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Abstract. User preferences are fairly dynamic, since users tend to ex-
ploit a wide range of information and modify their tastes accordingly over
time. Existing models and formulations are too constrained to capture
the complexity of this underlying phenomenon. In this paper, we inves-
tigate the interplay between user preferences and social networks over
time. We propose to analyze user preferences dynamics with his/her so-
cial network modeled as a temporal network. First, we define a temporal
preference model for reasoning with preferences. Then, we use evolving
centralities from temporal networks to link with preferences dynamics.
Our results indicate that modeling Twitter as a temporal network is
more appropriated for analyzing user preferences dynamics than using
just snapshots of static network.
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1 Introduction

What drives people’s preferences dynamics? Modeling users’ preferences and
needs is one of the most important personalization tasks in the information
retrieval domain. User preferences are fairly dynamic, since users tend to exploit
a wide range of items and modify their tastes accordingly over time. Moreover,
all the time users are facing others’ opinions and being socially influenced. This
scenario dispatches several research efforts to investigate the interplay between
user preferences and social networks [1,2].

In this paper, we are interested in user preferences dynamics, i.e., the obser-
vation of how a user evolves his/her preferences over time. In our context, user
preference is a specific type of opinion, that establishes an order relation between
two objects. For example, when a user says: “I prefer sports than religion”, we
clearly identify his preference to sports subjects over religion.

Although social networks are fairly dynamic, traditional approaches in online
social networks analysis consider nodes and edges as being persistent over time
[3]. We go a step beyond and discuss social networks as temporal networks, where
the times when edges are active are an explicit element of the representation [4].
A classical example of temporal networks is on disease contagion. Usually, the



spreading of diseases occurs through contact between two people. Considering
the order of these contacts is important and more meaningful than just analyzing
an aggregate static network that ignores when these contacts occurred. In the
context of social networks, our topic of interest, temporal networks are being
used to represent users interactions [5,6].

We hypothesize that centralities properties of temporal networks can reveal
interesting patterns of users’ preferences dynamics, especially when handling
change detection. The running example below illustrates the preference dynamics
problem we are investigating in this paper and its link with temporal networks.

Motivating example. Let us consider the most popular microblogging social
network, Twitter. In Twitter, a user A usually follows another B if A is interested
in what B posts. A common behavior is, for example, if A is fan of soccer,
probably he is following sports channels and personalities like Messi and Neymar.
Let us imagine, now, the context of an e-commerce recommendation system
able to infer user preferences from Twitter in order to improve recommendations
quality. In Figure 1(a) we have a sequence of preferences inferred for user A about
different themes (sport, TV, religion and music) that he likes to follow, post,
share or read about in Twitter. An edge (a1, a2) indicates that a1 is preferred to
a2 (edges inferred by transitivity are not represented in the Figure). Analyzing
A’s preferences, we notice that in the first week of January, his preferences keep
stable, just appearing a preference of TV over music themes and disappearing
a preference of sport over music. However, on day 9, A changed his mind and is
preferring music over TV. This can be an indicative of changes on his preferences
and interests.

Now, in Figure 1(b) we have snapshots of A’s Twitter network. One edge from
node A to node B indicates that A is followed by B (the flow of information).
It is well know that Twitter network is fairly dynamic, and people start and
end relationships (follows) all the time [7]. According to our hypothesis, many
aspects of A’s network structure may have influenced on his preferences change.
For instance:

– the structural position of A in the network can be changed, as well as the
global network topology. This means that he could be held a close position
to music influential users;

– from second week of January, according to A’s position, he is not receiving
any information about religion;

– A’s position is always close to sport celebrities.

It is an essential point for our hypothetical recommendation system to detect
and predict A’s preferences evolution over time and their changes. This could
improve the sales of CDs, for example, when recommending to A. We show
that the temporal-topological Twitter structure is strongly correlated with user
preferences dynamics.

Contributions. The main contributions of this paper can be summarized as
follows: (1) proposal of a temporal preference model for representing and rea-
soning with preferences over time; (2) a preference change detection algorithm



Fig. 1. (a) Sequence of A’s preferences. (b) Snapshots from A’s Twitter network

for detecting changes events in preferences; (3) a centrality change detection
algorithm; (4) proposal of a correlation between preferences and centrality mea-
sures in temporal networks; (5) a set of experiments validating our proposals,
specially against static networks counterpart.

Organization of the paper. First, we discuss some related work. Then, we
formalize user preferences dynamics by proposing a temporal preference model
able to detect changes on preferences. After that, we present social temporal
networks, discussing temporal aspects that were adopted in our analysis. In
the Methodology Section, we mainly describe how we elicited preferences from
Twitter dataset to validate our proposal. Then, we present the experimental
results and conclude the paper.

2 Related Work

We summarize related literature according to two different aspects that we are
addressing in this paper: (1) user preferences on social networks and (2) temporal
networks.

2.1 User Preferences on Social Networks and Dynamics

Social networks are playing an important role as a type of source knowledge for
mining (or inferring) user preferences in the Preference Learning area. The work
[1], for example, combines user attributes and social network ties to discover user
preferences. In [2], social influence has been used on classifiers to predict users’
preferences. In this paper, we go a step beyond, from the point that preference
relations between objects are already known and social networks are not used
on the learning process, but on the new Preference Dynamics field. The work [8]
investigates the music listening histories of Last.fm users focusing on the changes
in their preferences based on their choices for different artists at different points
in time. The modeling has been done by the survival analysis statistical method.
In [9] the focus is on preferences shift (or change) over time. The authors propose
a new measure of user preference dynamics (UPD) that captures the shifting
rate of preferences. The work [10] is orthogonal to ours because it combines the
growth of social links with the generation of user interaction events on those



links. The focus is on social interactions, while ours is on user preferences. The
topic of preference change has alse been studied on sociology field [11,12].

2.2 Temporal Networks

The literature of temporal networks, focused on social media, is essentially con-
centrated on understanding patterns of information diffusion [13,14]. Especially,
the ideas presented in [5] motivated us to develop this research. The author re-
views methods to analyze temporal networks that seek to identify key mediators
and how temporal and topological structure of interaction affects spreading pro-
cesses. In the same way, [15] analyzes temporal centrality metrics. However, our
focus is not on information diffusion, but on user preferences dynamics.

Researches on graph metrics for temporal networks essentially address this
issue. [16,6] discuss that there are various concepts of shortest path for temporal
graphs and propose efficient algorithms to compute them. In [17] graph metrics
are revisited for temporal networks in order to take into account the effects of
time ordering on causality.

Remarking on detecting changes on networks, according to [18], the concept
of change in a graph sequence falls into one of three main categories accord-
ing to the structure level of interest: global structure, local structure and the
community-level structure. Our focus is on local changes. Global and communi-
ties’ changes do not hold in our experiments.

3 User Preferences Dynamics

There is no consensus on the definition of preferences dynamics [19]. We adopt
the following definition:

Definition 1 (User Preferences Dynamics (UPD)). UPD refer to the ob-
servation of how a user evolves his/her preferences over time.

First, we propose a temporal preference model able to represent and reasoning
with preferences on time. Then, we describe how to detect events of changes on
temporal preferences.

3.1 Temporal Preference Model

A preference is an order relation between two objects. For example, when a user
says: “I prefer sports to politics”, if we order sports and politics in a ranking, we
can clearly identify that sports will be in the top position.

Definition 2 (Temporal Preference Relation �t). A temporal preference
relation (or temporal preference, for short) on a finite set of objects A = {a1, a2,
..., an} is a strict partial order over A inferred on time t, i.e., a binary relation
R ⊆ A×A satisfying the irreflexivity and transitivity properties on t. Typically, a
strict partial order is represented by the symbol �. Considering �t as a temporal
preference relation, we denote by a1 �t a2 the fact that a1 is preferred to a2 on
t.



Definition 3 (User Temporal Profile Γu
t ). User temporal profile Γu

t is the
transitive closure (TC) of all temporal preferences of user u on t.

Example 1. Let A = {sport, tv, religion,music} be the set of objects in our
running domain representing themes of interest of user A. Figure 1(a) illustrates
the temporal preferences of A on days 1, 4 and 9 through better-than graphs.
Remark that an edge (a1, a2) indicates that a1 is preferred to a2 and edges
inferred by transitivity are not represented. We have: ΓA

1 = {sport �1 tv, tv �1

religion, sport �1 religion, sport �1 music}, ΓA
4 = {sport �4 tv, tv �4 reli-

gion, sport �4 religion, tv �4 music, sport �4 music} and ΓA
9 = {sport �9

tv, tv �9 religion, sport �9 religion,music �9 tv,music �9 religion}.

3.2 Detecting Changes on Temporal Preferences

A key property of temporal preferences is the irreflexivity. We say that a temporal
profile Γu

t is inconsistent when there is a preference a1 �t a1 ∈ Γu
t . It would

means that “I prefer X better than X!”, which does not hold for a strict partial
order.

Our proposal for detecting preference change is based on the consistency of
user temporal profiles. The idea is to compute the union of user profiles collected
over time, infer temporal preferences by transitivity considering all timestamps
and verify if there is any inconsistency on the resulted set of preferences. If yes,
we detect an event of preference change. These concepts are formalized in what
follows.

Definition 4 (Temporal Profile Union Ωu
t ). Two temporal preferences of

the type a1 �t−1 a2 and a2 �t a3, can unite to infer a third temporal preference
a1 �t′ a3, once considering transitivity of both, temporal preference relation and
timestamp order. A temporal profile union Ωu

t is the transitive closure (TC) of
all irreflexive relations given by Γu

t−1 ∪ Γu
t .

Definition 5 (Preference Change δut ). If there is a temporal preference in-
consistency in Ωu

t a preference change has been detected on time t for user u. In
other words, a preference change δut is defined as:

δut =

{
1, if there is a temporal preference inconsistency in Ωu

t

0, otherwise
(1)

Remarking on Example 1, let us consider W = {1, 4, 9} the set of intervals
time stamps. The temporal profile union ΩA

9 = {..., tv �4 music,music �9

tv, tv �9′ tv, ...} contains the inconsistency tv �9′ tv. So, a preference change
has been detected on time 9 (δA9 = 1). Intuitively, we have that on day 1, for
example, A prefers to read/post/share on his social network news about sport,
but between tv and religion he is in the mood for tv. On the following days,
A’s preferences practically do not change, just appearing a preference of tv over



music. However, on day 9, A’s presented a preference change, as music became
preferred over tv.

The size of the intervals time stamps in W determines if we are tracking
short-term or long-term preference events. As example of real events, we can
cite new product releases and special personal occasions such as birthdays [20].

In order to formalize the detection of changes in our temporal preference
model, we propose the PrefChangeDetection algorithm. The intuition of this al-
gorithm is to analyze better-than graphs of a user during the observation intervals
in W from social networks. If the resulting graph has at least one cycle (mean-
ing an inconsistency) we have detected a preference change. The Algorithm 1
formalizes this idea.

Algorithm 1 PrefChangeDetection
Input: User u, set of intervals W , a vector Γu of size |W | containing u’s temporal

profiles for each t ∈W extracted from the social network G = (V,E)
Output: A vector δu of size |W | containing u’s preference changes for each t ∈W
1: BGu

prev ← ∅
2: for all t ∈W do
3: build better-than graph BGu

t from Γu[t]
4: BGu ← BGu

prev ∪BGu
t

5: if BGu is not acyclic then
6: δu[t] = 1
7: else
8: δu[t] = 0

9: BGu
prev ← BGu

t

10: return δu

Remarking on the complexity analysis, the time to build a better-than graph
(line 3) varies according to the preference mining algorithm used. In Section 5 we
present the algorithm we use in this paper for mining preferences from social net-
works. In worst case, its complexity is O(|V |), where |V | is the number of nodes.
The time to detect if a directed graph is acyclic (line 5) is O(|A|+|Ωu

t |) where
A is the set of objects in the domain (the nodes) and Ωu

t is the temporal profile
union containing the preference orders (the edges). Hence, PrefChangeDetection,
in the worst case, has complexity of O(|W ||V |(|A|+|Ωu

t |)).

4 Social Networks Evolution

We introduce the background of temporal networks, leveraging terms like tem-
poral networks, temporal graphs, static networks and evolving graphs. Next, we
propose an algorithm for detecting changes on centralities metrics.



4.1 Temporal Networks vs Static Networks

In this paper, we explore two different representation of social networks: as a
static graph structure and as a temporal graph [4,6]. The static graph structure
is a traditional approach where the temporal aspects are aggregated and the
evolution is analyzed just as a set of graphs snapshots over time [6]. On the
other hand, in temporal graphs (or temporal networks) the information of when
interactions between nodes happen is taken into account. Let us formalize these
concepts.

Definition 6 (Static Networks). A network Gs = (V,E) is static (or aggre-
gate) if there is not any time reference in the edges.

Definition 7 (Temporal Networks). Temporal networks or temporal graphs
Gt = (V,E) are graphs with temporal edges, i.e., each edge contains the infor-
mation of when it has been created and when it has been deleted [6].

Example 2. Consider the temporal and the aggregate graphs in Figure 2. They
represent a social network, where the nodes are users and the edges are interac-
tions (for example, tweets) between two users. Suppose that node A has a high
impact information to spread in the network. If we analyze the network from
the aggregate graph perspective, the information will reach node F . This is not
true for the temporal network, as A just interacts on time t3 with B and after
that, it is not possible to reach F from B.

Fig. 2. Temporal network vs. static (aggregate) network

The centrality metrics analysis is inherent to what network representation
we are using. Remarking on Example 2, there is a path between nodes A and F
in aggregate graph, but not in temporal graphs. This implies in different values
of centralities for these nodes. The problem of evolving centralities in temporal
networks is addressed in [6]. In Section 6 we show that the betweenness and close-
ness centralities have different behaviors according to the network representation
and, consequently, they correlate with user preferences in different ways.

4.2 Detecting Changes on Centrality Metrics

In order to detect changes on temporal metrics, and consequently on graph
structure, we defined a baseline approach founded on change-point in rankings



[21]. The idea is to maintain a ranking R of all the nodes in the graph according
to their metrics values for each interval time stamp ti inside the observation set
of intervals W . Based on the variations of metrics values and ranking positions
from t to t+ 1, we detect changes.

Definition 8 (Ranking Position). Let G = (V,E) be a graph and W = {t, t+
1, ...} a set of intervals. We define Cu

t as the centrality value of u on time t, for
u ∈ V and t ∈ W . Let us consider a ranking Rt where the centrality values of
all nodes in V are ranked in descending order on time t. We define posut as the
position of node u in Rt, i.e., Cu

t > Cv
t iff posut > posvt , for u, v ∈ V .

Definition 9 (Temporal Metric Change λut ). We define Λu
t as the acceler-

ation of node u in centrality ranking position from time t− 1 to time t:

Λu
t =

|posut − posut−1|
max(posut , pos

u
t−1)

(2)

A temporal metric change λut is detected when Λu
t is greater than a threshold

θ:

λut =

{
1, Λu

t > θ

0, otherwise
(3)

The algorithm CentralityChangeDetection (Algorithm 2) implements change
detection in centrality metrics based on above definitions. The complexity time is
given by the computation of centralities (line 3). In the worst case, the between-
ness centrality involves calculating the shortest paths between all pairs of vertices
on a graph, which takes O(|V |3). Hence, the total complexity is O(|W ||V |3).

Algorithm 2 CentralityChangeDetection
Input: User u, set of intervals W , social network G = (V,E), threshold θ
Output: A vector λu of size |W | containing temporal metrics changes for each t ∈W
1: Rt−1 ← ∅
2: for all t ∈W do
3: calculate centralities from G and build ranking Rt

4: if Rt−1 = ∅ then
5: Λu

t = 0
6: else
7: Λu

t ←
|posut −posut−1|

max(posut ,posut−1)

8: if Λu
t > θ then

9: λu[t] = 1
10: else
11: λu[t] = 0

12: Rt−1 ← Rt

13: return λu



5 Methodology

In our methodology we chose as temporal social network the Twitter follower/
followee network and extract preferences based on the structure of this network.

5.1 Dataset

The Twitter dataset from [6] was used to validate our proposal. In order to
correlate user preferences and the structure of social networks, from evolution
viewpoint, we need a dataset (1) containing the information of when relationships
start and end in the network and (2) some semantic information about the nodes
from which it is possible to extract preferences.

The temporal information of Twitter has the following meaning: each node is
a user and an edge (u, v, tinit, tend) indicates that v starts following u at tinit and
unfollows u at tend+1 (v follows u during [tinit, tend]). As we are dealing with a
real dynamic social network, a user can follows and unfollows another user all the
time. This is the most interesting aspect that we are investigating: how following
relationships on Twitter can allow us to understand user preferences dynamics?
The dataset contains 144975 users and 1222118 temporal edges, observed from
08/28/2015 to 12/15/2015. In [6] there are more insights about time-changing
characteristics of data.

5.2 Preference Mining

The dataset we used was crawled from Twitter based on a “seed celebrity” pol-
icy: choose s celebrities users as seeds and for each seed, select his/her followers.
These seeds play an important role for the extraction of users preferences from
data. We labeled the 27 seeds based on 9 themes that they represent as celebri-
ties. The themes are politics, sport, religion, news, music, humor, TV, fashion
and health. For example, Neymar is a sport celebrity, Gisele Bündchen from
fashion and the pope is a religion representative.

The 9 themes adopted are the domain of preferences. The intuition in this
preference mining process is: if user u follows a lot of religions personalities and
does not follow anyone from fashion field, then u has more interest in religion
than in fashion. Thus, we mined preferences of the type: religion �t

u fashion.
We consider the preference strength w as the number of seeds of the same

theme that a user u follows. For example, if u follows 3 religion seeds and 1
news seed, we have religion �t

u news. If u does not follow any health seed, we
have that the remaining themes are preferred over health. These situations are
illustrated in Figure 3. This method is solely language-agnostic and based on
the semantics inferred by the structure of the network [22].

There are many drawbacks on mining preferences in this way. We can infer
that a user prefer a topic even if the posts are badly written. Or, that soccer
players always post about soccer, which is not necessary true. As this paper is a
pioneer quantitative analysis of preferences dynamics in Twitter, we chose this
preference mining approach as baseline. In [23] a technique to extract preferences



from tweets has been proposed, but we did not use it because our dataset do not
contain users tweets. We just have the network topology.

Fig. 3. Mining preferences from Twitter

5.3 Discussion

There are many directions to explore from the concepts presented in this paper:
(i) networks are related to preferences to what extent? (ii) Any social network
can be used to analyze UPD? (iii) What are the best centrality metrics? (iv)
What is the best network modeling to analyze UPD: static or temporal? In this
paper, we perform experiments to validate the direction (iv).

We analyze how effective are temporal networks to track user preferences
dynamics against static networks in Twitter dataset. The analysis is founded on
the correlation strength of preferences changes and centralities metrics changes
over time. According to our methodology, the preferences are elicited from the
same graph structure that we perform centralities measures analysis. Hence,
preference change and centrality change are naturally correlated. Our focus here
is to show that there is a significant difference between correlations strength
obtained with temporal networks representation in relation to static networks
counterpart. So, the methodology does not imply a bias in the experiments.

6 Experimental Results

We show that temporal networks are better representations than static networks
for the analysis of user preferences dynamics.

6.1 Experimental Environment

Intervals. The solutions we are proposing for the problem of preferences and
centralities events detection are highly sensitive to the granularity of observation
window W . We define four intervals to perform the experiments, described in
Table 1. Remark that the intervals are the elements of W . If we are interested in



tracking short-term events, then short intervals like Daily and Weekly fit better.
For instance, preferences over the domains of news or restaurants have a high
changing rate. On the other hand, long intervals are more appropriate when the
events are not frequent, for example preferences about movies and politics.

Period # of intervals Values
Daily (DA) 110 DA1 = [08/28, 08/28], ..., DA110 = [12/15, 12/15]

Weekly (WE) 15 WE1 = [09/01, 09/07],WE2 =
[09/08, 09/14], ...,WE15 = [12/08, 12/14]

Fortnightly (FO) 7 FO1 = [09/01, 09/15], FO2 =
[09/16, 09/30], ..., FO7 = [11/30, 12/14]

Monthly (MO) 3 MO1 = [09/01, 09/30],MO2 =
[10/01, 10/31],MO3 = [11/01, 11/30]

Table 1. Intervals inside observation window W = [08/28/2015, 12/15/2015]

Users. The dataset contains 144975 users. For computing the events along time
intervals, the values λAVG

t and δAVG
t correspond to the average across all users

for each time interval t.

Centrality Metrics. Betweenness and closenness metrics are used in our ex-
periments. Betweenness considers how important nodes are in connecting other
nodes. In closeness centrality the intuition is that the more central nodes are,
the more quickly they can reach other nodes [24]. Thus, these metrics are related
with nodes that play influence and spreading roles in the network, respectively.
These are potential features for understanding users preferences dynamics. For
centrality events detection we vary the threshold θ = {0.2, 0.4, 0.6}.

Social Network Representation.We compare the behavior of temporal graphs
and static graphs structures in relation to preferences and centralities changes
over time.

6.2 Analyzing Change Events and Correlations

Q1: What are the changes behaviors of users (preferences) and nodes (centrali-
ties)? Are these variables really dynamics?

We verify the change rate for both preferences and centralities over different
time intervals. The results are illustrated in Figure 4. The analysis of daily
intervals is not interesting here as there is no difference between temporal and
static networks for daily intervals (the temporal network has granularity of one
day). The parameter θ has been fixed as 0.4 in this analysis, corresponding to
the intermediate value of our range. In next analysis we show that it does not
affect the correlations behaviors.

On average, the rate of users that change their preferences are 30.39%, 32.17%
and 40.11% for week, fortnight and month intervals, respectively. For temporal



betweenness centrality, the averages of changes are 43.56%, 46.44% and 46.39%;
and 36.42%, 35.07%, 45.01% for static betweennes. Temporal closeness changes
averages are 38.85%, 38.78% and 41.23%; and 24.16%, 26.28% and 33.78% for
static closeness. Generally, as the interval size increases, the change rate in-
creases as well. This occurs due to the trade off between domain of preferences
and social network. We are investigating the domain of users’ preferences to
post/share/read in Twitter. According to our analysis, this is very dynamic and
even short-term data (week intervals) have relevancy.

The most important observation is that the curves of preferences and tem-
poral centralities have similar behaviors for all scenarios, different from static
centralities. This observation indicates that if we consider temporal modeling
of Twitter network to track evolving betweenness and closeness nodes central-
ities, we have a better notion of users respective preferences dynamics than if
considering static modeling.
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Fig. 4. Change rates for betweenness (up) and closeness (down) centralities

Q2: Are temporal networks more appropriate to analyze user preferences dy-
namics than static networks?

We use Pearson Correlation Coefficient (PCC) metric to evaluate which net-
work model better represents preferences dynamics. As previously appointed,
we mine preferences from the same graph structure that we perform centralities
measures analysis. It is expected that both variables are correlated. As a matter



of fact, in this analysis, we explore the correlation strength difference between
temporal and static networks representations in our context.

The results are illustrated in Figure 5. PCC(δAVG
t , λAVG

t ) has been calcu-
lated considering betweenness and closeness centralities. Each scenario has three
periods – Day, Week and Fortnight. The month intervals are not illustrated due
the small size of the series (only three values). For each centrality we vary the
parameter θ. This parameter indicates that the closer to 1, more significant are
the centralities changes that are being considered.

Both centralities metrics correlate significantly (as compared to the corre-
sponding critical values – in all scenarios critical values are lower than 0.1). Two
random variables (with no correlation) would have a 95% probability of PCC
greater than a critical value or lower. As expected, we observe a high correlation
between the change events in user preferences and in centrality metrics.

We highlight the difference between temporal and static values. Consider-
ing the analyzed scenarios, on average, temporal betweenness has a correlation
strength 40 times higher than static betweenness. For closeness, the correlation
strength is 59 times higher. This corroborates our investigation that changes
in temporal metrics indicate changes on users preferences. The correlation dif-
ference between temporal and static metrics is an evidence that dynamics of
preferences fit better in temporal networks representation.
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Fig. 5. PCC between centralities and preferences



Q3: Why temporal networks are good social network representation in the
analysis of user preferences dynamics?

The results obtained so far can be explained by the phenomena of information
propagation and inherent consequences of homophily and influence. The main
difference between temporal and static networks, as discussed in Section 4, is
that temporal networks take into account the contact sequence between nodes
to compute paths [6] and this has an impact on different centralities measures.
The related work [14] discuss about the relation of preferences and information
propagation in social networks. The aspects described on motivating example
(Section 1) could illustrate that preferences are directed by information flow in
the social network. Finally, temporal networks represent information flow more
realistically.

7 Conclusion

In this paper we have investigated the interplay between user preferences dynam-
ics and evolving social networks. We have introduced a new temporal preference
model able to describe dynamics of user preferences through user profiles and
change detection. We have presented a social network analysis correlating cen-
tralities metrics evolution with user preferences dynamics over Twitter data.
Our findings have shown that there is a high correlation between changes on
temporal centrality metrics – betweenness and closeness – and changes on user
preferences, against static centrality metrics counterpart.
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