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Abstract

Near-future electric distribution grids operation will have to rely on demand-side flex-
ibility, both by implementation of demand response strategies and by taking advantage
of the intelligent management of increasingly common small-scale energy storage. The
Home energy management system (HEMS), installed at low voltage residential clients,
will play a crucial role on the flexibility provision to both system operators and market
players like aggregators. Modeling and forecasting multi-period flexibility from residen-
tial prosumers, such as battery storage and electric water heater, while complying with
internal constraints (comfort levels, data privacy) and uncertainty is a complex task.
This papers describes a computational method that is capable of efficiently learn and de-
fine the feasibility flexibility space from controllable resources connected to a HEMS. An
Evolutionary Particle Swarm Optimization (EPSO) algorithm is adopted and reshaped
to derive a set of feasible temporal trajectories for the residential net-load, considering
storage, flexible appliances, and predefined costumer preferences, as well as load and
photovoltaic (PV) forecast uncertainty. A support vector data description (SVDD) al-
gorithm is used to build models capable of classifying feasible and non-feasible HEMS
operating trajectories upon request from an optimization/control algorithm operated by
a DSO or market player.

Keywords: Renewable energy, multi-temporal, flexibility, forecast, storage,
uncertainty, prosumers

1. Introduction

1.1. Motivation
Distributed Renewable Energy Sources (DRES) have been experiencing a fast grow-

ing in medium voltage (MV) and low voltage (LV) grids as the solar power technology
becomes more and more affordable [1, 2]. Conventional electrical network infrastructures
were designed to accommodate unidirectional power flows coming from the large power
plants to the more populating zones where most of the consumers exist. With the in-
creasingly presence of DRES in LV and MV distribution grid, there is a paradigm change
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as the power flows start to reverse direction, particularly during sunny days or windy
periods. Consequently, technical difficulties regarding the operation of distribution grid
start to arise for Distribution Systems Operators (DSO), with bus voltage limits being
violated or even line congestion events.

Microgrids, composed with flexible loads, small-scale storage and their intelligent
management by means of an Home Energy Management System (HEMS) combined with
smart meter capabilities, can bring flexibility into the operation of distribution grids,
taking advantage of increasingly more frequent types of flexible loads such as the electric
vehicle [3, 4] and the presence of significant levels of photovoltaic (PV) microgeneration
[5]. The flexible character that microgrids bring to the distribution grid operation can be
used to provide ancillary services [6, 7] at period of grid stressful operation. Optimizing
the operation of these small-scale distribution grids is being seen as crucial to endow DSOs
of means of accommodate current levels of DRES and allow for a deeper penetration of
micro-generation in LV distribution grids in the short-term future. Controlling, modeling,
optimizing schedules of microgrid flexible assets has been topic of research for the last
years [8, 9] with some focus given to energy storage [10, 11].

DSOs can also take advantage of the flexible nature of microgrids during grid stress-
ful operation periods, use it for voltage control features at MV/LV substations [12], for
load frequency control [13], for power losses reduction, support unintentional microgrid
operation [14], and to create operational conditions that maximize DRES hosting capac-
ity that might bring financial benefits for prosumers and have a positive impact on the
decarbonization of the electric power system.

Domestic small-scale storage, heat-pumps, thermostatically controlled loads (TCL),
air-conditioners, and the electric vehicle will for sure be more common in residential
type buildings in the near future, increasing the flexibility that can be provided within
LV distribution grids, either by means of demand response programmes or flexibility
aggregators participating in dedicated market sessions or even with single HEMS smart
operation aiming at maximizing customers profits [15, 16] while supporting DSO in meet-
ing specific operational criteria [17, 18]. The flexibility provision from HEMS monitoring
and control capabilities is a theme of relevant significance as a result of the added value
that can be brought to interested agents like DSOs and flexibility aggregators. Therefore,
there is a need for developing flexibility models to capture the following characteristics:

• Multi-period flexibility from behind-the-meter storage and TCL due to the inter-
temporal nature of state of charge (SoC) and water temperature equations;

• LV net-load patterns driven by weather conditions (e.g., PV generation) that in-
troduce high uncertainty in the forecasting task [19].

This paper produces contributions that address these two research challenges.

1.2. Related Work and Contributions
Different authors studied the economic and technical benefits of flexibility from energy

storage technologies. The focus was mainly in large-scale storage and renewable energy
power plants, which, combined, create the virtual power plant (VPP) concept. For
instance, in [20] the value of price arbitrage for energy storage is evaluated for different
European electricity markets. The authors found that in fuel import-based markets,
such as the United Kingdom, there are opportunities for investors to benefit from energy
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storage arbitrage and the presence of hydro power plants decrease the interest in storage
investment. Gomes et al. proposed a two-stages stochastic optimization method for the
joint coordination of wind and PV systems considering energy storage in the day-ahead
market and adopted a mixed-integer linear programming formulation [21]. Results show
that, although the total amount of traded energy is inferior when considering a joint
coordination, the final profit is greater than when considering a disjoint operation. A
comprehensive literature review about VPP scheduling can be found in [22].

The present paper differs from these works since it is focused in residential prosumers
with small-scale storage and PV generation, and flexible appliances combined through an
HEMS. In this segment, concerns like data protection and privacy, multi-period flexibility
representation and the need to have local computational units are important challenges
that are not fully covered by the current literature.

A standard approach for modeling flexible distributed energy resources (DER) is to
characterize their flexibility with a set of specific parameters. For instance, for plan-
ning the operation of services buildings with thermal energy storage on a yearly basis,
Stinner et al. defined the maximum flexibility provision in each hour considering three
dimensions: temporal, power and energy [23]. However, in this work the flexibility was
modeled and calculated for planning purposes rather than a short-term time horizon.
For design process or for selecting set of buildings to participate in demand response
schemes, De Coninck et al. proposed flexibility cost curves, which correspond to the
amount of energy that can be shifted to or from a flexibility interval and the associated
cost [24]. Operational decision making is not covered by this methodology.

Multi-period flexibility modeling and forecasting for short-term horizons is a rather
recent topic, with few relevant research works dedicated to it.

Zhao et al. studied a geometric approach that is capable of aggregating flexibility
provided from TCL (represented as a “virtual” battery), and where the set of feasible
power profiles of each TCL has been demonstrated to be a polytope [25]. The aggregation
of several sets is performed by means of the Minkowski sum of the individual polytopes.
The computational burden issue is tackled by the authors by adopting several approx-
imations regarding the calculation of the Minkowski sums. Despite the merits of this
work, domestic battery storage is not modeled and neither is the impact of net-load
uncertainty, which are both relevant and challenging issues in this problem.

The “virtual” battery model was also explored by other authors, like Hughes et al.
that proposed a first-order linear dynamical model for flexibility provision from heat-
ing, ventilation, and air conditioning (HVAC) systems in frequency regulation services,
and generalizes the method to many other types of loads [26]. The results showed that
the developed technique still has challenges to overcome in modeling small-scale systems.
Another example is Hao et al., which considered demand aggregation using battery mod-
els to model the set of feasible power profiles that a collection of TCLs can provide to
track frequency regulation signals [27]. The TCL modeling assumes a simplified contin-
uous power model where the error related to this simplification decreases as the size and
homogeneity of the TCL aggregation increases.

Nosair et al. proposed a method to construct flexibility envelopes that describe the
flexibility potential of the power system and its individual resources [28]. The proposed
envelopes comprise all possible intra-hourly deviation and variation of the modeled DRES
considering that for a certain sub-hourly time there is maximum output variability. Using
the 95% percentile of the probability distribution of all the sub-hourly time steps the

3



authors define an envelope which comprises the majority of realizations of flexibility
requirements for that intervals. HEMS are not considered in this study, particularly
the costumer’s preferences regarding the operation of their equipment, which makes the
modeling problem more complex and simultaneously more realistic. Moreover, the multi-
period nature of flexibility is not modeled in the envelope.

A similar concept is also proposed by Nuytten et al. [29]. The authors presented a
methodology to estimate the maximum and minimum curves regarding the operation of
a combined heat and power (CHP) plant combined with thermal storage. The difference
between these two curves is indicated by the authors as being the theoretical maximum
flexibility that the system can provide. This methodology can only be used for modeling
the maximum flexibility that the system is capable of providing for one specific time
step in the time horizon considered, if one assumes that no flexibility has already been
provided in a later period. No multi-temporal formulation has been adopted in this work,
which means that a set of feasible power set-points regarding flexibility provision during
more than one time step cannot be provided by the proposed method. This flexibility
representation was also adopted in the European Project IndustRE as flexgraphs [30].

Ulbig and Anderson [31] described a methodology to analyze the available flexibil-
ity for each time-step from an ensemble of diverse units in a confined grid zone. This
flexibility is modeled as a Power Node, which allows for detailed modeling of specific
constraints such as maximum ramp rates, power limits, as well as energy storage op-
eration ranges. The authors propose a visual representation of the available flexibility
during a specific time horizon. Nevertheless, this visual representation and modeling ap-
proach does not account for a multi-temporal formulation, meaning that the mentioned
flexibility availability is only depicted for a single time step.

Pan et al. proposed a method to calculate the feasible region of a linear programming
formulation for the operation of a district heating system, considering the thermal inertia
of buildings [32]. The main objective was to have condensed and privacy preserving data
exchange between district heating and electricity control centers. The method can be
generalized to estimate the flexibility region for multiple time periods and non-linear
formulations, but showed the following limitations: a) uncertainty is not included in
this work (is pointed out by the authors as future work); b) visual representation of
multi-period flexibility region with more than three time intervals is not possible.

A different representation for the flexibility is proposed in [33]. Bremer and Son-
nenschein propose two sampling methods for defining the technically feasible flexibility
set from DER. The authors, for instance, propose a Monte Carlo sampling method that
starts with a feasible operating schedule and then, in each step, modifies it in at least one
point in time with a random mutation factor. The methodology is used by the authors
in a succeeding work where the obtained trajectories are used as a learning sample for
a support vector data description (SVDD) algorithm [34]. Despite some similarities in
the methodology with the work being presented in the present paper, this approach did
not consider the modeling of costumers’ preferences neither accounted for the forecast
uncertainty.

Considering the reviewed state of-the-art, the main original contribution from the
present paper is a novel trajectory generation algorithm that is capable of modeling
the multi-period flexibility from HEMS, including information about base net-load (i.e.,
inflexible load plus PV generation) forecast uncertainty represented by a set of short-
term scenarios generated from probabilistic forecasts taking into account the temporal
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interdependency of forecast errors.
The main limitation of reviewed literature is that information about net-load forecast

uncertainty is not included in the multi-period flexibility model, which, when included
in DSO or aggregators optimization models, might lead to solutions with low robustness
to uncertainty. In contrast to the methods described in [25, 26, 27, 32, 33] that proposed
multi-period flexibility estimation but without forecast uncertainty characterization, in
our method the uncertainty in the PV and net-load profile is tackled by means of a
novel trajectory-based evaluation procedure using the convergence features of the EPSO
(Evolutionary Particle Swarm Optimization [35]) algorithm that have been adapted to
this work.

Compared to [23, 24], the proposed method is for operational (or short-term decision-
making) and extends flexibility estimation to multiple time intervals (i.e., set of flexibility
trajectories), which represents an added value compared to the works described in [28,
29, 30, 31].

Similarly to [32, 33], the modeling strategy allows the interested parts to not have
to model the equipment within the HEMS, which reduces the computational complexity
and effort of problems such as multi-period OPF and maintains data privacy. In a second
stage, the flexibility trajectory set is used as input in a SVDD model that is capable of
delimiting the feasible flexibility set of the respective HEMS. The potential interested
parts, DSOs or demand/flexibility aggregators, only need to receive a reduced number of
flexibility trajectories, called support vectors, which by means of a specific function to be
embedded in their optimization tools allows them to identify unknown HEMS flexibility
trajectories as being feasible or not.

1.3. Structure of the Paper
The remaining of this paper is organized as follows: section 2 introduces the concept

of multi-temporal flexibility adopted in this work; in section 3 the developed methodology
is detailed, presenting the structure of the flexibility set generation algorithm, and the
approach to encode and distribute the generated information to interested parts; section
4 presents the results regarding the performance of the proposed method; finally, in
section 5 the main conclusions are presented.

2. HEMS Multi-period Flexibility: the Concept

Multi-period flexibility from HEMS can be defined as the ability to change the ex-
pected (baseline) net-load profile for a specific period of time (e.g., 24 hours period), by
jointly considering information about flexible/inflexible load, PV generation, hot water
demand, water temperature inside the electric water heater and the state of charge (SoC)
of domestic battery storage.

The visual representation of the multi-period flexibility envelope is not as straightfor-
ward as one might assume. Actually, when dealing with problems that aim at defining
the feasible flexibility set for more than three time steps ahead, the visual representation
of such domain becomes impossible. There is a difference between the visual represen-
tation of the power limits in each time step that characterize the maximum flexibility
band (like the flexibility envelope in [28, 29]) and the actual visual representation of the
feasible flexibility set considering different temporal activations of flexible resources.
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For the sake of clarity, let one assume that in the following example the flexibility
provision can only be provided by a single domestic battery storage with 3.2 kWh of
electrical energy capacity, maximum charge and discharge power of 1.5 kW, an initial
SoC of 0.64 kWh (20%) and a minimum allowed SoC of 15% capacity, 0.48 kWh. In this
example the battery efficiency is neglected. The upward and downward hourly limits of
the flexibility band for this battery, considering the stated conditions, are depicted in
Figure 1. This would represent the flexibility envelope or flexgraph from [28, 29]).

Figure 1: Hourly limits for flexibility search space.

The outer limits of the flexibility domain represented in Figure 1 are defined by the
previously mentioned upward and downward flexibility limits. The search domain defined
in Figure 1 relates to what is commonly referred to as the flexibility power band. As
the initial SoC is 0.64 kWh, the upward flexibility limit for the first considered operating
time is equal to the maximum battery charging power, as with that the resulting SoC
will be 2.14 kWh, considering hourly time steps and neglecting the battery’s efficiency.
Analyzing the defined downward flexibility limits, namely the limit for the first time
step considered, as the minimum allowed SoC is 15% of the storage capacity, 0.48 kWh,
the maximum discharge power admissible is just 0.16 kW for a hourly time step. From
the second operation time step considered onwards, both the upward and downward
flexibility provision power limits correspond to the maximum charge and discharge rates,
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respectively. This occurs because there is always a possible flexibility trajectory that
remains feasible while representing a choice of maximum charging or discharging power
in any of the remaining time steps considered.

With that said, it is important to stress that, as previously stated, there is an impor-
tant difference between the flexibility power band limits definition and the limits for the
feasible flexibility provision envelope being tackled in this study. An example of that fact
is the trajectory being depicted also in Figure 1 representing a possible flexibility offer
expressed in kW [0.0, -0.5, 0.0]. Although the power set-points composing this trajectory
are all within the limits of the defined flexibility power band, analyzing the SoC response
to such trajectory (in kWh) [0.64, 0.14, 0.14] one can verify that the trajectory becomes
infeasible from the second time step onwards as the minimum SoC constraint (SoC >=
0.48 kWh) is not being complied.

The representation for the flexibility space that is adopted in this paper is through a
set of technically feasible net-load trajectories, which represent alternative paths to the
expected (baseline) net-load profile (trajectory). In other words, these trajectories are
samples taken from the multi-dimensional space forming the feasible flexibility set.

Concluding, the concept of multi-temporal flexibility provision relates with the poten-
tial that a certain HEMS has of reshaping its expected net-load profile for a determined
number of inter-temporal related periods, while complying with technical and physical
internal constraints. The main focus of this study refers to the delimiting of the flex-
ibility set that encompasses all the possible multi-temporal net-load profile variations
that can be performed by the HEMS control functions. The next section describes the
methodology that generates this set of temporal flexibility trajectories.

3. Methodology for Modeling the Feasible Flexibility Set

3.1. General Framework
The methodology developed in this work extends the previous work reported in [36]

in which the feasible flexibility set is estimated using semi-randomly generated feasible
trajectories and then feeding a SVDD algorithm with those trajectories. In that previ-
ous version of the algorithm, random sampling routines were being used to generate a
sufficient number of feasible trajectories. In this new version, the construction of feasible
trajectories no longer depends on a random sampling routine but instead an EPSO al-
gorithm is being used to search for feasible trajectories. The use of the EPSO algorithm
also enables the inclusion of information about base net-load uncertainty forecast (i.e.,
inflexible load plus PV generation) by means of solution evaluation for a set of different
uncertainty scenarios, which greatly increases the complexity and computational effort.
Accordingly, a feasible solution will be one that complies with all the constraints for
a predefined probability threshold from all the possible HEMS base net-load scenarios
considered, instead of using simply a point (or deterministic) forecast information like in
the previous algorithm version.

The final set of feasible trajectories resulting from the EPSO search procedure are
aggregated to create a learning dataset for the SVDD algorithm. The SVDD is an one-
class support vector machine algorithm that is commonly used in novelty detection, where
a determined set of samples is provided to the function which in turn builds a model by
detecting the soft boundary of that set [37]. Inspired by the methodology proposed in
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in [38] for the encoding of search spaces for virtual power plants application, the SVDD
is used in this work for classifying new flexibility trajectories as belonging to that set or
not. Or in other words, to check if a potential net-load profile is technically feasible or
not.

Figure 2 depicts the main stages of the proposed methodology in the form of a block-
diagram. The first step is the generation of short-term scenarios for the forecast uncer-
tainty, corresponding to a discrete multi-temporal representation of uncertainty, which is
described in section 3.2. Then, there are three main boxes representing: the trajectory
construction process; the learning of the feasible domain process; and the validation of
the multi-period flexibility. The first stage concerns to the use of the EPSO algorithm
to generate feasible trajectories that comply with the defined customer’s preferences (see
section 3.4). These customer’s preferences are embedded into the proposed algorithm and
are responsible of modeling the desire of minimizing the wasting of energy coming from
PV generation, which means that the battery’s storage capacity must be used at its most
to accommodate the energy surplus from PV generation. Another considered customer
preference is the definition of the water temperature range inside the EWH tank, which
must never surpass the defined minimum and maximum temperatures during the period
of time in study. The formulation of the optimization problem is discussed in section 3.3.

In the second stage, section 3.5, the constructed feasible trajectories are used as input
for the SVDD function which will result in the model construction and identification of
the support vectors that define the boundaries of the feasibility domain. Finally, in the
validation of multi-period flexibility stage, the interested agent (DSO or flexibility aggre-
gator) can take advantage of the feasible domain knowledge coming from the information
embedded in the provided support vector and define the optimal multi-period flexibility
trajectory that is aligned with its operational needs while being viable to be provided by
the HEMS/aggregation of HEMS.
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Figure 2: Block-diagram of the flexibility set search algorithm.

3.2. Representation of Forecast Uncertainty
The proposed method to generate flexibility trajectories for HEMS uses as input a

sample of temporal scenarios without any assumption of the parametric model of its
joint distribution. Each scenario can be interpreted as a sample taken from the joint
probability distribution. This representation is called random vectors in statistics [39],
path forecasts in econometrics [40] and weather ensembles in atmospheric sciences [41].

Mathematically, a set of M temporal scenarios for a time horizon of length T can be
defined as follows:

YM =


y1

t+1|t y1
t+2|t · · · y1

t+T |t
y2

t+1|t y2
t+2|t · · · y2

t+T |t
· · · · · · · · · · · ·
ym

t+1|t ym
t+2|t · · · ym

t+T |t

 (1)

where each row (y[m]) of YM contains one scenario member. Collectively, the scenario set
should exhibit the correct temporal dependence-structure structure between the marginal
probability distributions or probabilistic forecasts (see [42] for more details).

These scenarios can be empirical, analytical, physical or generated in a stochastic
model. Yet, it is important to underline that the proposed method is independent from
the scenario generating process and can be applied even if this process is unknown or
known only in the form of a simulation model.

Empirical scenarios can be constructed with analog-based methods like the analog
ensemble approach [43], which searches the historical forecast data for situations when
the forecast was most similar (or analogous) to the current forecast. For each of those
analogous forecasts, the corresponding observation is collected. An analytical solution
to construct these scenarios is the epi-spline basis functions, which approximates the

9



stochastic process for renewable energy and controls the degree to which extreme errors
are captured [44]. A well-know physical approach consists in ensemble predictions sys-
tems that are designed to model three sources of weather uncertainty: initial conditions,
physical approximation and boundary conditions [41].

In this paper, a stochastic simulation method, based on the Gaussian copula proposed
in [42, 45] for wind and solar energy, was adopted. The method work as follows:

• Probabilistic forecasts (marginal distribution functions) for solar power are gen-
erated with a combination of feature engineering and gradient boosting trees and
using a grid of weather forecasts [46]. Exponential functions are used for the distri-
bution’s tails as described in [47]. For load time series, probabilistic forecasts are
generated with conditional kernel density estimation [48].

• Scenarios (or random vectors) are generated by plug-in an exponential covariance
matrix into a Gaussian copula and using the inverse of the forecasted cumulative
distribution function. The details of the scenario generation method can be found
in Appendix A.

3.3. Problem Formulation
In this work, flexibility from domestic EWH and battery storage is included in the

flexibility model. However, the methodology can be easily generalized to other flexible
resources at the domestic and network level. The problem formulation has two decision
variables and two state variables. The decision variables are the power flow in the
domestic electric battery’s inverter, Pbat, and the operating point of the EWH, Pewh.
The two state variables refer to the battery SoC and the water temperature inside the
EWH tank. The constraints used in this problem formulation are presented next.

trajh = Pbath + Pewhh (2)

Pbatmin <= Pbath <= Pbatmax (3)

Pewhh =
{

0, for off status
Pewhnom, for on status

(4)

SoCini +
H∑

h=1
Pbath <= SoCmax (5)

SoCini +
H∑

h=1
Pbath >= SoCmin (6)

θmin <= θh <= θmax (7)
The trajectories representing the flexibility that can be provided by the HEMS are

limited to the battery’s charging and discharging powers (P bat
max and P bat

min) and the
EWH nominal power (P ewh

nom), (3) and (4) respectively.
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Regarding the maximum charging power, in this study a dynamic model is adopted
where the maximum charging power depends on the SoC of the battery, which is a typical
behavior for Li-ion batteries. This is explained by the two most common charging stages
that occur when charging a lithium-ion battery, constant current and constant voltage
[49]. During constant current charging stage the battery is basically connected to a
current-limited power supply until reaching around 70-80% of its energy capacity. For
superior SoC the battery enters the constant voltage stage where the charger acts as a
voltage limited power supply and the charging current gradually decreases as the SoC
approximates full capacity.

The modeling used in this work is presented in Figure 3 where the maximum charging
power starts to decrease for SoC superior to 80% and a minimum charging power of 20%
nominal power is assumed. The inclusion of this non-linear behavior of battery storage
also highlights the added value of the proposed method since it is not constrained by
first-order linear models like in [26].

Figure 3: Battery Charging Model

State of charge limits are enforced by equation (5) and (6), with the maximum allowed
SoC being the total energy capacity of the battery and the minimum allowed SoC being
limited to a certain percentage of total capacity, e.g. 15%. There is an allowed water
temperature range inside the EWH tank that is being represented by Equation (7).
Equation (8) represents the water temperature variation along the time horizon, which
depends on the expected volume of hot water usage and the decision variable regarding
the operating status of the EWH, P ewh. The physically-based load model adopted for
the EWH modeling is aligned with the one used in [50].

θh = θh-1 + ∆t
C

[−α(θh-1 − θhouse)− cpvh(θdes − θini) + Pewhh] (8)

In (8), ∆t is the time step [h], C is the thermal capacity [kWh/°C] set to 0.117, α is
the thermal admittance [kWh/°C] set to −9.42−4, θhouse is the house indoor temperature
set to 20 °C, cp is the water specific heat [kWh/(ltr.°C)], vh is the hot water consumption
at time h, θdes is the desired temperature for water consumption set to 38 °C, and θinl
is the inlet water temperature set to 17 °C.

In line with Figure 2, there is a need to validate the costumers preferences. Thus,
the SoC state variable must be updated taking into account the PV generation surplus,
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which must be accommodated by the battery, accounting for battery storage capacity and
maximum charging power limitations. Accordingly, for each time step of the operation
horizon considered, the SoC variable is updated by summing up the PV generation
surplus, PV sur, which consequently increases the SoC, and subtracting the EWH possible
power in those time steps. The combination between the PV generation surplus to be
accommodated, the decision variable regarding the charging (or not) of the battery, and
the decision variable representing the EWH operating status must respect the maximum
charging power, by verifying (9).

Pbath + PV sur
h − Pewhh <= Pbatmax, ∀h (9)

Additionally, (5) must give place to (10) to account for the PV generation surplus.
The maximum and physically possible amount of PV surplus energy that the battery can
absorb without being used for flexibility provision must still be assured when defining
the feasible trajectories for flexibility provision.

SoCini +
H∑

h=1
Pbath + PV h

sur − Pewhh <= SoCmax (10)

There is a maximum amount of PV generation surplus that the battery is capable of
accommodating, which is related to its storage capacity and it can vary along the time
horizon depending on the precedent operation decisions. The maximum energy that
the battery can accommodate results from the difference between the maximum and
minimum SoC limits. To assess whether this specification is being respected or not along
all the time steps considered, an auxiliary variable was created, capacity. Its initial value
is set to the previously referred maximum energy that the battery can accommodate. The
created auxiliary variable tracks down the supposed PV surplus energy accommodation
capacity for each time step.

capacityh = capacityh−1 − (PV h
sur − Pewhh) (11)

capacityh = capacityh−1 + Pbatmax (12)

In each time step where there is a PV generation surplus, its value is updated by sub-
tracting its current value by the PV surplus to be accommodated in that time step (11),
limited to the battery charging power. On the other hand, in each time step where there
is no PV generation surplus, its value is updated by increasing the capacity to absorb by
the discharging power limit of the battery (12). A trajectory is classified non-feasible if is
limiting the theoretical maximum capacity of the storage unit to accommodate PV sur-
plus. If a certain trajectory respects all the problem constraints besides the one regarding
the accommodation of PV, that trajectory is modified to cope with that requirement.

Pbath = capacityh − (PV h
sur − Pewhh) (13)

Accordingly, the decision variable regarding the operation of the electric battery will
be modified to be equal to the remaining battery capacity after accommodating the PV
surplus (13). Part of the PV surplus might be consumed by the operation of the EWH
while providing flexibility, which is accounted in (11) and (13)
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Figure 4 illustrates the evolution of the state variable regarding the battery SoC after
this evaluation procedure takes place.

Figure 4: HEMS base net-load scenario (top); SoC variation due to PV surplus (bottom).

Figure 4 represents, at the top, one of the 100 possible base net-load scenarios. As
previously mentioned, to meet the costumer’s preferences, the battery SoC must be
updated whenever the PV generation exceeds the load levels (represented by negative net-
load values). One consequence of this costumer preference modeling is that, in moments
of PV surplus, the battery cannot present downward flexibility (only possible with battery
discharging) since the battery must be used to accommodate the energy PV surplus
through the charging mode (although HEMS downward flexibility might be presented
depending on the operation of the EWH). An example of this effect can be observed in
Figure 4. The initial SoC variation depicted in the bottom chart shows that the SoC
either stays unchanged or increases during the identified PV surplus moments. At the
bottom, the resulting SoC variation along the considered time horizon can be compared
to the original variation. As it can be seen from the figure analysis, the final SoC starts
to differ from the initial SoC variation at the moment when the first net-load negative
value occurs. The shape difference represents the PV generation surplus deducted the
power consumed by the EWH in the flexibility provision.
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3.4. EPSO Implementation for the Trajectory Searching Process
The fundamental ideas behind the EPSO algorithm are the population based evo-

lutionary programming concept where each combination of generated solution, X, and
respective strategic parameters, weights - w, is called particle. There are five main steps
in the general scheme of EPSO, namely:

• Replication: where each particle is replicated;

• Mutation: where each particle has its weights, w, mutated;

• Reproduction: where an offspring is generated from each mutated particle ac-
cording to the movement rule;

• Evaluation: where each particle in the population has its fitness evaluated;

• Selection: where, by means of stochastic tournament, the best particles survive
to form the next generation.

For a given particle Xi, the new resulting particle, Xnew
i , results from:

Xnew
i = Xi + V new

i (14)

V new
i = w∗i0Vi + w∗i1(bi −Xi) + w∗i2(b∗g −Xi) (15)

This movement rule has the terms of inertia, memory and cooperation. The weights
are subjected to mutation:

w∗ik = wi1 + τN(0, 1) (16)

where N(0, 1) is a random variable with Gaussian distribution with 0 mean and
variance 1. Additionally, the global best bg comes randomly disturbed:

b∗g = bg + τ
′
N(0, 1) (17)

In (16) and (17) the τ and τ
′ are learning parameters.

Using the EPSO method, the developed algorithm incorporates in each particle infor-
mation regarding the decision variables, Pbat and Pewh. Accordingly, each particle in this
reshaped EPSO algorithm becomes a two-dimension object representing the two decision
variables. The final fitness value of each particle, which represents the trajectory feasi-
bility verification, is the result of the combined fitness evaluation of the two dimensions
of each particle. During the fitness evaluation process the state variables are updated for
the time steps considered. In the end, each feasible trajectory, traj, will result from the
sum, for each time step, of the two dimensions of each of the selected particles, according
to (2). Problem constraint enumerated in the previous section must be complied.

In each iteration of the algorithm, as part of the EPSO fitness evaluation process,
the state variables must be assessed regarding the generated particles. Accordingly, the
battery SoC and the water temperature of the EWH are computed based on the values
of the previous time steps for the entire time horizon considered. As the developed
EPSO algorithm considers a two-dimensional formulation, this state variable assessment
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procedure includes two independent functions. The trajectory feasibility relies on the
fulfillment of (6), (9), and (7). For each time step where (6), (9), and (7) are not
respected, a penalty term is added in the penalty verification function of the particle
being evaluated (18).

Penaltyk = Pensocmax + Pensocmin + Pentempwater (18)

In line with the information presented in Figure 2, the feasible trajectories generation
process that takes place in the developed EPSO algorithm is not complete without the
customer’s preferences validation. In this study, besides the assurance that the water
temperature inside the EWH tank remains within the pre-established temperature range
(7), one must assure that the main propose of the battery use prior to the HEMS flexibility
offering remains being the accommodation of the PV generation surplus (11) and (12).

The validation of this customer requirement is accomplished by a scenario based ap-
proach that allows the EPSO resulting feasible flexibility set (trajectories) to incorporate
the forecast uncertainty regarding the base net-load of the HEMS. Hence, a set of short-
term scenarios are used to represent forecast uncertainty of base load and PV generation
in this methodology. This probabilistic information is included in the constraints of the
optimization problem, resulting in a chance-constrained optimization problem [51] that
is solved with EPSO. Let ς be the indicator function on the fulfillment of constraint (18),
as represented by (19).

ς =
{

1, if Penaltyk = 0
0, if Penaltyk > 0

(19)

The indicator function ς can be seen as a binary indicator that gets value 1 if the
penalty verification function in (18) equals 0 (i.e., no constraints violation), and has the
value 0 if the the penalty verification function results in a value grater that 0 representing
constraints violation. In other words, if the constraints are violated in one interval of the
net-load scenario, ς gets value 0 independently from the violation or not of the constraints
in other intervals, which is guaranteed by (18). The EPSO fitness function comes from
the sum of the indicator function for all the considered base net-load scenarios (20).
Accordingly, and as defined in (21), for a trajectory to be considered robustly feasible it
must comply with a scenario percentage threshold τ , e.g., the number of base net-load
scenarios in which the trajectory remains feasible must be greater than a determined
percentage of the total number of scenarios.

Fitk
uncert =

Nscen∑
s=1

ςs (20)

Fitk
uncert > τ ∗Nscen (21)

The trajectory fitness evaluation can be carried out according to (18) for the different
conditions that each of the considered base net-load scenario represents. Consequently,
one can classify a certain trajectory as being or not robustly feasible by checking (20).

In each EPSO iteration, the ever encountered best global particle (i.e., the one with
better fitness evaluation) needs to be updated. As referred, the fitness function used in
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this problem formulation only penalizes solutions that do not comply with the defined
constraints. This means that there is no optimal solution in this searching process for
which the EPSO algorithm is being used. Each particle that is feasible for all the con-
sidered scenarios will have the same fitness value. Therefore, the best global particle, bg,
is selected based on the relative position of all the so far identified feasible trajectories.
The aim here is that bg, which is used as reference in the movement rule, is chosen to
increase the diversity of the feasible trajectories set. Accordingly, this selection proce-
dure evaluates the relative position of all the elements in the set of feasible trajectories,
looking for the one with the greatest distance relative to all the others.

Distance =
T∑

t=1

(∣∣Pbat,t − Pmean
bat,t

∣∣)+
(∣∣Pewh,t − Pmean

ewh,t

∣∣) (22)

Thus, for each dimension and for all the time steps considered, the absolute distance
between the particle position and the mean position of the feasible set is computed. The
final distance comes from the accumulated distance along the time horizon considered,
following (22).

3.5. Surrogate Model for the HEMS Flexibility
The final EPSO algorithm output will be a large set of feasible temporal trajectories,

which represent the feasible flexibility domain. The originated trajectories are to be used
as a learning set of a SVDD function. The one-class support vector machine function
available in the Scikit-Learn Python Library [37] was used. This learning dataset must
have sufficient diversity among the built trajectories so that the resulting model is capable
of efficiently delimit and learn the feasibility domain boundary.

The trained SVDD model identifies the necessary support vectors (domain bound-
ary representative trajectories) that describe the high-dimension sphere representing the
feasible domain and the respective coefficients. The support vectors together with the
respective coefficients compose the data that is transmitted to the interested agents in
order to quantify the HEMS flexibility potential. From the entire set of feasible trajec-
tories that feed the SVDD function, some are selected by it regarding the significance
that they have on delimiting the feasible domain. During this identification process,
support vectors coefficients are also computed, which imposes more or less significance
on certain support vectors. This means that some support vectors are more decisive on
the delimiting of the feasible domain, which implies that the respective coefficients have
a greater value. Applying (23) the SVDD model is capable of classifying new flexibility
trajectories as feasible or not.

R2(x) = 1− 2
∑

i

βik(xi, x) +
∑
i,j

βiβjk(xi, xj) (23)

This classification is based on the comparison of the radius of the high dimension
sphere and the radius in the high dimension domain that the trajectory being classified
represents. The formula that calculates the correspondent trajectory (and sphere’s) ra-
dius is expressed in equation (23), where R2 is the square of the radius being calculated,
xi and xj are support vectors, βi and βj are the respective coefficients, k refers to the
kernel type used by the SVDD function, and x is the trajectory being evaluated. More
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detailed information regarding this methodology can be consulted in [38] and [34]. The
information in equation (23) can be integrated in any meta-heuristic optimization frame-
work (like EPSO) to optimize the availability flexibility according to the end-user goals
[52].

To be classified as feasible, a trajectory must represent a radius in the high dimension
domain that is equal or inferior to the radius of the sphere representing the feasibility
boundary. Figure 5 illustrates the SVDD classification procedure where the sphere rep-
resenting the feasible flexibility space is defined by the identified support vectors. Trajec-
tories whose projection falls within the flexibility space delimited by the sphere (in other
others, trajectories that lead to radius smaller than the sphere’s radius) are considered
feasible. On the other hand, trajectories leading to radius greater that the sphere’s ra-
dius are considered unfeasible, which in Figure 5 are represented by the triangle-shaped
symbols outside the domain defined by the sphere.

Figure 5: SVDD flexibility space concept

The discrete nature of the EWH operation brings some challenges when defining the
HEMS flexibility set, namely due to discontinuities that can be introduced by it. These
discontinuities can be learnt by the SVDD algorithm, which might lead to misguiding
trajectory classification. In order to clearly illustrate this effect, let one consider a EWH
and a electric battery as flexible assets inside a HEMS. If at a certain time step the bat-
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tery, for reasons of its operating strategy, does not have flexibility provision capability,
the only flexibility that the HEMS can provide comes from the EWH discrete opera-
tion. Thus, the SVDD function will learn that for the referred time step the HEMS can
provide upward flexibility by the amount equal to the nominal power of the EWH. The
resulting trajectory classification model will then consider as feasible flexibility provision
values between 0 kW and the EWH nominal power, instead of a discrete representation.
Nevertheless, these operation conditions are not frequent and this modeling glitch can
be neglected when the battery has enough SoC margin to adjust its power output.

According to the methodology introduced by this work, in order to define its flexibility
potential the HEMS only needs to provide to the interested parts the computed support
vectors and the respective coefficients, following (23), where xi and xj are the support
vectors and βi and βj the respective coefficients. Accordingly, no information regarding
customer’s demand patterns or installed equipment (like battery specifications) need to
be revealed. This surrogate model for the HEMS flexibility complies with recent concerns
regarding costumer’s data privacy arising with the smart meter deployment [53, 54, 55].

4. Numerical Results

The performance assessment of the developed methodology was based on two main
analyzes: the generation of feasible trajectories and the classification accuracy of SVDD
models.

4.1. Generation of Feasible Flexibility Trajectories
As detailed in section 3, a trajectory will be classified as feasible when complying with

the considered constraints for at least a pre-defined minimum percentage of base net-load
scenarios. The constraints refer to battery’s SoC limits, EWH water temperature and the
use of the battery during PV surplus periods. The EPSO algorithm is used to generate
the set of feasible trajectories that will feed the SVDD function responsible to construct
a model capable of identifying new trajectories as feasible or not.

For the base net-load forecast uncertainty of the HEMS, 100 short-term scenarios were
used. In this study, for a certain trajectory to be considered feasible, it must comply
with the problem constraints for at least 90 scenarios, which represents a probability of
90%. The time horizon corresponds to a 24 hours window with a 15 minutes resolution,
leading to 96 time steps.

The EPSO algorithm was configured with a 30 particle population size, a maximum
number of iterations of 5000, a feasible trajectories target of 1000, communication factors
of 0.15 for both dimensions of the particles, maximum and minimum mutation rates of
0.50 and 0.05, respectively, and a learning parameter, τ , of 5. The mutation rate is
dynamic throughout the process, beginning with the maximum value and decreasing
until the minimum value as the number of iterations increase.

For helping in the convergence of the algorithm, an initial population is used, instead
of using random values. This initial population fills the initial particles with decision
values that respect the limits for the respective decision variables, Pbat and Pewh. Ad-
ditionally, using one of the scenarios of HEMS net load profile, the PV energy surplus
periods were identified and used to zero the decision variable Pbat, so it approximates
some of these initial particles to the costumer’s preference constraint of not discharging

18



the battery during those periods and use it to accommodate the referred PV energy
surplus.

The HEMS modeled in this study has as flexible assets a domestic battery and an
EWH unit. The battery considered has 3.2 kWh capacity, maximum charging and dis-
charging power of 1.5 kW and an efficiency of 92.5%. The initial SoC was set to 60% of the
maximum capacity and the minimum SoC level was defined as 15% of the maximum ca-
pacity. Regarding the EWH, it has a nominal power of 0.5 kW, maximum and minimum
water temperatures of 80°C and 45°C, respectively, and an initial water temperature of
60°C.

Figure 6 depicts the 100 HEMS base net-load scenarios used in this study (top-left
corner) and also a set of 100 feasible flexibility trajectories generated by the EPSO
algorithm (bottom-left corner).

Figure 6: HEMS net-load trajectories (top); Flexibility provision trajectories (bottom).

The net-load profile scenarios analysis (Figure 6 top-left corner) lets one identify the
period of day of typical superior PV generation as the one that brings more uncertainty
regarding the HEMS net-load. It is during this period that the HEMS net-load can
present negative values, which relate to the costumer’s preference constraint of using
the battery to minimize, as far as it is physical possible to the battery, the injection of
PV energy in the grid. The impact of this constraint in the set of feasible trajectories
constructed can be observed in the bottom charts depicted in Figure 6. The period
between 07:30 and 13:00 has been zoomed in for improved clarity (right hand side charts
of Figure 6).

From 08:00 to 12:30 most of the net-load scenarios represent a power injection in
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the LV distribution grid, which imposes that the battery should not be used to provide
downward flexibility. The right hand side bottom chart shows the flexibility trajectories
for that period. As one can observe, most of the trajectories are providing 0 kW or 0.5
kW, the latter referring to the EWH nominal power. Values greater that 0.5 kW can occur
if the respective trajectory has room to provide upward flexibility, while accommodating
the PV energy surplus. Negative values are very uncommon and only can occur if when
evaluating a certain particle for the use of the battery costumer preference the EWH
power related decision variable counterbalances the negative net-load trajectories in some
time steps. If that occurs, the battery can be used freely during such time steps to provide
flexibility.

Regarding the increase in the diversity of the solutions generated when comparing
the current version of the algorithm with the preliminary one that used semi-random
routines for the trajectory construction [36], an analysis was performed using the principle
component analysis method, which applies an orthogonal transformation to convert a
set of variables (with a set of observations) into a set of values of linearly uncorrelated
variables (principal components). Basically, the aim is to verify which version of the
algorithm produces a 1000 set of feasible trajectories that needs more components to
explain a certain percentage of the variance of the respective produced set. Results show
that the newest algorithm version presented in this work needs 5 components to explain
50% of the variance and 16 components to explain 80%, while, for the same conditions,
the older version needs only 2 and 5, respectively. This proves that the set of feasible
trajectories produced by the newest version of the algorithm is more diverse, which
leads to a better representation of the feasible search space when using the computed
trajectories as input to build the SVDD model.

The final set of 1000 feasible trajectories generated by the EPSO routine needed
around 25 minutes to be constructed in a desktop computer with an Intel Core i7-2600
CPU running at 3.40 GHz and with 8.00 GB of installed RAM. The algorithm was
developed on Python programming language.

4.2. Classification Accuracy of SVDD-based Model
The other analysis carried out regarding the performance of the algorithm refers

to the assessment of the SVDD classification accuracy of the multi-period trajectories.
With that objective, two different sets of trajectories were used: one set composed by
feasible trajectories and a second set of unfeasible trajectories. The purpose of using these
two sets relates to the necessity of evaluating the classification process not only for the
correct classification of feasible trajectories but also for correctly identifying unfeasible
trajectories.

Regarding the SVDD function, hyper-parameters had to be defined before the con-
struction of the classification models. These hyper-parameters are the kernel type and
coefficient (γ), which will influence the quality of the classification performance. For this
problem, it was found that the most suitable type of kernel was the Sigmoid, being pre-
sented in Table 1 the performance results for that kernel type together with the results
from models using the radial basis function and the polynomial kernels. Additionally, it
was found that the fine tuning of the nu parameter can have a strong influence on the
quality of the constructed SVDD model, which can be consulted in Table 1. For better
model performance, the input trajectories were normalized for values between 0 and 1,
regarding the minimum and maximum values from the EPSO feasible trajectories set.
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The time period used for this analysis ranged between 09:00 and 13:00 with 15 minutes
time steps, resulting in a 16 time steps problem.

Table 1: Model Efficiency Comparison for Feasible Trajectories Set
γ = 0.05 and nu = 0.01

Feasible Trajectories Set Non-Feasible Trajectories Set
# correct # incorrect error (%) # correct # incorrect error (%)

rbf 4964 48 0.96 32 11350 99.72
poly 4960 52 1.04 3929 7453 65.48
sigm 4961 51 1.02 3867 7515 66.03

γ = 0.05 and nu = 0.1
Feasible Trajectories Set Non-Feasible Trajectories Set

#correct # incorrect error (%) #correct # incorrect error (%)
rbf 4511 501 10.0 496 10886 95.64
poly 4510 502 10.02 9013 2369 20.81
sigm 4510 502 10.02 9027 2355 20.69

γ = 0.05 and nu = 0.15
Feasible Trajectories Set Non-Feasible Trajectories Set

#correct # incorrect error (%) #correct # incorrect error (%)
poly 4258 754 15.04 9632 1750 15.38
sigm 4261 751 14.98 9624 1758 15.45

γ = 0.05 and nu = 0.20
Feasible Trajectories Set Non-Feasible Trajectories Set

#correct # incorrect error (%) #correct # incorrect error (%)
poly 4010 1002 19.99 9928 1454 12.77
sigm 4011 1001 19.97 9943 1439 12.64

γ = 0.005 and nu = 0.15
Feasible Trajectories Set Non-Feasible Trajectories Set

#correct # incorrect error (%) #correct # incorrect error (%)
poly 4005 905 18.10 9779 1603 14.08
sigm 4262 750 14.96 9626 1756 15.43

The nu parameter is a model configuration parameter and it refers to an upper bound
on the fraction of training errors and a lower bound of the fraction of support vectors.
Based on the results displayed in Table 1 one can verify that increasing the value of
the nu parameter decreases the error on the classification of unfeasible trajectories, while
increasing the error on classifying feasible ones. Therefore, there is a trade-off on defining
the best parametrization for the SVDD models.

It was found that the configuration with γ = 0.05 and nu = 0.15 produces the most
balanced classification model, resulting in errors for classifying feasible and non-feasible
trajectories of 14.98% and 15.45%, respectively. In the last iteration of the proposed
approach, as depicted in Figure 2, the flexibility trajectories selected by the DSO or
flexibility aggregator still have to be validated locally by the HEMS. In the case of a
non-feasible flexibility trajectory selection, the HEMS is responsible of indicating the
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most similar feasible trajectory that it can provide as flexibility to the interested agent.

5. Conclusions

This paper proposed a novel concept, called multi-period flexibility forecast for LV
prosumers (behind-the-meter flexibility), which combines small-scale DER flexibility
(e.g., storage, EWH) and forecast uncertainty for PV and net-load time series. This
new function can be embedded in an HEMS and explored in the context of smart grid
and microgrid technology. The flexibility potential also accounts for comfort constraint
regarding the temperature of the water in the EWH tank and a costumer-defined mode
of operation of the electric battery.

In a first stage, an EPSO-based generation mechanism is proposed to create a set of
feasible flexibility trajectories that are robust to net-load forecast uncertainty. Then, in
a second phase, it explores a support vector data description function as a “black-box”
model to communicate the flexibility set to different types of users, like DSO and flexibil-
ity aggregators. Nevertheless, the discrete representation with the flexibility trajectories
set can be also integrated in management functions of DSO and market players.

The modified EPSO algorithm used for searching feasible flexibility trajectories showed
a high diversity in producing feasible solutions and, consequently, improved the efficiency
of the created SVDD models that are responsible of learning the HEMS feasible flexi-
bility set boundaries. More than that, the forecast uncertainty regarding the HEMS
net-load profile is fully considered by means of fitness evaluation of the computed so-
lutions for various base net-load short-term scenarios which was one of the major gaps
identified in the state of the art. Consequently, the proposed methodology can be used
to control the robustness of the flexibility trajectories set in a probabilistic fashion (i.e.,
chance-constrained optimization).

It is crucial that the flexibility set, which can be transmitted to the interested stake-
holders, clearly incorporates the physical and operating constraints of the DER and also
the desired strategic modes of operation defined by the HEMS end-user. The trajecto-
ries resulting from the developed EPSO-based algorithm respect the problem constraints
regarding DER power limits, state-of-charge of the battery and the temperature of the
water inside the EWH tank. Additionally, the constraint related to the customer’s pref-
erences about the use of the battery during PV surplus periods is also respected by the
generated flexibility trajectories.

Additionally, the performance of the SVDD model was assessed for the classification
of feasible and non-feasible flexibility trajectories. Several configurations regarding the
different hyper-parameters of the SVDD algorithm were analyzed. The configuration
found to be more balanced regarding the trajectory classification procedure, with sigmoid
kernel, γ = 0.05, and ν = 0.15, resulted in a misclassification error of around 15%. These
errors were computed for a 16 time steps problem formulation. As the total number
of time steps of the problem decreases, the errors also tend to decrease. The SVDD
parameters showed a significant impact on the model classification performance, imposing
a trade-off between misclassification of feasible and non-feasible trajectories.

The final outcome of this work is a forecast methodology with benefits for two groups
of stakeholders: a) integrated in DSO operational planning tools to explore local flexibil-
ity potential within LV distribution grids in a time efficient fashion while complying with
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costumer privacy concerns; b) used by a prosumers flexibility aggregator to efficiently
assess the true flexibility provision capacity that can be provided by the assets belonging
to its portfolio.

Future work will focus on improving the efficiency of the classification procedure by
the SVDD model and also on investigating new approaches to transmit to the interested
agents the HEMS flexibility set, e.g. use virtual batteries derived from the flexibility
trajectories set.

Acknowledgements

The research leading to this work is being carried out as a part of the InteGrid project
(Demonstration of INTElligent grid technologies for renewables INTEgration and INTEr-
active consumer participation enabling INTEroperable market solutions and INTErcon-
nected stakeholders), which received funding from the European Union’s Horizon 2020
Framework Programme for Research and Innovation under grant agreement No. 731218.

The work of Rui Pinto was also supported in part by Fundação para a Ciência e a
Tecnologia (FCT) under PhD Grant SFRH/BD/117428/2016.

Appendix A. Gaussian Copula Method

The Gaussian copula method [39, 42] generates M temporal scenarios of solar power
forecasts. First, the variable Zt+k|t = Φ−1

(
F̂t+k|t (yt+k)

)
is calculated, where yt+k is the

observed value for lead time t+ k, F̂t+k the forecasted probability distribution function
and Φ−1 the inverse of the Gaussian cumulative distribution function. This random
variable Zt+k|t is Gaussian distributed with zero mean and unit standard deviation.
Then, the scenarios are generated with the following process:

1. Generate M random vectors Z[m] from a multivariate Gaussian distribution (i.e.,
Gaussian copula) with zero mean and covariance matrix ΣZ. The size of this
random vector is between t + 1 and t + T where T is the maximum lead time or
time horizon.

2. Transform Z[m] with the following equation to obtain a random vector in the same
scale of y (note that Z was a Gaussian variable).

y[m] = F̂−1
(

Φ
(
Z[m]

))
(A.1)

where F̂−1 is the vector of inverse forecasted distribution function for lead times
between t+1 and t+T , Φ is the distribution function of a standard normal random
variable and y[m] is the m-th solar power scenario.

The dependency structure between the lead-times is modeled with a Gaussian copula
that uses an exponential covariance matrix given by:

cov (Zt+k1 , Zt+k2) = exp
(
−|k1 − k2|

ν

)
(A.2)

where Zt+k1 is the Gaussian random variable for lead time t + k1 and where ν is the
range parameter controlling the strength of the correlation of random variables among
the set of lead times. The parameter ν is determined by trial-error experiences using the
p-variogram score as a performance metric [56].
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