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ABSTRACT
A Bloom Filter is a probabilistic data structure designed to check,
rapidly and memory-efficiently, whether an element is present in a
set. It has been vastly used in various computing areas and several
variants, allowing deletions, dynamic sets and working with sliding
windows, have surfaced over the years.

When summarizing data streams, it becomes relevant to identify
the more recent elements in the stream. However, most of the
sliding window schemes consider the most recent items of a data
stream without considering time as a factor. While this allows, e.g.,
storing the most recent 10000 elements, it does not easily translate
into storing elements received in the last 60 seconds, unless the
insertion rate is stable and known in advance.

In this paper, we present the Time-limited Bloom Filter, a new
BF-based approach that can save information of a given time period
and correctly identify it as present when queried, while also being
able to retire data when it becomes stale. The approach supports
variable insertion rates while striving to keep a target false positive
rate. We also make available a reference implementation of the data
structure as a Redis module.
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1 INTRODUCTION
Nowadays, there are several settingswhere searches of small amounts
of information are made in large pools of data stored somewhere.
Often, there is an aim to optimize that search, making it a low
latency and high throughput operation, by trying to find new data
structures, technologies and mechanisms.

A Bloom Filter (BF) is a hash coding method with allowable
errors that can be used for “testing a series of messages one-by-one
for membership in a given set of messages” [2]. In more recent
years, the BF scheme has been receiving a lot of attention, with
many variants surfacing, and is now being used in a wide range of
systems/applications, such as web caches [11], networking [4, 7, 17]
and databases [13]

Many of the BF-based approaches consider the most recent el-
ements of the data stream, i.e., a specified number of fresh items
is stored. However, none of them take time into account. This is
important for many real world scenarios, e.g., to avoid showing the
user the same commercial advertisement more than once in a given
time period or to be able to check the IPs that connected to a system
at a certain time, as well as for fraud detection and prevention of
denial of service attacks.

An Age-Partitioned Bloom Filter (APBF) [16] is a BF-based data
structure able to hold a specified window of elements and evict
those that are older. In this paper, we present the Time-based Age-
Partitioned Bloom Filter, a variant of the APBF method that forgets
information at a given time-based rate, but still, according to the
setup of the filter, provides high accuracy when querying a specific
time window (e.g., the last minute or the last hour).

2 BLOOM FILTERS
A Bloom Filter [2] is a space-efficient data structure designed to
represent a set of elements and check for membership on that set.
In its simple form, a BF consists of a bit array of size m, with each
bit initially set to 0. When an element is inserted, k bits of the
array are set to 1 by a set of k uniform independent hash functions
(h1,h2, . . . ,hk ). To query for its presence, all bits to which the item
is hashed to are checked. If at least one bit is 0, then we are certain
the element is not in the BF, otherwise, if all bits are 1, one considers
the element to be present with a certain error probability, known
as false positive rate.

Usually the memory footprint of BF is defined according to the
number of elements to store and to the allowed false positive rate.
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3 DATA STREAMS ANDWINDOWMODELS
Since the size of a data stream may be infinite, it is essential to have
a mechanism that helps to control which part of the stream is impor-
tant to the problem at hand. Many BF solutions revisit the concept
of window models to process these streams, the most common ones
being the Landmark Window [8, 14], Sliding Window [14, 18] and
Jumping Window [14, 20].

A Landmark Window handles disjoint segments of the data
stream, one at a time, each limited by a specific landmark (a time
interval, e.g., an hour or a day). Since it only stores a segment of
the entire data stream at a time, it requires less space than the other
two models. However, it fails to establish element relationships
between windows, i.e., two duplicates can be missed, if one of them
occurs at the end of a landmark and the other at the beginning of
the next.

A Sliding Window considers only the most recent N elements of
the data stream, which means that for every new element arriving,
an old one must be evicted. It is ideal for studying the data stream
behavior in real time. For this scheme, any data structure can be
used as long as it allows the deletion of elements.

The basic idea of the Jumping Window is to slide the window
in jumps as the data flows, by breaking the stream into smaller
disjoint sub-windows of fixed size. It ensures the freshness of the
results and does not need to store the whole window. However,
it cannot accurately represent the data stream actual state, since
the number of elements varies as the window jumps. This scheme
requires the use of data structures that can combine and subtract
efficiently their results.

4 DUPLICATE DETECTION IN STREAMS
Duplicate detection is an important operation in many real world
scenarios, such as in URL crawling [5, 12], to avoid the constant
fetching of the same URL, and in click streams [14], for fraud de-
tection. Nowadays, there are many different approaches to detect
duplicates in a data stream, which are essentially based on Bloom
Filters or Dictionaries.

4.1 BF-based
Most approaches for detecting duplicates in a stream of elements
are BF-based and basically consist of mapping k cells to update
using k hash functions. Loosely, they can be based on counters,
segments or timestamps.

Counter-based methods were originally introduced with the
purpose of allowing the deletion of data in a set. The Stable Bloom
Filter [8] is an example of a counter-based approach that ages the
filter by randomly choosing some counters (if greater than 0) to
decrement at every insertion. However, this scheme introduces false
negatives and doesn’t guarantee that the elements being expired
are actually the oldest in the filter.

Segmented-based approaches make use of more than one seg-
ment.Double Buffering [6] uses two buffers, an active and awarm-up,
where the first holds the more recent data and the other is a subset
of the first. When the active becomes full, the two buffers switch
roles and the now warm-up buffer is cleared out to receive fresher
elements. Somewhat similar,A2 Buffering [19] also uses two buffers,
active1 and active2, but simultaneously. The first buffer stores the

more recent data and the second holds older recent elements. When
the active1 becomes full, everything in active2 is cleared out and
the two buffers switch roles. Comparing these two schemes, A2

Buffering is more memory efficient, since both buffers store distinct
elements, while Double Buffering introduces data redundancy.

Timestamping solutions use counters to record the insertion of
an element, instead of decrementing them periodically over time.
The Detached Counting Bloom Filter Array [18] associates a timer
array to each of its filters, so to keep track of when data is inserted
as well as when it needs to be retired. This scheme works well
with the sliding window model, however, it is expensive in terms
of memory use.

4.2 Dictionary-based
Dictionary-based approaches are mostly comparable to hash ta-
bles, but instead of storing the entire data, only a fingerprint of
the element is saved. Although there are more BF-based schemes
for duplicate detection, the ones with better performance results
are dictionary-based, the most common ones being the Cuckoo
Filter [10], Morton Filter [3] and SWAMP [1].

The Cuckoo Filter is based on the Cuckoo Hash Table [15] and
consists of an array of buckets, where each can havemultiple entries,
and one entry is able to hold one fingerprint. An element has always
two possible buckets to be stored in, determined by hash functions
h1 and h2. To check for its presence, only the two candidate buckets
for the item need to be queried.

The Morton Filter is somewhat similar to the previous method,
but bias decisions in favor of h1 instead and employs a compression
strategy called the Block Store. It improves, in terms of space usage
and throughput, comparatively to the Cuckoo Filter.

SWAMP is the most recent state of the art dictionary-based ap-
proach. It functions as a cyclic buffer and maintains a TinyTable [9]
to keep track of the various fingerprints’ frequencies. This scheme
keeps the most recent data of the stream, by evicting the oldest
entry when a new one is added, and is able to check, in constant
time, if an element is present and how many distinct items are
stored in the buffer.

5 AGE-PARTITIONED BLOOM FILTER
Many of the methods previously discussed either aim to optimize
space utilization at the expense of using more complex algorithms,
or are simple yet inefficient in terms of memory usage. To balance
these properties (time complexity, space efficiency and algorithm
complexity), Age-Partitioned Bloom Filters [16] offer a BF-based data
structure that improves over prior BF-based schemes and is able to
compete with dictionary-based techniques.

5.1 Structure
An APBF follows the segmented approach and partitions the filter
in a series of k + l slices (s0, s1, . . . , sk+l−1), each with m bits. This
scheme also makes use of k + l independent hash functions, one
fixed per bit array, and maintains a counter n, to keep track of how
many elements have been inserted since the filter creation. Each
desired false positive rate can be obtained by different combinations
of k and l , each combination providing a different trade-off in terms
of operation speed and memory footprint.
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Like a Bloom Filter, an APBF has two basic operations: insert and
query. However, unlike the latter, it can hold a specified window of
the most recent elements and is able to expire stale information by
shifting its slices.

5.2 Insert
Incoming data is stored in the first k slices of the filter, by setting
the corresponding k bits to 1. After some time, an insertion may
trigger a shift and the slices move up in the array, i.e., s0 becomes s1,
s1 becomes s2, and so on. Consequently, the last slice is discarded,
to evict older elements, and a new one is added at location 0, to
receive more recent ones. In practice, slice sk+l−1 is emptied out
and is then reused as the new slice s0.

The number of insertions made in the filter until a shift occurs
is called a generation (g). Slices shift whenever one of the k slices
reaches its maximum capacity. Note that, a slice hits an optimal use
when its fill ratio (defined below) is equal to 1/2.

5.3 Query
For an element to be deemed as present, it needs to be found in k
consecutive slices. The query algorithm starts at slice l and moves
up if a match is found while adding 1 to the counter c of consecu-
tive matches. Otherwise, it goes down k slices, saves the number of
matches already found in the counter p, resets c and repeats the pro-
cess once again. The algorithm terminates when the k consecutive
matches are found or when there are no more slices to check.

In this scheme, all elements inside the APBF sliding window are
always guaranteed to be reported as present, i.e., no false negatives
are observed.

5.4 Fill ratio
The fill ratio r of a slice is defined as the ratio of its set bits and
depends on its size (m) and on the number of elements it has stored
(n). Given this, it can be obtained by

r = 1 −
(
1 −

1
m

)n
≈ 1 − e−

n
m . (1)

Due to shifting, slices have different fill ratios. The filter reaches
a steady state after k + l shifts, point when it stores between l and
l + 1 generations. In the worst case, just before a shift occurs, the
expected fill ratios r0, r1, . . . , rk+l−1 are approximately given by

ri ≈

{
1 − 2−

(i+1)
k if i < k,

1/2 otherwise.
(2)

6 TIME-BASED AGE-PARTITIONED BLOOM
FILTER

The Time-based Age-Partitioned Bloom Filter adapts the APBF model
to hold a specified time window of elements. It is structured as a
series of k + l slices, each withmi bits and a fixed hash function.
Only k independent hash functions are used, seeing that slices that
are apart by k positions are not used for the same insertions and,
therefore, can share the same hash function.

One of the things to take notice of in this new solution is the
insertion rate. In the majority of cases (if not all), this parameter will
not be known a priori, so the filter must be able to adapt dynamically

Table 1: Notations.

Variable Description

si Slice at location i
mi Size of slice i in bits
ci Number of elements slice i can store (capacity)
ni Number of elements inserted into slice i

g
Number of elements inserted until a shift occurs
(generation size)

tspan Time span specified by the user
ti Timestamp of the last update made to slice i

ui
Number of updates that can still be done until
slice i gets full

to its variation. The strategy is then to allow the filter to scale its
number of slices, up and down, to adapt to the rate of insertions
and be able to keep a time span of elements, while also adjusting
the new slice s0 size.

For a better understanding of the notations used in the following
sections, Table 1 presents a list of variables and their meaning.

6.1 Slice life-time
As previously stated, the time-based APBF should be able to add
more slices, if needed, to accommodate the elements of a given
time period. However, it must also be capable of retiring those same
slices whenever they become stale. For a slice to be expired, its
timestamp must be older than the time span. Therefore, slice si is
retired when

ti < now() − tspan , (3)
where now() is the timestamp in the present moment. To avoid
the cost of doing this at every insertion, checking whether a slice
should be retired can be done only when a shift is triggered.

6.2 Shift triggering
The shifting mechanism guarantees that none of the first k slices
surpasses its maximum capacity. Now that slices can have different
sizes, the number of updates a slice can take until it reaches its
optimal use depends on its size, the number of insertions already
received and the amount of shifts left until it gets to position k,
point when it stops receiving new elements. This means that the
number of insertions left for slice i, from that position, is distributed
by the remaining k − i shifts:

ui = ⌊
mi × ln2 − ni

k − i
⌋ . (4)

Therefore, the actual number of updates the filter can receive until
a shift is triggered is

д = min{ui | i ∈ [0,k − 1]}. (5)

This value is obtained right after a shift and can be saved on a
counter that gets decremented by 1 at every insertion, triggering a
shift when it reaches 0.

6.3 Slice size
After every shift, a new slice s0 is added to the filter with sizem0.
In the original APBF, this value is static and the same for all slices.
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function query(x)
i := numSlices − k , p := 0, c := 0
while i ≥ 0 do

if si [hi (x)] = 1 and ti ≥ now() − tspan then
c := c + 1, i := i + 1
if p + c = k then

return t r u e
else

i := i − k , p := c , c := 0
return f a l s e

Algorithm 1: Query algorithm.

However, in the time-based scheme, the size of s0 can be updated
according to the insertion rate.

The fraction tspan
l represents the target time to have between

shifts, so the number of slices remains constant (= k + l ), ts is the
time that passed since last shift and g the number of insertions
made in that period. The target generation size, i.e., the number
of elements the filter should aim to insert between shifts, is then
obtained by

tд =
д × tspan

ts × l
. (6)

The next step is to look at the remaining k slices, from 1 to k − 1,
and calculate how many more updates can be done, at most, until
(if ever) the new s0 becomes the new limit. Applying Equation 5
to slices 1 to k − 1 gives the minimum number of updates possible
until one of those slices reaches its full capacity. Consider sj to be
the slice with the minimum amount of possible insertions. The new
capacity for s0 is given by

c0 = count + i × tд , (7)

where count is the total number of updates possible from position
j to k and i the number of shits needed until s0 reaches location j.
Therefore, the size of the new slice is given by

m0 = ⌈
c0
ln2

⌉ . (8)

6.4 Query
The query algorithm of this new scheme follows the same logic
as the original APBF, detailed in Section 5.3, the only difference
being an additional check to see if the slices, that are being queried
for the element, are still within the specified time period. If not,
then they are not considered in the search. Algorithm 1 shows the
detailed process of the query operation.

7 CONCLUSION
In this paper, we presented the Time-based Age-Partitioned Bloom
Filter, a segmented-based approach that partitions the filter in k + l
slices. When necessary, this data structure can increase its number
of slices, so as to accommodate more data, and adapt the size of slice
0 accordingly. Symmetrically, slices can also be retired when their
data becomes stale, i.e., when it no longer belongs to the specified
time span. Furthermore, slices that are apart by k positions can
share the same hash function, since they will not be used for the

same insertions, and so, only k hash functions need to be used for
this scheme. Elements that are inserted within the time window
are always reported as present, which means this solution has no
false negatives.

Regarding the slices retirement, the minimum value the number
of slices of a time-based APBF can decrease to, in this work, is k + l .
However, potentially it is possible to decrease the number of slices
as low as k without affecting the false positive rate, an interesting
aspect to analyse in the future.

The mechanism presented in this paper was implemented in C
and is available as a Redis module, loadable into a Redis server in-
stance, and can be used with the command line Redis client or from
client libraries in several languages. Implementation is available at
https://github.com/RedisBloom/RedisBloom/tree/AgePartitionedBF.
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