to be achieved. However the large majority 
of papers in the literature addresses the problem with only one 
goal. The multi-objective approach requires further analysis of 
the problem and the use of techniques that enable the approach 
since the problem presents a combinatorial nature that can 
easily lead to the well known the combinatorial explosion 
phenomenon of discrete problems.  

In the approach described in this papers the objectives are 

the minimization of the investment cost ( 3F ) for a particular 

system expansion project and the minimization of the 2CO  

emissions ( 1F ) during the operation horizon. So in addition to 

the transmission expansion planning, this approach allows to 

estimate the 2CO  emissions level as well as the future 

operation costs. 

The concept of dominance was used in the NDCCGA tool, 
for this particular case, with two objectives, the minimization 

of 1F  and the minimization of 3F . In this scope, a solution ix  

dominates a solution 
jx  ( i jx x ) when: 

1 1 3 3( ) ( ) ( ) ( )i j i j i jx x F x F x F x F x     (22) 

As will be reported in the next section, the NDCCGA tool 
aims at building the set of non-dominated solutions, that is, the 
so called Pareto front. 

IV. NON DOMINATIVE CHA-CLIMBING GENETIC 

ALGORITHM TO BUILD THE PARETO FRONT 

The main blocks of the NDCCGA are similar to the ones 
of a genetic algorithm [8] applied to the solution of the TEP 
problem. Additionally, it includes an improvement population 
block and a Tabu list to control the diversity of the population. 
The population is composed of several individuals, each 
individual correspond to an expansion plan project in which 
each gene refers to the number of equipments to be 
constructed in a given path, and every individual is composed 
of a set of genes, as show in Fig. 3. 

 

Figure 3: Representation in NDCCGA. 

The initial population is randomly created and is ensured 
its diversity through a Tabu list. After this stage, the 
individuals will be evaluated according to the AC-OPF and 
each individual has its characteristics stored (expansion cost, 
operating cost, PNS and emission level). 

Then, individuals will pass through the improvement 
block, in which individuals having PNS larger than a specified 
threshold will be improved by CHA and individuals having 
PNS within the allowed limits will be improved by the Hill 
Climbing method. 

In the reproduction phase, different individuals are 
randomly grouped in pairs and their genes are exchanged in 
order to create two offspring. After that, these two offsprings 
are evaluated calculating the Operation Cost eventually 
penalized if PNS is not zero. The offspring having the lower 
Operation Cost passes to the next generation as a way to 
progressively discard solutions having non-zero PNS values. 

The mutation occurs after the reproduction phase. An 
individual and then one of its genes are randomly chosen, and 
that gene is changed using the gene of another randomly 
selected individual. Then a new offspring population is 
created, in which, some individuals were mutated. Finally, the 
selection block classifies non-dominated individuals, i.e., the 
ones that are associated to non-dominated solutions using 
equation (22). If the number of the selected individuals, that is, 
the non-dominated solutions is smaller than the size of the 
population, then a tournament selection based on the 
operational costs is used to complete the population. This 
tournament selection also includes a Tabu list in order to 
ensure diversity. At the end of this step, the new population 
will be formed by the non-dominated individuals and the 
winners of the selection tournaments. This process is repeated 
until the convergence criterion is achieved or eventually the 
maximum number of iterations is run. 



 

The improvement block is based on the individual's 
characteristics, that is, if an individual has an unacceptable 
PNS, it is improved inserting new equipments selected using a 
CHA. On the other hand, if this individual displays an 
appropriate value to PNS, it is improved by eliminating 
equipments (change in the gene) using Hill Climbing Method. 
According to this method, an equipment is removed and the 
new individual is evaluated again. If the resulting PNS value 
continues appropriate this change is confirmed. If not, the 
mentioned equipment is included back in the individual. 

CHAs are tools that have a low computational effort and 
that produce acceptable solutions [9], which makes their use 
interesting in hybridizing algorithms of the TEP problem. 
Basically, in each iteration these tools build a part of the 
solution, that is, new equipments are inserted in each iteration 
in order to progressively reduce or even eliminate PNS. The 
addition of new equipments occurs according to a preselected 
sensitivity criterion. In this case it was used the transited 
power flow, i.e, the addition is conducted in paths that display 
a larger congestion level. 

The Hill Climbing method is a local search approach that 
starts with a solution and that tries to find better solutions in 
their neighborhood, through small changes in the current 
solution. In the present case, this tool checks if a particular 
equipment is crucial for the performance of that solution, i.e. if 
equipment is removed, the feasibility of the solution is 
checked in terms of having or not PNS. If the solution remains 
feasible, that is if PNS = 0 the elimination of that equipment is 
confirmed. This technique requires the specification of the 
maximum number of individuals that will be analyzed 
(Max_Tries) as well as the maximum number of gene 
changings that are simulated (MaxFlips). 

 

Figure 3: Overview of the application of the NDCCGA to the TEP 
problem. 

Fig. 3 displays an overview of developed algorithm. In the 
selection block population (Pop) and offspring (Off) leads to 
the non-dominated solutions (NDS) and the tournament 
selection (TS) that incorporates the mentioned Tabu list to 
generate the new population. 

It is worth emphasizing that the improvement block was 
introduced by the authors due to two factors: 

i. Genetic algorithms may have a high computational 
effort, i.e. require a large number of iterations to 
converge. On the other hand, when considering an 
improvement block to accelerate the convergence, the 
population diversity may be compromised because 
individuals may become local optima. The mentioned 
Tabu list was used to overcome these problems; 

ii. When unfeasible solutions are modified introducing 
more equipments to regain feasibility, the generation 
dispatch becomes more flexible, that is, it is more 
likely to further reduce the level of emissions. On the 
other hand when removing some equipment the 
dispatch becomes less flexible and the level of 
emissions is likely to increase. Obviously, changing the 
number of equipments in the system also changes the 
investment cost. These changes are important in the 
scope of the iterative process detailed before because 
the investment cost and the level of emissions change 
eventually turning some solutions non-dominated. In 
particular, the extreme sides of the Pareto front may 
gain new solutions because including new equipments 
will increase the investment cost and conversely 
removing some equipments will reduce it. 

V. TESTS AND RESULTS   

The Non-Dominative CHA-Climbing Genetic Algorithm 
described in Section IV was applied on the modified IEEE 24 
Bus Reliability Test System. The system used in the tests has 
some differences regarding the test system proposed in [10] as 
described below: 

 Emergency Condition to the maximum allowed flow in 
a particular branch; 

 To ensure the convergence of the AC-OPF, the loads 
were considered dispatchable as described in [11]. In 
this approach the loads are modeled as negative real 
power injection with associated negative costs. This 
modeling is performed using a negative output 
generator, ranging from a minimum injection equal to 
the negative total load to a maximum injection of zero. 
This means the problem has enough flexibility to 
reduce the demand if that is required to maintain 
feasibility. Additionally, if the entire load is not 
supplied the reactive demand is reduced in the same 
proportion as a way to keep the power factor of the 
original load. 

 Reactive power sources are located in particular buses, 
as suggested in [12] and according to Table 1; 

TABLE I.  VOLTAGE CORRECTION DEVICES 

VOLTAGE CORRECTION DEVICES 

DEVICE BUS MVAR CAPABILITY 

SYNCH.  

CONDENSER 
3 350 CAPACITIVE 

SYNCH.  

CONDENSER 
9 510 CAPACITIVE 

 The values of all loads and of the installed capacity of 
all generators were tripled (real and reactive) in order 
to turn the network more stressed. 



 

According to Section IV, NDCCGA was used to build the 
Pareto front integrating solutions that reflect a trade-off 
between the minimization of Emissions (F1) and Investment 
Costs (F3). This new tool was used with a population of 1000 

individuals, penalty factor for PNS equals to 
710  €/MW and 

the cost of dispatchable loads was set at 
610 €/MW, 1 MW for 

allowed PNS, the MaxTries equals to 30 and 50 for MaxFlips. 
The voltage limit on the bars is 5% (0.95 and 1.05 p.u). The 
iterative process finishes when the solutions in the Pareto 
Front obtained in two consecutive iterations do not change 
more than a specified threshold. In the simulations to be 
detailed below convergence was obtained after running 300 
iterations because from that point onwards the changes in the 
Pareto Front were neglectable. 

The developed software converged in about 34 hours, 
solving 969.148 AC-OPFs, the NDCCGA was implemented in 
MATLAB, running on an Intel i7, 3.4GHz, 8 GB RAM, 
hardware platform and the AC-OPFs was solved with interior 
point solver using MATPOWER tool described in [11].  

Figure 3 presents the Pareto front of the TEP problem. 
Solution 8 has the largest investment cost and the lowest CO2 

emissions. On the other hand, solution 1 presents the lowest 
investment cost and the largest CO2 emissions. The other 
solutions indicated in Fig.3 are detailed in the Table 2. 

 

Figure 3: Pareto Front for minimizing Investment costs and 

2CO emissions. 

TABLE II.  DETAILED SOLUTIONS  
 

Solution Expansion Planning (path) 
Operational 

costs (€/h) 

Emissions 

(tCO2/h) 

Expansion

Costs  

( 910 € ) 

1 138 kV cable (06-10), 138 kV line (07-08) and 230 kV line (14-16) 61,7494.10  2075,17 0,086 

2 
138 kV cable (06-10), 138 kV line (07-08), 230 kV line (11-13), 230 kV line (15-21) 

and 230 kV line (15-24). 
61,7690.10  1610,27 0,2380 

3 

138 kV cable (06-10), 138 kV line (07-08), Transformer (10-12), 230 kV line (11-

13), 230 kV line (12-23), 230 kV line (15-21), 230 kV line (16-17) and 230 kV line 

(17-22). 

61,7521.10  1505,36 0,532 

4 

138 kV cable (06-10), 138 kV line (07-08), Transformer (10-11), (2) 230 kV line 

(11-13), (2) 230 kV line (12-23), (2) 230 kV line (15-21), 230 kV line (15-24) and 

230 kV line (21-22). 

61,7473.10  1479,08 0,784 

5 

(2) 138 kV cable (01-02), Transformer (03-24), (2) 138 kV line (04-09), (2) 138 kV 

line (05-10), (2) 138 kV line (07-08), (2) 138 kV line (08-10), (2) Transformer (10-

11), Transformer (10-12), 230 kV line (11-14), 230 kV line (13-23), 230 kV line (15-

16),230 kV line (16-19), 230 kV line (17-22), (2) 230 kV line (18-21), (2) 230 kV 

line (19-20), (4) 230 kV line (20-23) and 230 kV line (21-22). 

61,7406.10  1443,09 1,200 

6 

138 kV line (04-09), 138 kV line (05-10), 138 kV cable (06-10), (2) 138 kV line (07-

08), Transformer (10-12), 230 kV line (11-13), (5) 230 kV line (12-23), 230 kV line 

(14-16), 230 kV line (11-13), (2) 230 kV line (15-21), 230 kV line (15-24), 

230 kV line (16-17) and (2) 230 kV line (17-22). 

61,7375.10  1426,45 1,474 

7 

Transformer (03-24), 138 kV line (04-09), 138 kV line (05-10), 138 kV cable (06-

10), (2) 138 kV line (07-08), Transformer (10-12), 230 kV line (11-13), (5) 230 kV 

line (12-23), 230 kV line (14-16), 230 kV line (11-13), (2) 230 kV line (15-21), 230 

kV line (15-24), (2) 230 kV line (16-17), (3) 230 kV line (17-22) and 230 kV line 

(20-23). 

61,7348.10  1411,81 1,736 

8 

Transformer (03-24), 138 kV line (04-09), 138 kV line (05-10), 138 kV cable (06-

10), (2) 138 kV line (07-08), Transformer (10-12), 230 kV line (11-13), (5) 230 kV 

line (12-23), 230 kV line (14-16), 230 kV line (11-13), (3) 230 kV line (15-21), 

 230 kV line (15-24), (2) 230 kV line (16-17), (3) 230 kV line (17-22), (2) 

230 kV line (20-23) and (2) 230 kV line (21-22). 

61,7336.10  1405,39 1,870 



 

Therefore, this approach provides the set of solutions 
among which the TSO will select the one to expand the 
network according to values obtained for Functions F1, F2 and 
F3 and also having in mind limits for instance related with the 
maximum investment cost, GHG emission reduction 
agreements, etc. 

VI. CONCLUSIONS   

This paper presents a new tool able to deal with multi-
objective Transmission Expansion Planning problems. The 
multi-objective formulation includes the reduction of the 

2CO emissions (given that there is a growing concern because 

of its impact on global warming) and the minimizing of the 
investment costs in network equipments. 

The Non-Dominative CHA-Climbing Genetic Algorithm 
has the general blocks of a regular genetic algorithm with the 
addition of an improvement block and a Tabu list. The 
improvement is made using Constructive Heuristic Algorithms 
and Hill Climbing method. Each candidate solution is 
analyzed using an AC-OPF model that was preferred to DC 
based versions in view of the existing gap between these two 
models. 

The NDCCGA was applied to the IEEE 24-Bus Reliability 
Test System modified with the inclusion of two voltage 
control devices and the network operating conditions were 
stressed tripling the generation capacities and the loads, which 
in turn were considered as dispatchable. The tool showed 
excellent performance providing a number of different 

expansion plans with different values of 2CO  emissions and 

investment costs. This enables the decision maker to select the 
final one in a more informed way.  

The main contribution of this paper is the development of 
NDCCGA tool that provides to the end of its iterative process 
a tradeoff between investment cost and emissions without the 
individual and separate minimization, as in other approaches. 
This process proved to be beneficial since it saves 
computational effort, which in this case enabled using a more 
complete AC-OPF model.  
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