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Abstract Frequency blueshifting was recently observed

in light pulses propagating on gas-filled hollow-core pho-

tonic crystal fibers where a plasma has been produced due

to photoionization of the gas. One of the propagation

models that is adequate to describe the actual experimental

observations is here investigated. It is a nonlinear Schrö-

dinger equation with an extra term, to which we applied a

self-similar change of variables and found its accelerating

solitons. As in other NLS-related models possessing

accelerating solitons, there exist asymmetrical pulses that

decay as they propagate in some parameter region that was

here well defined.

1 Introduction

Hollow-core photonic crystal fibers (HC-PCF) have

recently attracted a lot of attention particularly because

they offer ultra-long single-mode interaction lengths for

nonlinear optics in gaseous media [1]. Among the kind of

HC-PCFs, we refer the kagomé type that was first reported

in 2002 [2] and owes its name to the kagomé lattice

cladding. The kagomé HC-PCF provides several hundred

nanometers band of guidance at low loss levels (&1 dB/m)

and exhibits weak anomalous group velocity dispersion

(GVD) over the entire transmission window, with low

dispersion slope. Whenever filled with gas, it enables the

self-compression of pulses to an extent that the peak

intensities may attain values above the ionization threshold

of the gas, allowing the production of a plasma. Then, the

interaction of laser light with the plasma leads to new

nonlinear effects such as the blueshifting [3] of the central

wavelength of the pulse.

Recently, Saleh et al. [4, 5] presented an amenable

model for describing the interaction between the optical

pulse and plasma on those gas-filled kagomé HC-PCFs.

The model was used by them to predict the extent of fre-

quency blueshifting by means of a perturbation approach.

Following these preliminary perturbation results, a thor-

ough study on the existence of accelerating solitons to such

a model, including the plasma but also the stimulated

Raman scattering term, was performed [6]. There, it was

shown that indeed there are self-similar pulse solutions of

such model that accelerate while its central frequency

blueshifts. However, it was reported that for large strength

of the plasma nonlinearity or small pulse amplitudes, the

pulses have distinguished long tails and decay as they

propagate. The latter analysis was done with a scaling that

resulted in a ODE with four parameters, one for the

intensity threshold, other for the acceleration and both the

plasma and Raman terms accommodated with only one

parameter and a ratio between the strength of them. This

scaling was such that both the extra nonlinear parameter

and pulse amplitude of the final normalized model should

be very small in order to describe the actual physical

experiments. Here, we disregard the Raman term and use

an approximate equation of this model that was already

used in [4], and obtain a two-parameter ordinary differ-

ential equation (ODE) for the accelerating pulse profiles,

finding the parameters ranges for symmetrical pulse pro-

files and for long tail pulses. Furthermore, our results,

confirmed by numerical simulations of the evolution of
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sech pulses, also show that even though there is always

pulse decay for the parameter range corresponding to

asymmetrical pulse profiles, the decay rate can increase or

decrease during propagation depending on these

parameters.

2 One-parameter ODE and perturbation approach

The model introduced in [4, 5] for pulse propagation in

nonlinear gaseous media presenting Kerr and plasma

nonlinearities has the following dimensionless version
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where q = (cz0)1/2w represents the optical field envelope

w, n = Z/z0 and s = t/t0 are normalized versions of the

propagation distance Z and time t in a reference frame that

travels at group velocity, /T ¼ 1
2
k0z0ðxT=x0Þ2 refers to the

maximum plasma frequency xT and r ¼ ~rt0=ðAeffcz0Þ to

the photoionization cross section ~r, Djqj2 ¼ jqj2 � jqj2th
where |q|th

2 is related to the ionization intensity threshold

and H is the Heaviside step function. On these latter

relations, z0 = t0
2/|b2| is the so-called dispersion length (b2

is the GVD parameter), t0 is an arbitrary time chosen

similar to the pulse duration, Aeff is the effective optical

mode area, c is the nonlinear Kerr parameter, x0 is the

central frequency of the pulse and k0 the corresponding

vacuum wavenumber. Note that this model assumes that

the recombination time is longer than the pulse and does

not consider the ionization-induced loss that is small

especially for pulses whose peak is barely above the

threshold.

Referring to experimental data [3], we arrived to values

of r around 10-4 and values for q and qth around the unity.

Hence, the exponential term may be approximated by a

two-term Maclaurin expansion giving
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where g = r/T. Applying the same accelerating variable

as in [6], namely, T ¼ sþ a
4
n2 þ bn and qðn; sÞ ¼

FðTÞ expðihðn; TÞÞ, with F and h real, we obtain the

ODE for F
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In this case, the ODE for the pulse profile may be further

simplified if one uses the following change of variables

FðTÞ ¼ 2g
b

PðfÞ; f ¼ 2g
b

T;

obtaining

P00 þ bf� Gþ 2P2 � b
Zf
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where a and g were replaced by the single parameter

b ¼ 8g3=að Þ1=2
and G = (b/2g)2D is the new constant.

As the evolution Eq. (2) is the nonlinear Schrödinger

equation (NLSE) with the extra term representing the

plasma–light interaction, sech soliton solutions may be

anticipated for the ODE (4) with b = 0. In fact, these sech

solutions are of the form P0ðfÞ ¼
ffiffiffiffi
G
p

sech
ffiffiffiffi
G
p
ðf� f0Þ

� �
.

Hence, let us write an expansion for PðfÞ in the form

PðfÞ ¼ P0ðfÞ þ bP1ðfÞ þ � � �

and introduce it into (4) which yields
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The homogeneous part of the above equation is satisfied by

P0
0 so that the solvability condition is
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which gives the following algebraic equation for the

amplitude squared, G, of the zero-order soliton solution

G ¼ 3

2
1� P2

th

G

� ��3=2

: ð5Þ

As long as b is relatively small, we may say that the peak

amplitude of q is jqjpeak ¼
2g
b

ffiffiffiffi
G
p

, which implies that the

acceleration parameter is a ¼ 2g
G
jqj2peak and the frequency

shift becomes Dx ¼ � dh
dT
¼ g

G
jqj2peakn: Note that in case the

intensity threshold is zero, the Eq. (5) may be exactly

solved to G = 3/2, which gives a ¼ 4g
3
jqj2peak and
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Dx ¼ 2g
3
jqj2peakn, indicating that the blueshift is propor-

tional to the square of the peak amplitude [4]. On the other

hand, for finite |q|th, the use of (5) allows us to write

a ¼ 4g
3jqjpeak

jqj2peak � jqj
2
th

� �3=2

and Dx ¼ 2g
3qjpeak

jqj2peak � jqj
�

2
thÞ

3=2n; expressions that clearly show that the actual

dependence of the blueshift process on the peak amplitude

is more complex, with both the pulse peak amplitude and

the threshold intensity playing an important role in it [6].

3 Pulse profiles

The pulse solutions to ODE (4) were obtained using a

shooting method that relied on Airy function asymptotics

and first estimates coming from the above perturbation

approach. In fact, at the tails, the Eq. (4) reduces to

P00 þ ðbf� G� bK1ÞP ¼ 0;

where K1 ¼ 0 if f! �1 and K1 ¼
R1
�1 DP2HðDP2Þdf0

if f!1; which is equivalent to an Airy equation by the

following change of variables z ¼ �b1=3ðf� K1Þþ
b�2=3G. Hence, the asymptotics of the pulses conform with

Airy functions, particularly, they match the Ai(z) at the left

tail and Bi(z) at the right tail since these are the expo-

nentially decaying Airy solutions at z!1 and z! 0þ,

respectively. Note that this is true as long as z is in the

positive semi-axis.

The analysis up to this stage may seem very similar to

the analysis applied to the more general Eq. (1) in [6].

Also, the results obtained there could possibly predict the

profile characteristics of pulse solutions of (2); however,

the shooting calculations with the ODE obtained in [6] and

small values of peak amplitudes and plasma strengths

would involve Airy function values for large arguments

that are not easily evaluated. Moreover, the present ODE

is, for each Pth, a one-parameter ODE; thus, we may obtain

all the amplitudes and accelerations with one run that spans

a considerable range of b. The acceleration results for two

of these runs are shown in Fig. 1. Regarding the pulse

profile characteristics, our results confirm that the asym-

metry will happen for small peak amplitudes or large

plasma term strength. The long right tails that characterize

the asymmetry of these pulses are related to the f location

of the pulse, namely long tails are expected if f0 is such

that the corresponding z of the Airy equation is close to

zero. In such cases, the asymptotics at the right tail cannot

be exponentially since, at z\0; BiðzÞ is no longer expo-

nentially decaying but instead both Bi and Ai are alge-

braically decaying functions. In order to visualize the

ranges of peak amplitude, threshold amplitude and g values

for which the long tails exist, we have plotted the ratio of

the value of P at fðz ¼ 0Þ to Ppeak against |q|peak/g for

several |q|th (Fig. 2). The larger this ratio is, the closer to

z = 0 is the pulse location, and thus the longer are the right

tails and the asymmetry. The analysis of results presented

in Fig. 2 shows that for qth = 0, the long tails happen for

small |q|peak/g, achievable with small peak amplitudes and

relatively large plasma strength (recall that we are dealing

with an approximation of the initial model that is valid for

small plasma term). In the more realistic case of qth = 0,

the long tails happen in the same conditions with the

exception that the profile is closest to the Airy z = 0 for

some small finite |q|peak/g.

In order to assess how the existence of such long tails

would be perceived in a real experiment, we decided to

numerically investigate the propagation of a fundamental

soliton with peak amplitude and duration similar to the

ones that have allowed the experimental observation of
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the blueshift effect [3]. For this purpose, Eq. (2) was

solved using the values presented in Saleh et al. [4]

(Ith^64 TW/cm2 and ~r ¼ 1:03� 10�3 cm2 Hz/W) and

other parameters from Hölzer et al. [3]. For a pulse with

k = 800 nm at the maximum compression width of 2.5 fs

propagating in 1.7 bar Argon-filled kagomé PCF whose

b2 ¼ �7:5� 10�28 s2=m and c ¼ 2:7� 10�7 W�1 m�1

ðn2 ¼ 1:8� 10�23 m2=W from [7]), we obtain r ¼ 2:15�
10�4; /T ¼ 8:26� 102 which gives g ¼ 0:18; qth ¼ 0:88

and |q|th/g = 4.9. Hence, in this case, the maximum value

of P(z = 0)/Ppeak is very small (smaller than 0.01) and the

respective pulse profiles should be symmetric and propa-

gate without radiation shedding, which is confirmed by the

direct simulation of (2) for |q|peak = 1.12 and n = 40

(corresponding to 34 cm) that is shown in Fig. 3. On the

other hand, we envisage an experiment in the same fiber

and same pulse width but for a pump wavelength of

1.064 lm that would give g ¼ 0:35; qth ¼ 0:45 and qth/

g = 1.27. In this case, Fig. 2 suggests that pulses with

small peak amplitudes should exhibit a long right tail and

decay as they propagate, as may be confirmed by the

direct simulation of a fundamental soliton with peak

amplitude |q|peak = 0.69 for n = 102 (also corresponding

to 34 cm) shown in Fig. 4. In effect, this pulse is also

propagating along a parabolic trajectory, but during

propagation, several humps from the right tail become

visible. The pulse decay is more clearly seen in Fig. 5,

which compares the evolution of the pulses peak ampli-

tude, normalized to their input value, for the two cases

considered. In effect, while the curve for the first case

exhibits small amplitude oscillations around a constant

value, in the second case, the oscillations have a consid-

erable amplitude in the beginning, decreasing afterward,

but, more importantly, the peak mean value is decreasing

during propagation. This behavior can be explained by the

fact that the stationary profile of the pulse corresponding

to the parameters considered in Fig. 4 has a significant left

tail that carries infinite energy due to its Airy algebraic

decay. As the input pulse evolves toward this stationary

profile, its peak will naturally decrease in order to feed the

tail that is forming. The difference in the two cases con-

sidered in Figs. 3 and 4 was just a change in the pump

wavelength that decreased the ratio |q|th/g and increased g,

both contributing for the observation of long tails and

pulse decay. However, other physical parameters, such as

the gas pressure and the fiber geometry, may change the

accelerating pulse profile characteristics imposing or not

pulse decay during propagation. The amplitude oscilla-

tions, observed in both cases, do not have a constant

period but their average period does increase with b8/3/g2

as may be obtained by a simple analysis of the spectral

stability problem [8], namely, the oscillation period should

be close to the value of the edge of the continuous

spectrum and that edge is, in this problem, varying with

b8/3/g2.

Fig. 3 Pulse evolution for jqjpeak ¼ 1:12; g ¼ 0:18 and qth = 0.88

Fig. 4 Pulse evolution for jqjpeak ¼ 0:69; g ¼ 0:35 and qth = 0.45
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Returning to the dynamics of the decaying pulses, let us

note that since the peak amplitude decreases, the corre-

sponding stationary profile is also varying. In the case

qth = 0, a smaller peak amplitude will correspond to a

pulse with a longer tail, so that, the decay should be pos-

itively feedbacked; however, in some cases of qth = 0, the

smaller peak amplitude may correspond to smaller tails and

we expect that the rate decay decreases. We have con-

firmed this hypothesis as is shown in the simulation results

of Fig. 6, where the slope of the curve for peak amplitude

decreases with distance. Moreover, taking into consider-

ation that the plasma term will be zero when the optical

intensity drops below the threshold intensity, this decay

process cannot continue indefinitely. Nevertheless, let us

refer that the latter decrease in decay rate was observed

even in the presence of additional loss that should have

occurred in our simulations due to numerical window

limitations.

4 Conclusions

Starting from an evolution equation for pulse propagation

in gas-filled PCFs that takes in account group velocity

dispersion, Kerr effect and relatively small plasma–light

interaction, we used an accelerating variable to find the

ODE to which the pulse profiles obey. This ODE has two

parameters, the optical intensity threshold for photoioni-

zation and one for the plasma nonlinearity strength and

acceleration which reduces the effort to compute the pro-

files and accelerations. We defined two regimes of pulse

profile characteristics and propagation. There are sym-

metrical pulse profiles that are very close to sech and

propagate steadily, and asymmetrical pulses presenting a

long right tail that shed radiation away as they propagate.

The two regimes were identified by two ratios, the peak

amplitude over the plasma strength g and the photoioni-

zation threshold optical amplitude over g.
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