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Abstract. Video surveillance systems must process and manage a grow-
ing amount of data captured over a network of cameras for various recog-
nition tasks. In order to limit human labour and error, this paper presents
a spatial-temporal fusion approach to accurately combine information
from Region of Interest (Rol) batches captured in a multi-camera sur-
veillance scenario. In this paper, feature-level and score-level approaches
are proposed for spatial-temporal fusion of information to combine infor-
mation over frames, in a framework based on ensembles of GMM-UBM
(Universal Background Models). At the feature-level, features in a batch
of multiple frames are combined and fed to the ensemble, whereas at
the score-level the outcome of ensemble for individual frames are com-
bined. Results indicate that feature-level fusion provides higher level of
accuracy in a very efficient way.

1 Introduction

Video surveillance applications, such as activity recognition, are increasingly
making use of multiple sensors and modalities. The fusion of multiple diverse
sources of information is expected to benefit the system for the recognition of
objects, persons, activities and events captured in an array of cameras.

Networks of video cameras are commonly employed to monitor large areas
for a variety of applications. A central issue in such networks is the tracking and
recognition of individuals of interests across multiple cameras. These individuals
must be recognized when leaving the Field of View (FoV) of one camera and
re-identified when entering the FoV of another camera. Systems for video-to-
video recognition are typically employed for person re-identification (PR). In
a FoV, the appearance of an individual may be captured in reference Rols and
representative models may be learned from Rol trajectories. Then, the probe Rol
may be matched against the reference model in either live (real-time monitoring)
or archived (post-event analysis) [1]. In this paper, we address a PR system over
wide network of cameras where no target individual enrolled to the system in
advance.
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(a) Typical surveillance scenario (b) An example of time-line graph
Fig.1. A surveillance scenario including three persons A, B, and C, moving in the
scene, crossing the FoV of 3 cameras: c¢1, c2, and cs.

In such environments, where objects move and cross in the FoV of multi-
ple cameras, it is likely to have multiple streams, recorded at different starting
points with various lengths, for the same Rol of individuals (see Fig. 1a). The sur-
veillance system must track that person across all cameras whose FoV overlap
the person’s path. Thus, a suitable outcome for this system could be a time-
line graph assigning streams from each camera to an identity for the indicated
presence period, as illustrated in Fig. 1b. Environmental challenges such as the
variation in appearance of individuals due to changes in illumination, contrast,
positioning of acquisition devices, motion blur as well as occlusion lead to noisy
and/or partial Rol captures. These challenges have previously been addressed
by a batch divisive strategy in [2], that views a batch of Rol as a unique element
to classify, since learning from these batches may reduce noise and fill the gaps
caused by dropped-tracks. A batch includes a fixed number of consecutive Rols
(sources of information) of a given stream and a single label is assigned to the
batch of same person in time. Each batch of Rol can be learnt using a one-class
classifier, and the pool of classifiers generated in one or more FoVs can be com-
bined into an ensemble of classifiers. Fusion of multiple sources into an ensemble
have been addressed by three main approaches in the literature: early, mid-level,
and late [3]. Early fusion combines the information in the first possible level
(so called signal level fusion in image processing), whereas late fusion combines
the information as late as possible (decision level fusion) [4,5]. Mid-level fusion
is an interesting compromise that combines the information in an intermediate
abstraction level [6].

Score-level fusion is the most popular way of fusion. A quantitative similarity
measure disseminates valuable information about the input, and yet it is still
easy to process compared to sensor-level or feature-level data. However the score
space is subject to considerable flexibilities, e.g. different normalization methods
may lead to different decision boundaries. Furthermore, small number of scores
in a batch might easily overfit the data [7]. On the other hand, feature-level
fusion schemes derive the most abstract form of original multiple feature set
by eliminating redundant information. The advantages of this scheme are the
use of only one learning stage to combine the information (instead of running
individual learning stage for every single feature set) for rapid decisions.
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In this paper, two feature-level abstraction schemes that represent the entire
batch with a single descriptor are proposed. These descriptors are obtained by
combining features of individual frames in different ways. To the best of our
knowledge, this work is the first attempt to explore spatial-temporal fusion
schemes for Rol batches captured from video streams generated in a multi-
camera surveillance scenario. We compare their performances with two score-
level fusion schemes.

Next Sect. 2 provides an overview of the framework. Section 3 briefly reviews
the employment of fusion schemes and introduces algorithms. Section 4 discusses
the experimental methodology. In Sect. 5, we experimentally compare the effec-
tiveness of different levels of fusion on several real-world videos.

2 Background on the NEVIL.ubm Approach

A surveillance system should track and recognize the object from the first
moment it is captured by a camera and across all cameras whose fields of view
overlap the path. In this section, the Never Ending Visual Information Learn-
ing with UBM (NEVIL.ubm) framework is briefly presented. NEVIL.ubm [8] is
designed for learning in non-stationary environments in which no labelled data
is available but the learning algorithm is able to interactively query the user to
label the desired outputs at carefully chosen data points (Fig. 2).

The system receives multiple visual streams, generated by a typical tracking
algorithm, which analyses sequential video frames and tracks Rols over time. For
each Rol the features corresponding to some pre-selected object representation
(e.g. bag of words) are extracted (v[l] | =1,...,B). A batch v;"* is a temporal
sequence of frames U?:;, where f runs over 1 to the batch size B. Initially,
the composite model is initialized to yield the same probability to every class
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Fig. 2. Block diagram of NEVIL.ubm. (The diagram shows both possible level of fusion
applied in the framework)
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(uniform prior). When the features of batches of Rols v;"} in time slot ¢ become
available, the framework starts computing the scores .7 (v;"|Cy, Hy—1) for each
batch v;"** in the time slot. The scores are obtained from the likelihood ratio test
of the batch data obtained by the individual class model Cy and the UBM.

The composite model H; is an ensemble of Micro-classifiers ensembles
(MCE],j = 1,...,k). Each MCE] includes classifiers that are incrementally
trained (with no access to previous data) on incoming batches of j;, class at t,
hl. The individual models h] are combined using a weighted majority voting,
where the weights are dynamically updated with respect to the classifiers’ time
of design. 4

The prediction output by the composite model MCE! for a given ROI

(vf) is

t
p(Cilv}, MCE]) = " Wihe(Cx|v]'}) (1)
=1
where hj() is the classifier trained from batches of j;;, at TS ¢, W/ is the weight
assigned to classifier ¢, adjusted for time ¢. The weights are updated and nor-
malised at each time slot and chosen to give more credit to more recent knowl-
edge. After combining the decisions of classifiers inside every MC-ensemble, the
ensemble will assign a batch to the label of MC-ensemble with highest score
(7 (0" |C, Hi-1))-

Such on-line learning may suffer if labelling errors accumulate, which is
inevitable. To help mitigate this issue, the system is designed to interact wisely
with a human. Once . (v;"*|Ck, Hi—1) is obtained, a batch confidence level
(BCL) is estimated. In NEVIL.ubm framework, if the scores associated to all
observed classes are significantly low (below a predetermined threshold), it is
very likely that this class has not been observed before and it is considered
novel and a new label (§) is automatically assigned to this batch(es). Having
decided that the batch data belongs to an existing class, one needs to decide if
the automatic prediction is reliable (the reliability test is positive) and accepted
or rather a manual labelling needs to be requested. If BCL is high enough (above
a predefined threshold), the predicted label

9 = arg I%axf(vlnﬂck,Ht,l) (2)
k

is accepted as correct; otherwise the user is requested to label (y) the data batch.

At each time slot, the batches predicted to belong to the same class are used
to generate the class model by tuning the UBM parameters in a maximum a
posteriori (MAP) sense. The adaptation process consists in two main estimation
steps. First, for each component of the UBM, a set of sufficient statistics is
computed from a set of M class specific feature vectors. Each UBM component
is then adapted using the newly computed sufficient statistics, and considering
diagonal covariance matrices.

Note that the UBM is trained offline, before the deployment of the system.
It is designed from a large pool of streams aimed to be representative of the
complete set of potentially observable ‘objects’.
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3 Spatial-Temporal Fusion Schemes over Frames

Although in many real visual applications different sources of information are
available, learning from multiple sources is a less explored area. Early fusion has
been applied to define whether the audio signal is consistent with the speaker
video file [9]. Pixel-level fusion has shown promising performance in video-
based biometric recognition [10] as well as multiple object tracking [11]. Some
authors demonstrate [12,13] demonstrated the effectiveness of the decision level
fusion strategies on object tracking, video segmentation, and video event detec-
tion. Feature-level fusion has gained much importance over the past few years,
and various approaches have been introduced in the literature [5,14,15]. Most
approaches combined the information of multiple modalities (sensors), while
some methods used the complementary descriptors. The former requires mul-
tiple sensors (visible light cameras combined with depth or infra-red camera),
and the latter adds more complexity to the system specially in an online appli-
cation. To the best of our knowledge, the employment of feature-level techniques
over frames in a PR scenario has not been addressed before.

Fusion schemes have been successfully used in large-scale recognition systems
to address multiple issues confronting these systems such as accuracy, practical-
ity, and efficiency. Inspired by the rationale behind such systems, two fusion
schemes to combine the information in a PR system are proposed. Each frame
can be considered as an independent source of information and combining such
information in different levels could be beneficial for a PR system. The batch
score (. (v;"|Ck, Hi—1)) can be obtained in two ways: either by combining the
scores of individual Rols in a batch (score-level fusion), or by combining the
patterns of M Rols in a batch (feature-level fusion).

3.1 Feature-Level Fusion

Finding a joint representation for a group of frames is a challenging problem in
visual applications. There is a considerable body of research works that addressed
this problem by choosing a key frame, which represents the entire batch. As the
quality of the batch representation relies heavily on the representative sam-
ple and an inappropriate choice may lead to unreliable results, such methods
seem impractical for challenging environments. This is the main rationale behind
approaches exploiting fusion schemes. In this paper, two feature-level fusion that
aggregate descriptors of all the frames in a given batch are proposed. Let vl"]ﬁ be
the descriptor of f — th frame in a batch, the average histogram that combines
the information of entire batch in a single histogram defined by

B
v 1
V= 5 D u(b) where b=1,..M )

f=1
Where M is the number of histogram bins (Fig. 3).
In our scenario, it is very likely to obtain outlier values for some frames in a
batch due to occlusion or miss tracking. The median might be seen as a better
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Fig. 3. Block diagram of feature-level fusion (performed before micro-ensembles
recognition)

indication of central tendency than the arithmetic mean in such cases, since it
is less susceptible to the exceptionally large or small values in data. Hence, as
an alternative option we consider estimating the descriptor of a given batch by:

" = Median v)"}(b) where b=1,..,M (4)
Ck, H;_1) is calculated for the

Given the single representation, a score .7 (v;"
batch.

3.2 Score-Level Fusion

The composite model, H;_1, can be used to predict directly p(vZLﬂC’k,Ht,l)
but not p(v;"*|C, Hy—1). The individual scores per frame . (v;"}|Cy, H;—1) can
then be immediately obtained as . (v;"}|Cy, H;—1) = %. The batch
label prediction can be analysed as a problem of combining information from
multiple (B) classification decisions. Considering that, per frame, the composite
model produces approximations to the likelihoods/scores for each class, different
combination rules can be considered to build the batch prediction from the
individual frame predictions. Applying arithmetic mean, the score per batch is
obtained as (Fig.4):

S S (W |, Hy—y)
i (5)

As an alternative choice, the median of the scores were also evaluated, since it
may be more robust to the outliers. The batch score is defined by:

S (v

Ckat—l) -

S (0" |C, Hy—1) = Median (v} |C, Hy—1) (6)
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Fig.4. Block diagram of score-level fusion (performed after micro-ensembles
recognition)
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Although other robust statistics could be considered from the individual frame
scores, experimentally we will only compare the two options. In the end,
NEVIL.ubm assigns each batch to the class maximizing % (vy"*|Ck, Hi—1).

4 Experimental Methodology

4.1 Datasets

In order to explore the properties of the proposed framework, we evaluated it
on multiple datasets covering various possible scenarios in a multi-camera sur-
veillance system. We conducted our experiments on a number of CAVIAR video
clips including: OneLeave ShopReenterl, Enter ExitCrossingPathsl, OneSho-
pOneWaitl, OneStop Enter2 and WalkBy Shoplfront as well as PETS2009.
These sequences present challenging situations with cluttered scenes, high rates
of occlusion, different illumination conditions as well as different scales of the
person being captured. We employ an automatic tracking approach to track
objects in the scene and generate streams of bounding boxes, which define the
tracked objects’ positions. As the method may fail to perfectly track the targets,
a stream often includes frames of distinct objects. A hierarchical bag-of-visterms
method is applied to represent the tracked objects, resulting in a descriptor vec-
tor of size 11110 for each frame (refer to [16] for more information). In order to
avoid the curse of dimensionality that system may suffer from, PCA is applied
to the full set of descriptor features as a pre-processing step. Hence, the number
of features in each stream is reduced to 85.

4.2 Confidence Measure

Various criteria have been introduced as uncertainty measures in literature for
a probabilistic framework.

Most Confident Measure (MC): Perhaps the simplest and most commonly used
criterion relies on the probability of the most confident class, defining the confi-

dence level as
r%aXY(CHUf“,Ht_l) (7)
k

Modified Margin Measure (MM): MC only considers information about the most
probable label. Thus, it effectively “throws away” information about the remain-
ing label distribution [17]. To correct this, an option is to adopt a margin con-
fidence measure based on the first and second most probable class labels under
the model. We evaluate experimentally the BCL base on the ratio of the first
and second most probable class labels:

L(C o™ Hya) /S (Culog™, He ), (8)

where C* and C, are the first and second most probable class labels, respectively.
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4.3 Evaluation Criteria

Active learning aims to achieve high accuracy using as little annotation effort
as possible. Thus, a trade-off between accuracy and proportion of labelled data
can be considered as one of the most informative measures.

Accuracy. In a classical classification problem the disparity between real and
predicted labels explains how accurately the system works. However, in our sce-
nario the labels do not carry any semantic meaning (it is not a person recogni-
tion problem). The same person should have the same label in different batches,
whichever the label. As such, when evaluating the performance of our framework
we are just comparing the partition of the set of batches as defined by the refer-
ence labelling with the partition obtained by the NEVIL labelling. We adopted a
generic partition-distance method for assessing set partitions, initially proposed
for assessing spatial segmentations of images and videos [18]. Thus, the accuracy
of the system is formulated as:

Accuracy = N_TCOSt 9)

where N denotes the total number of batches, and Cost refers to the cost, yielded
by the assignment problem.

Annotation. Assume M LB and T'B denote the manually labelled batches and all
the batches available during a period (includes one or more time slots), respec-
tively. The Annotation Effort is formulated as:

#MLB

T (10)

Annotation effort =

It is expected that the accuracy increases with the increase of the annotation
effort.

Area Under the Learning Curve (ALC). [19] is a standard metric in active
learning research that combines accuracy and annotation effort into a single
measurement. ALC, which provides an average of accuracy over various budget
levels, seems to be a more informative metric. Herein, the learning curve is the
set of accuracy plotted as a function of their respective annotation effort, a,
Accuracy = f(a). The ALC is obtained by:

ALC:/O fla)da (11)
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Table 1. ALC of fusion at feature-level on videos. The rank of each setting in a given
dataset is presented next to the ALC between parentheses. Highlighted row indicates
the optimal design. Values in bold indicate better performance than score-level fusion
for optimal setting.

Confidence Measure Combination Rule[Reenterl|[Reenter2| front |PathsI [Enter2| Waitl [Enterl [PETS09
MC Median 0.96(1) | 0.96(2) [0.91(4)]0.87(2)[0.96(1)[0.90(4)[0.90(1)| 0.85(2)
Mean 0.94(3) | 0.97(1) |0.96(1)|0.88(1)|0.96(1)(0.91(3)[0.90(1)| 0.86(1)
MM Median 0.95(2) | 0.94(3) [0.93(3)]0.86(3)[0.96(1)[0.93(1)[0.88(2)] 0.79(3)
Mean 0.96(1) | 0.96(2) [0.95(2)[0.87(2)[0.96(1)[0.92(2)[0.90(1)| 0.73(4)
5 Results

Table 1 shows the ALC performance of the proposed fusion techniques using all
datasets along with the mean of ALC rank averaged over all the experiments
(the std of the results is always below +0.01). The table shows that settings in
where sum rule have been applied for combining the information occupy the two
top spots for both feature-level and score-level fusion. The results indicate that
the most confident class as batch confidence measure selects more informative
batches than modified margin, as settings employing the former have better mean
rank. Based on the average rank, we conclude that the arithmetic mean as fusion
rule and the most confident as selection criterion presents the optimal design.
Comparing the ALC of identical designs of two fusion schemes (highlighted rows
in Tables1 and 2) for every dataset, we observe that for 6 out of 8 datasets
feature-level fusion attains better performance (higher ALC) than score-level
fusion.

Figure5 presents the results of optimal design (arithmetic mean as fusion
rule and the most confident as selection criteria) for two fusion levels on all
video clips. Since ALC measures the average performance over various bud-
get levels, it does not give detailed information for every single budget level.
We chose the point obtained by labelling 20 % of batches for a more detailed
analysis. Given that budget while employing mid-level fusion, we obtain 100 %
accuracy for four scenarios (OneLeaveShopReenter2, OneLeaveShopReenterl,
OneStopEnter2, and WalkByShoplfront). For more complex scenarios, such as
OneStopMoveEnterl (in where 42 streams from 14 classes are available) 88 % of

Table 2. ALC of fusion at score-level on videos. The rank of each setting in a given
dataset is presented next to the ALC between parentheses. Highlighted row indicates
the optimal design. Values in bold indicate better performance than score-level fusion
for optimal setting.

Datasets
Confidence Measure Combination Rule|[ReenterI|Reenter2| front [Paths1|Enter2| Waitl [Enter] [PETS09
MC Median 0.96(1) | 0.93(3) [0.93(2)]0.86(2)[0.95(2)[0.88(4)[0.87(3)| 0.79(2)
Mean 0.96(1) | 0.97(1) [0.90(3)|0.87(1)|0.95(2){0.90(3)|0.90(1)| 0.85(1)
MM Median 0.96(1) | 0.91(4) [0.95(1)[0.87(1)[0.93(3)[0.91(2)[0.87(3)| 0.71(4)
Mean 0.96(1) | 0.95(2) [0.93(2)[0.85(3)]0.96(1)[0.92(1)[0.89(2)| 0.75(3)
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Fig. 5. ALC vs annotation effort for feature-level with score-level fusion on the various
videos. ——_ highlights 20 % budget.

batches are correctly classified, showing an improvement over score-level fusion
results (80 % accuracy). The results indicate the better performance of feature-
level over score-level fusion.

Complezity. Improving the accuracy is not the only advantage of feature-level
fusion. In real-time learning, when massive amount of information is available,
efficiency is equally important. In contrary to score-level fusion, where an inde-
pendent recognition process is applied to every single Rol (of M Rol in a batch)
and then the results are mathematically combined, feature-level fusion employs a
single learning stage on the joint representation of a batch of M frames. Thus, the
time and complexity of the framework decrease dramatically. Since the frame-
work was developed in MATLAB without any efficiency concerns, a straight-
forward assessment of the time efficiency is not adequate. Nevertheless our
experiments shows that combining the information at feature-level is able to
process the streams almost twice as fast as score-level fusion, for a framerate of
25 fps (running in an Intel Core i7 at 3.2 GHz).

6 Conclusions

In this paper, two spatio-temporal fusion strategies to combine the patterns
of Rols in various streams captured in a multi-camera surveillance system are
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presented. We experimentally investigated the impact of feature-level and score-
level fusion on the performance of the PR system. Experiments indicate the
potential of feature-level fusion for on-line applications, as they attained the
best performance with much lower time complexity. For future work, we plan to
exploit descriptors that are specifically designed to represent video shots.
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