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Abstract: The development of robotic solutions in unstructured environments brings several chal-
lenges, mainly in developing safe and reliable navigation solutions. Agricultural environments are
particularly unstructured and, therefore, challenging to the implementation of robotics. An example
of this is the mountain vineyards, built-in steep slope hills, which are characterized by satellite signal
blockage, terrain irregularities, harsh ground inclinations, and others. All of these factors impose
the implementation of precise and reliable navigation algorithms, so that robots can operate safely.
This work proposes the detection of semantic natural landmarks that are to be used in Simultaneous
Localization and Mapping algorithms. Thus, Deep Learning models were trained and deployed to
detect vine trunks. As significant contributions, we made available a novel vine trunk dataset, called
VineSet, which was constituted by more than 9000 images and respective annotations for each trunk.
VineSet was used to train state-of-the-art Single Shot Multibox Detector models. Additionally, we
deployed these models in an Edge-AI fashion and achieve high frame rate execution. Finally, an
assisted annotation tool was proposed to make the process of dataset building easier and improve
models incrementally. The experiments show that our trained models can detect trunks with an
Average Precision up to 84.16% and our assisted annotation tool facilitates the annotation process,
even in other areas of agriculture, such as orchards and forests. Additional experiments were per-
formed, where the impact of the amount of training data and the comparison between using Transfer
Learning and training from scratch were evaluated. In these cases, some theoretical assumptions
were verified.

Keywords: deep learning; trunk detection; agriculture; autonomous navigation

1. Introduction

The development of robotic solutions in unstructured environments brings several
challenges, mainly in developing safe and reliable navigation solutions. Agricultural envi-
ronments are particularly unstructured and, therefore, challenging to the implementation
of robotics. The Douro vineyards (Figure 1) are a great example of this.

These are located in the Douro Demarched Region, the oldest controlled winemaking
region in the world, a UNESCO heritage place [1], and they are built in steep slope hills.
The hill’s characteristics cause signal blockage that decreases the accuracy of signals thtat
are emitted by the Global Navigation Satellite System (GNSS), which makes the use of,
for example, the standard Global Positioning System (GPS), unreliable. Additionally,
the terrain that is highly characterized by irregularities leads to the high inaccuracy of
sensors, like wheel odometry and Inertial Measurement Units (IMU)s [2].

Agriculture 2021, 11, 131. https://doi.org/10.3390/agriculture11020131 https://www.mdpi.com/journal/agriculture

https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0001-6909-0209
https://orcid.org/0000-0001-9601-5693
https://orcid.org/0000-0002-8486-6113
https://orcid.org/0000-0003-3224-4926
https://orcid.org/0000-0001-9999-1550
https://orcid.org/0000-0002-0317-4714
https://orcid.org/0000-0002-8406-0064
https://doi.org/10.3390/agriculture11020131
https://doi.org/10.3390/agriculture11020131
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/agriculture11020131
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/2077-0472/11/2/131?type=check_update&version=1


Agriculture 2021, 11, 131 2 of 20

Figure 1. Typical steep slope vineyard in the Douro’s region. The Douro Demarched region (41º 06′

06′′ N 7º47′56′′ W) extends for many Portugal cities, such as Mesão Frio, Peso da Régua, Santa Marta
de Penaguião, Vila Real, and others.

The vast extension of the vineyards and their challenging conditions lead to an increas-
ing need for human labor substitution by automatic and autonomous machines. These
machines can be used to perform operations, such as planting, harvesting, monitoring,
supply of water, and nutrients [3]. Moreover, they can transform and have a significant
impact on many agricultural economic sectors [4]. For mobile robots, the capability of
autonomously navigating in steep slope vineyards has a mandatory requirement: real-time
localization. For a robot to navigate safely in the vineyard, it needs to be able to localize
itself. Feature-based localization is one of the most common approaches to do so [5–7].
However, the extraction of reliable and persistent features in an outdoor environment is a
challenging task. The vineyard context makes sense to provide the robot with the ability
to recognize vine trunks as high-level features to use in the localization and mapping
processes. The robot can be endowed with camera systems and artificial intelligence to
learn what a trunk is. Moreover, the application of robotics in these tasks can have impact
in the agricultural economic sector [4]. However, real-time localization is an essential re-
quiremen in implementing mobile robotics in agriculture. Usually, in steep slope vineyards,
the localization approaches should work in the absence of satellite-based systems. Thus,
the implementation of these algorithms is a challenging task, due to the characteristic
unstructured scenes that compose these environments [8]. In this context, natural features
can be used as landmarks in the localization procedure [5–7]. In the vineyard, vine trunks
can be used to this effect, allowing for localizing the robot and simultaneously creating a
semantic map of the environment. Thus, the robotic platform should be capable to perceive
the scene and recognize these features. In other words, the robot has a semantic perception
of the environment.In order to perform such tasks, Deep Learning (DL)-based object detec-
tion [9] can be used. DL [10,11] allows for a machine to learn to classify, detect, and segment
objects using a given training dataset. Convolutional Neural Networks (CNN)s are widely
used to perform such a task. They showed the highest performance levels in several
contests in machine learning and pattern recognition [12]. Despite this, training a CNN
from scratch, and obtaining accurate results while deploying it on a real scenario, assumes
that both training and test data must be in the same feature space, and they have the same
distribution [13]. However, in some real-world scenarios, data collection can be challenging
and time-expensive. In order to overcome this limitation, learners can be trained with data
easily collected from different domains [14–16]. In other words, the learning procedure
can be performed, transferring knowledge from a given task that was already learned,
and the training procedure can focus on a subset of layers of the CNN. This methodology
is called Transfer Learning (TL) [17]. Image classification and object detection based on
DL techniques are widely present in the agriculture sector, endowing machines with the



Agriculture 2021, 11, 131 3 of 20

capability to perform operations in the agriculture context, such as plant disease detection,
weed identification, seed identification, fruit detection and counting, obstacle detection,
and others [18–20].

Given all of the above, this work proposes using DL algorithms to detect vine trunks
in a fast and precise way and while considering Edge-AI concepts. The main goal is to
compute reliable semantic landmarks to use in Simultaneous Localization and Mapping
(SLAM) pipelines of agricultural robots. In the current state-of-the-art, DL’s use to detect
tree trunks is still an area quite under developed, as described in Table 1. Badeka et al. [21]
propose a DL-based approach to detect vine trunks. The authors developed a dataset with
899 vineyard images and trained two different architectures: faster regions-convolutional
neural network (Faster R-CNN) [22] and You Only Look Once version (YOLO) [23]. The
results show that, in the best case, this work achieved an Average Precision (AP) of 72.3%
and an execution time performance of 29.6 ms. The remaining state-of-the-art approaches
use conventional image processing and range-based techniques in order to detect tree
trunks in agricultural contexts.

Table 1. Summary of the current state-of-the-art regarding tree trunk detection in agricultural contexts.

Reference Approach Performance

Badeka et al. [21]
Deep Learning-based vine trunk
detection. Uses Faster R-CNN and
two YOLO versions.

Average Precision of 73.2% and
execution time of 29.6 ms.

Lamprecht et al. [24]

Detection based on Airbone Laser
Scanning. Uses a Crown Base
Height estimation and 3D
clustering to isolate laser points
on tree trunks.

Detection rate of 75% and overall
accuracy of 84%.

Shalal et al. [25]

Orchard tree detection using a
camera and a laser sensor. Based
on image segmentation and data
fusion techniques.

Average rate of detection
confidence of 82.2%.

Xue et al. [26]

Uses a camera and a laser sensor
to detect and measure the trunk
width. Algorithm based on data
fusion and decision with
Dempster-Shafer theory.

Trunk width measurement with
error rates from 6% to 16.7%.

Juman et al. [27]

Ground removal by colour space
combination and segmentation
and trunk detection using the
Viola-Jones detector.

Detection rate of 97.8%.

Bargoti et al. [28]

Implements a Hough
transformation to extract trunk
candidates, and uses pixelwise
classification to update their
likelihood of being a tree trunk.

87–96% accuracy during the
preharvest season, and 99%
accuracy during the
flowering season.

Colmenero-Martinez et al. [29] Uses an infrared sensor to detect
tree trunks. Detection rate of 91%.

For example, Lamprecht et al. [24] use Airbone Laser Scanning to detect tree trunks.
The authors studied their approach in an area of 109 trees and achieved an overall accuracy
of 84%. Aiming to build a map of the orchard that is to be used in the mobile robotics
context, Shalal et al. [25] use a camera and range sensor to detect trunks. This work
uses image segmentation and data fusion techniques. Xue et al. [26] use a camera and
laser sensor to detect and measure the trunk width. The experiments were conducted on
120 trees and 40 images, resulting in an error rate of 6% to 16.7%. Juman et al. [27] combine
a ground removal technique with the Viola–Jones algorithm to detect trunks. This work
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is proposed in order to perform autonomous navigation in oil-palm plantations, and it
achieves a detection rate of 97.8%. Bargoti et al. [28] propose the detection of tree trunks
in structured apple orchards. The authors implement a Hough transform to extract trunk
candidates, and use pixelwise classification to update their detection likelihood.

In other agricultural contexts, DL is highly present in the detection of natural agents.
Fruit detection in orchards ishe most common application. Moreover, some works focus on
obstacle and insect detection, as well as pest identification. The majority of works focus
on fruit detection, mainly in orchards. Relative to these works, fruit counting is the most
common application. Additionally, a minority of the state-of-the-art focuses on insect
detection for pest identification and obstacle detection. Overall, most of the works present
high performance with Average Precision (AP) or F1 scores higher than 80%. Table 2
provides a summary of these works.

Table 2. Summary of the current state-of-the-art on Deep Learning (DL)-based object detection
in agriculture.

Reference Application Performance

Dias et al. [30] Detect apple flowers. AP of 97.20% and F1 score
of 92.10%.

Zheng et al. [31] Detect and classify crop species. AP of 92.79%.

Koirala et al. [32] Detect mango fruit. AP of 98.60% and F1 score
of 96.70%.

Tian et al. [33] Detect apples in orchards. F1 score of 81.70%.

Bargoti and Underwood [34] Detect fruit in orchards.
F1 score of 90.40% for apples,
90.80% for mangoes and 77.50%
for almonds.

Sa et al. [35] Detect sweet pepper and
rock melon F1 score of 83.80%.

Kirk et al. [36] Detect ripe soft fruits. F1 score of 74.40%.

Li et al. [37]
Detect and count oil palm trees
from high-resolution remote
sensing images.

Maximum overall detection
accuracy of 99% and counting
error less than 4% for each
considered region.

Ding and Taylor [38] Detect pest. AP of 93.10%.

Zhong et al. [39] Detect flying insects. Counting accuracy of 93.71%.

Steen et al. [40] Detect an obstacle.

Precision of 99.9% and recall of
36.7% in row crops, and precision
of 90.8% and a recall of 28.1% in
mowing grass.

Dias et al. [30] implement a technique for apple flower identification, which is robust
to changes in illumination and clutter. The authors use a pre-trained CNN and Transfer
Learning concepts to create the detector. Data augmentation is applied to the original
collected images to increase the dataset size. The results show that this work achieves an F1
score of 92.1% and an AP of 97.2%. In the context of mango fruit detection, Koirala et al. [32]
compared the performance of six state-of-the-art DL architectures. Additionally, the authors
proposed MangoYOLO, a new architecture based YOLO [23], which was specifically created
for mango fruit detection. As a best result, MangoYOLO performed with an AP of 98.60%.
Zheng et al. [31] propose a large dataset for species classification and detection, called
CropDeep. The dataset contains more than 30,000 images of 31 different classes. The au-
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thors train state-of-the-art DL models to verify its validity, such as Resnet [41], where they
obtained an AP of 92.79%.

Besides object detection, DL in agriculture can also be used to infer specific character-
istics of the natural agents. For example, Li et al. [37] propose a DL framework to detect
and count oil palm trees from high-resolution remote sensing images. The main goals
of this work are to predict yield of palm oil and monitor the growth stage of palm trees.
Tian et al. [33] implemented an improvement to the YOLO-V3 [42] model to estimate apples
yield and their grown stages. The authors consider a variety of challenging conditions, such
as overlapping apples, leaves, and branches; illumination variation; and, complex back-
grounds. The experiments performed proved that, for a training dataset with three different
growth stages, this approach has an F1 score of 81.7%. Bargoti and Underwood [34] use the
standard Faster R-CNN architecture [22] to detect several types of fruits in orchards, such
as apples, mangoes, and almonds. In this work, the authors explore the amount of data that
are required to capture the variability of the agriculture environment, as well as the gain of
using data augmentation techniques. Overall, this work was performed with high precision,
resulting in an F1 score higher than 90%. Additionally, Sa et al. [35] propose a fruit detec-
tion system called DeepFruits while using the Faster R-CNN architecture. The proposed
detectors are integrated in the software pipeline of an agricultural robot to estimate yield
and automate the harvesting process. The results demonstrated that this work achieves an
F1 score of 83.8% while detecting sweet pepper and rock-melon. To detect ripe soft fruits,
Kirk et al. [36] propose a detector implemented as a combination of a conventional com-
puter vision algorithm and a DL-based approach. The authors build a dataset with images
captured over two months in the agricultural environment to test their implementation.
The performed experiments show that this algorithm achieves an F1 score of 74.4%.

In addition to fruit detection, DL is also used in other relevant agriculture scenarios.
The safety of machines and operators is essential in these environments. In this context,
obstacle detection plays a major role ensuring the safety of the operations performed in
agriculture. To pursue this goal, Steen et al. [40] use a CNN to detect an object type in
row crops and grass mowing. The detector is able to detect the object with high precision,
without detecting false positives, such as persons or other objects. Finally, insect and pest
identification is also an important research area for the agriculture sector to avoid plant
diseases. Zhong et al. [39] implemented a fast and accurate flying insect detection and
counting. To do so, the YOLO [23] model is used in the detection stage, and an Support
Vector Machine (SVM) in the counting stage. The detection pipeling supports six types of
insects, and it performs with a counting accuracy of 93.71%. Ding and Taylor [38] create a
CNN model to detect and count pest. The experiments show that the model is fast and
precise (AP of 93.1%), and that it can be easily used to detect other kinds of pest.

Our previous works [43,44] focused on the usage and benchmark of low-power devices
to deploy DL models while using a low quantity of training data. In this paper, the se-
mantic vineyard perception problem is extended with the following main contributions
and innovations:

• A novel DL-oriented dataset for vine trunk detection called VineSet, publicly available
(http://vcriis01.inesctec.pt/datasets/DataSet/VineSet.zip) and recognized by the
ROS Agriculture community (http://wiki.ros.org/agriculture) as “A Large Vine
Trunk Image Collection and Annotation using the Pascal VOC format”.

• A way of extending the dataset size using data augmentation techniques.
• The train, benchmark, and characterization of state-of-the-art Single Shot Multibox

Detector (SSD) [45] models for vine trunk detection using the VineSet.
• Real-time deployment of the models using a Tensor Processing Unit (TPU).
• An automatic annotation tool for datasets of trunks in agricultural contexts.

The rest of the paper is described, as follows. Section 3 contains the methodology
adopted, such as the data collection and augmentation methods, the training procedure,
and the inference approaches. Section 4 presents the proposed system results while using

http://vcriis01.inesctec.pt/datasets/DataSet/VineSet.zip
http://wiki.ros.org/agriculture
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the VineSet dataset and the respective analysis, characterization, and discussion. Finally,
Section 5 summarizes the work.

2. Background

This work uses two sets of models based on the SSD architecture [45] to detect vine
trunks, the MobileNets [46], and Inception-V2 [47]. The SSD architecture and the derived
models are briefly described in this section.

2.1. Single Shot Multibox

SSD, Figure 2, is based on a feed-forward CNN that detects objects producing a fixed
number of bounding boxes and scores.

Figure 2. Single Shot Multibox architecture [45].

This architecture is built upon a Neural Network (NN) that is based on a given
standard architecture. Its main modules are:

• Convolutional feature layers that decrease progressively in size, detecting objects at
multiple scales.

• Convolutional filters that are represented on the top of Figure 2 produce a fixed
number of detection predictions.

• A set of bounding boxes associated with each feature map cell.

These characteristics allow to detect objects at multiple scales, i.e., objects of different
sizes in the images with different resolutions.

2.2. MobileNets

This set of models provide lightweight Deep Neural Networks (NNs) while using
depthwise separable convolutions. In other words, the model factorizes convolutions
into depthwise and 1 × 1 convolutions, called pointwise convolutions. The first applies a
single filter to the input channel, and the second applies a 1 × 1 convolution, combining
the outputs of the first. The CNN input is a tensor with shape D f × D f ×M, where D f
represents the input channel spatial width and height, and M is the input depth. After
the convolution, a feature map of shape D f × D f × N is obtained, where N is the output
depth. In this context, these model families use two hyper-parameters that allow the user
to resize the model in order to meet the system requirements. These hyper-parameters are:
width multiplier α and resolution multiplier ρ. The first is used to reduce the size of the
CNN uniformly at each layer. For a given value of α ∈ (0, 1], the number of input channels
M becomes αM, as well as the number of output channels N becomes αN. The width
multiplier reduces the computational cost and number of parameters by α2. The second
hyper-parameter, ρ, is also used to reduce the computational cost. This one is applied
directly to the input image, setting its resolution. The ρ ∈ (0, 1] values are chosen to obtain
typical input image resolutions. Similarly to the width multiplier, the resolution multiplier
also reduces the computational cost and the number of parameters by ρ2. Accordingly,
both of the parameters are different ways of reducing the model size and computational
cost. When combined, the effects on the final model can be even more significant.
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2.3. Inception

Szegedy et al. [48] proposed the primary version of Inception. This model design is
based on the premise that the desired object to classify or detect can present several sizes
on different images. This leads to the difficulty of choosing the right kernel size. Inception
proposes three different convolutional filter sizes to overcome this issue: 1 × 1, 3 × 3,
and 5 × 5. Additionally, the NN model also computes max pooling. The output of all these
operations is then concatenated, constituting the result of the respective Inception module.

Inception-V2 was developed to reduce the computational complexity of the original
version. This is done by factorizing the convolution operations. For example, a 5 × 5
convolution is factorized into two 3 × 3 convolutions, improving the runtime perfor-
mance. Similarly, an m×m convolution can be factorized into a combination of 1 ×m and
m× 1 convolutions.

3. Materials and Methods

The reliable semantic perception of an agricultural environment by a robot is a task that
requires several development steps, as well as high amounts of learning data. In this work,
a large collection of data in several vineyard contexts is proposed. This innovation created
the VineSet, a dataset with RGB images of four different vineyards, and thermal images of
a single one, containing the annotations for each image. The proposed dataset is available
(http://vcriis01.inesctec.pt/datasets/DataSet/VineSet.zip) and it was recognized by the
ROS Agriculture community (http://wiki.ros.org/agriculture) as “A Large Vine Trunk
Image Collection and Annotation using the Pascal VOC format”. In addition, our pipeline
supports a variety of augmentation operations that allow for extending the original dataset.
The augmentation procedure automatically generates the annotations for the augmented
images. With this information, state-of-the-art SSD models are trained using the Tensorflow
(https://www.tensorflow.org/) API and then deployed in an Edge-AI manner. Figure 3
represents the main steps performed until real-time vine trunk detection.

Figure 3. High-level design of the vine trunk detection framework. The procedure starts with the
data acquisition in real-world vineyards, followed by the manual vine trunk annotation. The VineSet
is extended using data augmentation techniques to increase the dataset size. Finally, the Neural
Networks are trained and deployed in a Edge-AI manner, using dedicated hardware.

In addition to this vine trunk detection pipeline, an assisted labelling framework is
also proposed. A DL model is used to automatically annotate an input dataset and provide
the annotations in a standard format. The user can then load the annotations and manually
annotate the remaining objects not detected by the DL model, as detailed in Section 3.5.
In terms of cost, we propose a cost-effective solution that requires two main hardware
components: a standard RGB camera (https://www.raspberrypi.org/products/raspberry-

http://vcriis01.inesctec.pt/datasets/DataSet/VineSet.zip
http://wiki.ros.org/agriculture
https://www.tensorflow.org/
https://www.raspberrypi.org/products/raspberry-pi-high-quality-camera/
https://www.raspberrypi.org/products/raspberry-pi-high-quality-camera/
https://www.raspberrypi.org/products/raspberry-pi-high-quality-camera/
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pi-high-quality-camera/) (<70€), and a low-cost TPU device (https://coral.ai/products/
accelerator) (<60€). The devices must be plugged to a central processing unit, such as a
microprocessor or a standard computer. This being said, the proposed solution is affordable
for small/medium farmers, and it can have an impact in the improvement of the semantic
perception systems in vineyards.

3.1. Data Acquisition

In order to acquire images in real vineyard scenarios, we used our robotic platform
AgRob V16 [49], which is represented in Figure 4.

Figure 4. The AgRob V16 robotic platform recording data in one of the vineyards that compose
the VineSet.

This robot contains a frontal stereo RGB camera and a frontal thermal camera. To col-
lect the image data, the robot travelled along the vineyard corridors of four different
vineyards, and then recorded video streams saved in the ROSBag file format. In one of
the vineyards, the thermal camera was activated, and also recorded video to the same file
format. After all, the acquisition on the field, the ROSBag files were processed, and im-
age frames were extracted from them at a fixed frame-rate, which resulted in a total of
952 vineyard images. Figure 5 shows an example of each type of image collected.

From this, one can see that the dataset presents considerable data variability. In fact,
the VineSet contains images that were collected at different stages of the year that capture
different characteristics of the vineyards imposed by the temporal offset. Additionally,
it presents images of vineyards with and without foliage and with different levels of
luminosity. Finally, the presence of thermal vineyard images adds the notion of temperature
to the dataset, which can improve the learning procedure.

https://www.raspberrypi.org/products/raspberry-pi-high-quality-camera/
https://www.raspberrypi.org/products/raspberry-pi-high-quality-camera/
https://coral.ai/products/accelerator
https://coral.ai/products/accelerator
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(a) (b)

(c) (d) (e)

Figure 5. The five categories of vineyard images that compose the VineSet. (a–d) Four of them
are from different Portugal Vineyards and (e) the other represents the set of thermal images of the
vineyard present in Figure 5a.

3.2. Data Annotation

Given the training dataset, the perceptible vine trunks were manually annotated on
the images. Figure 6 shows an image example of each vine with the respective annotations.

(a) (b)

Figure 6. The result of the annotation process for trunk detection in two different vineyards repre-
sented in (a,b). The green dots represent the extremes of the annotated bounding boxes that contain
the vineyard trunks.

The output from this procedure is a set of bounding boxes with different sizes for
each image. These are represented in a .xml file with the Pascal VOC annotation format,
containing the label class that is considered and the four corners location of each bounding
box. It is worth noting that the annotations are a fundamental part of the VineSet dataset,
since they represent trunk’s location in the object detection learning procedure.

3.3. Data Augmentation

Even though DL outperforms most traditional Machine Learning (ML) methods in
terms of precision and real-time application [18], one of the biggest challenges is to over-
come overfitting. This frequent ML problem consists of modelling the data too well, only
learning the expected output for each input instead of learning the input data’s general
distribution. Additionally, conditions, such as variation of sunlight illumination during the
day or the outdoor environment terrain, may affect performance. In order to avoid over-
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fitting and the network generalization, data augmentation is a usual method to enhance
data variability for training by enlarging the dataset using label-preserving transforma-
tions. Thus, to increase the VineSet’s diversity and robustness, the collected images were
pre-processed with the augmentation techniques presented in Table 3, and VineSet was
extended to 9481 images.

Table 3. Description of the augmentation operations used to expand the original collection of data.

Augmentation Operation Description

Rotation Rotates the image by 15, −15 and 45 degrees.

Translation Translates the image by −30% to +30% on x- and y-axis.

Scale Scales the image to a value of 50 to 150% of their original size.

Flipping Mirrors the image horizontally.

Multiply Multiplies all pixels in an image with a random value sampled once per
image, which can be used to make images lighter or darker.

Hue and saturation
Increases or decreases hue and saturation by random values. This
operation first transforms images to HSV colourspace, then adds random
values to the H and S channels, and afterwards converts back to RGB.

Gaussian noise Adds noise sampled from Gaussian distributions element-wise to images.

Random combination Applies a random combination of three of the previous operations.

As described, the VineSet is extended by applying operations on the original images,
such as rotation, translation, scaling, flipping, multiplication, saturation, and the addition
of noise sampled from a Gaussian distribution. In addition, a random combination of
three of the previous operations is also supported. This highly increases the number of
combinations of operations possible and, consequently, increases the extended dataset
variability. Figure 7 represents an example of an application of the augmentation operations
to a single image.

(a) Original (b) Translation (c) Multiply

(d) Hue/Saturation (e) Horizontal Flip (f) Rotation

Figure 7. Cont.
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(g) Rotation (h) Gaussian Noise (i) Combination 3

Figure 7. Set of several augmentation operations that were applied to VineSet, such as translation,
multiplication, hue and saturation, flip, rotation, Gaussian noise, and, finally, a random combination
of three of the previously mentioned operations.

3.4. Training Procedure

The Edge-AI-based deployment of NNs is performed while using a TPU. This hard-
ware device is provided by Google and requires models that were trained using the
Tensorflow [50] API. Tensorflow is an open-source end-to-end framework for machine
learning and DL that provides tools, libraries, and models. With this tool, the implementa-
tion of DL applications can be built in a more straightforward, comprehensive, and flexible
way. In the Edge-AI context, Tensorflow provides a tool, called Tensorflow Lite, which
is device-oriented. Using Tensorflow Lite, the trained models can be transformed to be
compatible with edge-based hardware. In this work, this tool is used for two main ends:

1. the full quantization of models to 8-bit precision; and,
2. compilation of the model to the TPU context.

Step 1. consists of converting the training models from 32-bit to 8-bit precision, since
the TPU device can only deploy fully quantized models. The second step is a fundamental
part of the process. In this, the model is compiled to the TPU context. In other words,
the DL model operations are allocated to the device. The unsupported operations remain
allocated to the host device, usually a CPU. Thus, the higher the number of allocated
operations to the edge device, the faster the inference procedure will be. With this in
mind, the model selection is crucial for the reliable operation of the detectors. For the
object detection task, the SSD is the most appropriate, and one specific set of models was
particularly implemented for edge- and embedded-based applications: the MobileNets [46].
In this work, SSD MobileNet-V1 and SSD MobileNet-V2 were both trained and deployed,
as well as the SSD Inception-V2 model [47]. The three models were benchmarked and
characterized by evaluating the dataset size and comparing the inference performance
between training them from scratch and using Transfer Learning.

3.5. Assisted Labelling Tool

Training a DL model involves several steps, one of the most important of which is data
annotation. Generally, this step is a long process, and the time that is spent depends on
several factors, such as the total number of images that the dataset has the number of classes
and the ease of manually identifying the bounding box that corresponds to each class.
Thus, this work proposes creating an assisted labelling procedure that uses AI to help the
annotation process in the detection of trunks in the vineyards. Figure 8 represents the
layout of the created application.

In this way, a comprehensive and user-friendly python notebook was developed.
The procedure of this new solution consists of using an online platform, Google Colabora-
tory (https://colab.research.google.com), so that the user can save his machine’s resources.
This tool provides a DL model that is trained for detecting vine trunks, and also capable of
detecting trunks in other contexts such as orchards or forests. Accordingly, an essential
factor for automating this process is the use of the DL model. Taking the results obtained in
Section 4 into account, the SSD MobileNet-V1 trained with VineSet was the model chosen
for the detection of trunks in the images introduced in this tool. The assisted labelling
procedure uses this model to pre-process the user dataset, automatically annotating the

https://colab.research.google.com
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detected trunks, saving the annotations in the Pascal VOC format. The user can then load
the automatic annotations and complete them manually. This tool reduces the percentage
of annotations taken manually, significantly reducing the time that it takes to insert labels
into relatively large datasets. It is worth noting that this procedure is iterative, in the way
that the user can improve DL-based object detection models performance, by iteratively
annotating objects that the model fails to recognize.

Figure 8. The assisted labelling tool interface.

4. Results

This section evaluates the semantic vineyard perception captured by on-board sensors
while using Edge-AI technologies. The evaluation considers the vine trunk detection
precision and inference time performance.

4.1. Methodology

A subset of the entire dataset was used for test purposes and not employed in the
training procedures in order to test and evaluate the models. The test set selection is
randomly generated, picking 10% of the VineSet images. In this work, two train datasets
were used. This was done to evaluate the impact of the training dataset size on the
detectors performance. Thus, the original VineSet dataset and a small subset of it with 336
non-augmented images were used. The evaluation approach is described in Section 4.2.
In addition, the inference time per image was measured for each model deployed in the
TPU, while considering the average inference time for all the images present in the test
dataset. Finally, the assisted labelling procedure is evaluated when considering three
experiments: the first in a vineyard not present in the VineSet dataset, other in forest
images, and a final one in a hazelnut orchard. The labelling was assisted in these three
scenarios, and the time that was saved in the annotation procedure was measured for each
of them.

4.2. Object Detection Metrics

The PASCAL VOC Challenge [51] was used to evaluate the considered model’s per-
formance on Google’s USB Accelerator. Most of DL-based works use AP to evaluate their
models, as shown in Section 1. Thus, the use of this metric simplifies the comparison
between state-of-the-art approaches. In order to compute the AP, Pascal VOC starts by
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calculating the Intersection over Union (IoU). Given an annotated ground truth bounding
box Bg, and a detected bounding box Bd, the IoU is computed, as follows:

IoU =
m(Bg ∩ Bd)

m(Bg ∪ Bd)
(1)

where m(x) denotes the area of x. Figure 9, shows a graphical representation of this concept.

��

��

��

��

IoU =

Figure 9. Interception over union representation.

Thus, IoU represents the quotient between the overlap area and the union area between
the ground truth and bounding boxes’ detection. Using this definition, for a given threshold
value t, three main concepts can be defined:

• True Positive (TP): IoU ≥ t, i.e., a correct detection.
• False Positive (FP): IoU ≤ t, i.e., an incorrect detection.
• False Negative (FN): a ground truth is not detected.

In the case that multiple detections for a single annotation (or ground truth) are
computed, this metric only considers as TP the one that presents the higher IoU value. All
of the other detections are marked as FPs. Subsequently, to compute the model AP, two
concepts are defined. The first, precision p, is defined as the total number of TPs over all
the detections. The second, recall r, is the total number of TPs over all the ground truths.
With these two concepts, AP is calculated as a combination of precision and recall. In other
words, the AP is the average value of the precision vs recall curve p(r) for r ∈ [0, 1]. The
evaluation considers that a suitable detector is the one that maintains the precision high for
an increase in recall. Mathematically, this is expressedm as follows

1

∑
r=0

(rn+1 − rn)pinterp(rn+1) (2)

with
pinterp(rn+1) = max

r̃;̃r≥rn+1
p(r̃) (3)

where p(r̃) is the measured precision at recall r̃.
This work also evaluates the models while using the F1 score. This score is the

harmonic mean between the precision p and recall r, and it can be calculated as follows:

F1 = 2
p · r

p + r
(4)

4.3. Detectors Performance

In this work, in order to evaluate the models performance, we consider an IoU
threshold of 0.50, since we are interested in detecting trunks with high and medium
precision to use as landmarks for Simultaneous Localization and Mapping in agriculture.
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Additionally, trunks are non-uniform agents that present inclination and perturbations.
Thus, a detection can still be valid and precise, even if it does not exactly match the
annotation. Table 4 summarizes the models’ performance in terms of precision and F1 score.

Table 4. AP (%) and F1 Scores of the trained models. The three models were trained while using a
small subset of the VineSet, and VineSet itself. In addition, using VineSet, three experiments were
performed for each model. The performance of each one was compared using Transfer Learning (by
fine-tuning) and training them from scratch with two different numbers of training epochs.

M del Train Dataset

Fine-Tuning From Scratch From Scratch

50 k 50 k 100 k

AP (%) F1 AP (%) F1 AP (%) F1

SSD MobileNet-V1
Small subset

49.74 0.610 - - - -
SSD MobileNet-V2 52.98 0.590 - - - -
SSD Inception-V2 46.10 0.610 - - - -

SSD MobileNet-V1
VineSet

84.16 0.841 68.44 0.685 85.93 0.834
SSD MobileNet-V2 83.01 0.808 60.44 0.639 83.70 0.812
SSD Inception-V2 75.78 0.848 58.05 0.658 76.77 0.849

When considering the trained models with VineSet using Transfer Learning (fine-
tuning), we achieved a maximum AP of 84.16%, corresponding to SSD MobileNet-V1.
This proves that the VineSet dataset can be successfully used to train models to detect
vine trunks, even while considering lightweight model, such as the MobileNets. SSD
MobileNet-V2 achieves a similar precision (83.01%), which is expected, since both models
have similar architectures. The SSD Inception-V2 presents a lower precision (75.78%),
but the higher F1 score (0.848). This means that this model is the one that has the best
balance between precision and recall. Figure 10 shows an example of three detections using
the SSD MobileNet-V1.

In terms of inference time, from Table 5 several conclusions can be taken.
The edge TPU device is built with a specific architecture that is optimized to deploy

DL models. If the models are compatible with it, then it is expected that the inference
runs at high frame rate. From the experiments performed, the MobileNets achieved an
average inference time of 21.18 ms and 23.14 ms. In terms of frequency, this is equivalent
to approximately 50 frames per second. This means that the edge TPU can process approxi-
mately 50 images and output the desired detections in one second. For SSD Inception-V2,
the processing rate is slower. The edge device has an average inference time of 359.64 ms
for this device. This can be explained by two main reasons. Firstly, the MobileNets use
depthwise separable convolution, while Inception uses standard convolution, which results
in fewer parameters on MobileNet when compared to Inception. Secondly, the first set of
models is more oriented to edge devices. Thus, in the compilation process for the TPU,
a higher number of operations is allocated to it. On the opposite side, the SSD Inception-V2
allocates more operations to the host CPU, due to the non-compatibility of some of them.
These two factors lead to the decrease of the inference time performance.

Table 5. Inference time per image (ms) of each trained model deployed on the edge TPU device.

Model Inference Time per Image (ms)

SSD MobileNet-V1 21.18
SSD MobileNet-V2 23.14
SSD Inception-V2 359.64
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(a) (b)

(c)

Figure 10. Detection results in (a,b) two RGB images from different vineyards and (c) one thermal
image using Single Shot Multibox Detector (SSD) MobileNet-V1 trained with VineSet.

4.4. Impact of the Dataset Size on the Detection Performance

In order to evaluate the training dataset size impact in the final models’ performance,
we trained them using a small subset of the VineSet. Table 4 summarizes all of the obtained
results in terms of AP and F1 score. As expected, the models that were trained with lower
amounts of data present lower precision. The lower variability of data leads to a lower
learning capability and, consequently, to a lower inference performance. In this context,
we verified a decay of 34.42% of AP for SSD MobileNet-V1, 30.03 for SSD MobileNet-V2,
and 29.68% for SSD Inception-V2. Thus, the decrease in the training dataset size has
a significant impact on the models performance. This proves the high importance of
considering a considerable amount of data with variability when dealing with DL models.

4.5. Comparison of Transfer Learning against Training from Scratch

One of the main questions of developers while training and deploying DL models is
to fine-tune a pre-trained model or to train it from scratch. When using Transfer Learning,
the model uses some of the pre-trained weights and restores other ones. Thus, the starting
point on Transfer Learning is one step ahead when comparing training the same model
from scratch. In the last case, all of the weights have to be learned, leading to a longer
learning process. To test this, we train the three models from scratch using two epoch values
(50,000 and 100,000). From Table 4, we can verify that, for models that are trained from
scratch to achieve similar performance as compared with the ones fine-tuned, the number
of training epochs has to be doubled. From Figure 11, this is also visible.

Here, it is possible to verify that the training loss for the fine-tuned models converges
faster. Additionally, the validation loss has a more precise starting point for these models,
as visible from Figure 11c,d. Thus, these experiments proved the theoretical assumptions
that were made.



Agriculture 2021, 11, 131 16 of 20

(a) Fine-tuning train loss (b) Scratch train loss

(c) Fine-tuning validation loss (d) Scratch validation loss

Figure 11. Train and validation loss of SSD MobileNet-V1 using 50,000 epochs and considering
Transfer Learning and training from scratch.

4.6. Assisted Labelling Procedure

Several factors were analyzed in comparison with manual annotation in order to
assess the performance of our assisted labelling procedure. Specifically, the average time to
manually label a trunk was measured over several experiments, and it was concluded that,
on average, the time spent per trunk annotation is 5 s. Thus, once this value is established,
the total time that is spent on several images can also be estimated. The time spent on
assisted annotation was calculated from the percentage of annotations made automatically,
and the percentage of annotations made manually. In this way, the total time that is spent
by the tool is calculated through the time spent by the automatic annotation plus the offset
created by the missing annotations. Table 6 summarizes the results.

Table 6. Assisted labelling procedure evaluation.

Dataset Number of Images Number of Trunks Automatic
Annotations (%)

Average Time with
Assisted Labelling (min)

Average Time without
Assisted Labelling (min)

Other vineyards 11 75 72.32 1.74 6.35
Hazelnut orchard 20 139 48.34 5.99 11.58

Forest 264 1647 28.05 101.97 137.25

These experiments used the proposed assisted annotation procedure to automatically
annotate the images from other vineyards, but also from an orchard, and a forest. The
results estimate that the automatic annotation tool can reduce the average labelling time
from 6.35 min. to 1.74 min for vineyards. In orchards, the tool annotates 48.34% of the
trunks and, in forests, 28.05%. This means that only the remaining set of trunks have to be
annotated by the user. The tool can be iterative improved by updating the back-end DL
model with user’s annotations. Figure 12 shows the result of the automatic annotation in
three different contexts.
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(a) Hazelnut orchard environment. (b) Forest environment.

(c) Vineyard environment.

Figure 12. Automatic annotations in different areas of agriculture.

4.7. Discussion

The experiments performed revealed several takeaways. With a wide variety of
data, lightweight DL models can be used for detection purposes in agricultural contexts.
With these models, Edge-AI-based devices can be used to perform high-performance
inference. As discussed, one of the most important factors to build successful detectors
is to provide sufficient amounts of varied learning data. Additionally, using models that
already have a learning history can accelerate the learning procedure, thus saving resources
and time.

In comparison with the state-of-the-art, our approach outperforms the work that was
proposed by Badeka et al. [21] that achieved an AP of 73.2% using DL models to detect vine
trunks. Other approaches use conventional image processing techniques, or data fusion, to
achieve the same goal. In particular, Lamprecht et al. [24] uses a 3D clustering procedure
to isolate laser points on tree trunks, achieving an overall accuracy of 84%. Shalal et al. [25]
fuse a camera with a laser sensor to detect orchard trunks with a detection confidence of
82.2%. Our approach achieves similar results using less resources, presenting extremely
high inference rates. Regarding the works that use DL in other agricultural contexts, our
approach presents a state-of-the-art performance (AP higher than 80%) and promotes DL
concepts in vineyard contexts. We think that these concepts have extreme importance in
agricultural robotics and that, shortly, they will be usually approached to the detriment
of more conventional image processing techniques. In comparison with our work, some
works present higher precision rates, such as Dias et al. [31], Zheng et al. [31], and Koirala
et al. [32]. In relation with these, our work uses simpler DL models with less operations and
being less computationally expensive. Even so, this paper can still present a state-of-the-art
performance, with the advantage of running at high frame rates.

The major drawback faced while implementing the proposed techniques was the high
amount of time and resources spent during the annotation process. This led to the creation
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of the automatic annotation tool, so that, in the future, we can spend less time in this step.
Looking to the future, one of the most important steps will be to develop models and
acquire data, so that robots can also have this level of perception during the night. In most
agricultural sectors, robots can be employed to autonomously perform several tasks during
this period. Consequently, they should also have the ability to detect objects and natural
agents at night.

5. Conclusions

In this work, DL is used to detect semantic features in vineyards. Single Shot Multibox
detectors are trained while using a novel built in-house dataset, the VineSet. The models are
converted to an edge TPU context and then deployed in this hardware device. Additionally,
an assisted annotation tool is proposed to ease the dataset creation procedure. The results
show that our detectors present an AP up to 84.16% and an F1 score up to 0.848. The
MobileNets are executed in the edge TPU at a high frame rate, with an average inference
time per image up to 23.14 ms. Additionally, from the characterization performed, two
main conclusions can be made: the amount of training data has a significant impact on the
detectors’ performance; and, the number of training epochs has to be double in order for a
detector trained from scratch achieve a similar performance of the one fine-tuned. Finally,
the annotation tool proved to help in the annotation process, being capable of automatically
annotating trunks in other agricultural contexts, such as orchards and forests.

In future work, we aim to project and implement a DL model from scratch in order to
detect vine trunks. Additionally, we will integrate the proposed models in a Simultaneous
Localization and Mapping stack as landmark extractors.
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