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Abstract. A new methodology for fault detection on wearable medical devices 

is proposed. The basic strategy relies on correctly classifying the captured phys-

iological signals, in order to identify whether the actual cause is a wearer health 

abnormality or a system functional flaw. Data fusion techniques, namely fuzzy 

logic, are employed to process the physiological signals, like the electrocardio-

gram (ECG) and blood pressure (BP), to increase the trust levels of the captured 

data after rejecting or correcting distorted vital signals from each sensor, and to 

provide additional information on the patient's condition by classifying the set 

of signals into normal or abnormal condition (e.g. arrhythmia, chest angina, and 

stroke). Once an abnormal situation is detected in one or several sensors the 

monitoring system runs a set of tests in a fast and energy efficient way to check 

if the wearer shows a degradation of his health condition or the system is re-

porting erroneous values. 

 

Keywords: Electrocardiogram • wearable • fuzzy logic • dependability 

1 Introduction 

Along with the progress of medical technologies, many countries are gradually be-

coming geriatric societies due to the rapid growth of the aging population.  This in-

creases the need for home health monitoring for securing independent lives of patients 

with chronic disorders or that have health care problems. The advances on sensors, 

wireless communications and information technologies have resulted in the rapid 

development of various wellness or disease monitoring systems, which enable ex-

tended independent living at home and improve the quality of life. Traditionally, clin-

ical practice has been based on  a post-diagnosis intervention basis (drugs, surgeries, 

prosthesis, etc.).  Nowadays, and regardless of the patients' age, the health care com-

munity is trying to focus on prevention and wearable monitoring systems have been 

proposed to meet this task.  Therefore, diseases tend to be prevented, rather than treat-

ed, after continuous vital signals monitoring, which provide information about the 

health status related with lifestyle and overall quality of life [1-3]. 



Remote health monitoring can be used only if the monitoring device is based on a 

comfortable sensing interface, easy to use and customizable.  Its interface must allow 

continuous remote control in a natural environment without interference or discomfort 

for the users. The textile approach to the implementation of sensing elements embed-

ded in clothing items, allows for low-cost long-term monitoring of patients and to 

easily customize the sensor configuration according to the needs of each individual 

[4]. Applying this concept, it is possible to reduce health care costs maintaining the 

high quality of care, shift the focus health care expenditures from treatment to preven-

tion, provide access to health care to a larger number of patients, reduce the length of 

hospital stays and address the issue of requirements for elderly population and/or 

chronically ill patients.  It also allows accessibility to specialized professionals 

through telemetry, thus decentralizing the provision of health care. 

Because these wearable monitoring systems are to be used for medical purposes 

(continuous monitoring, diagnosis, etc.), the reliability and safety of the system have 

to be perfectly controlled. Unfortunately, the complexity of these systems endlessly 

increases, making the existing techniques for dependability developed in aeronautics, 

space and automotive fields not totally appropriate for the medical case. 

To overcome the lack of a dependability model for the development of complex 

pervasive medical monitoring devices, a fault tree analysis approach is used to identi-

fy the main risk of failure (see Fig. 1). A typical wearable device (hereafter the sys-

tem) comprises a module to capture the biosignals, including the electrodes and the 

analogue front-end, a microcontroller, and a radiofrequency emitter to transmit the 

signal to a smartphone or a personal computer. In our approach the captured biosig-

nals are received and analyzed within a smartphone. A rule based algorithm (fuzzy 

logic) decides whether the signals are normal or not. If not, it is diagnosed if the 

wearer shows an abnormal situation or instead the system is faulty. That is, the ab-

normality detected within the biosignals can be due to a wearer irregular state (patho-

logical condition or intense physical activity) or due to a degradation of the system 

operation. 

 

 

Fig. 1. Fault tree analysis of the wearable monitoring system. 



 

2 Combined Cardiac and Aortic Monitoring System 

The combined cardiac and aortic monitoring system (SIVIC system) under devel-

opment (Fig. 2) provides the synchronous measurement of the patient ECG  (electro-

cardiogram) and of the pressure in the abdominal aneurysm sac, in order to have a 

more robust and reliable monitoring. Biologically compatible wireless pressure sen-

sors, which show suitable linearity and sensitivity [5], are used to capture the intra-sac 

aneurysm pressure.  An electronic readout unit (ERU) capable of energizing the pres-

sure sensors and capture the pressure data is placed in the chest of the patient. This 

unit provides also the monitoring of a 12-lead ECG using textile dry electrodes [6]. 

The electronic unit and the electrodes are built in a customized clothing.  

Data is transmitted to a smartphone for further processing, data display, and even-

tual communication with a healthcare center. 

 

 

Fig. 2. Wearable ECG data capture and transmitter module. 

 

The 12-lead ECG data acquisition and transmission (DAT) module prototype that 

was developed is a circular board (30 mm Ø) with an ECG acquisition analogue front-

end based on the low-power (0.75 mW/channel) Texas Instruments 24-bit ADS1298 

chip and a PAN1740 Bluetooth Low Energy (BLE) module from Panasonic. The 

board includes also an I2C EEPROM and a DC/DC converter to supply a regulated 

3.3 V. The PAN1740 is a small (9 x 9.5 x 1.8 mm) BLE single mode module based on 

the Dialog DA14580 SoC with an advertised power consumption of 4.9 mA when 

transmitting/receiving. This SoC includes a 32 bit ARM Cortex M0 microcontroller 

(µC) operating at a 16 MHz frequency, that is used to perform all the necessary pro-

cessing operations, thus saving the cost of an external µC, the additional PCB area 

and power consumption. The EEPROM is used to save the application code during 

the developing phase. In the final version it can be removed and the code can be saved 

in the One-Time Programmable (OTP) memory present on the BLE module. 

Wireless ECG monitoring systems with a high number of leads (e.g. 12-lead) are 



usually designed for clinical usage, being systems with a lower number of acquisition 

channels (e.g. 1 to 3 leads) commonly used in ambulatory cases [7, 8]. Our system 

was designed having in mind its use in both clinical and ambulatory scenarios and 

thus the number of ECG data acquisition channels is reconfigurable. Inputs not used 

to capture ECG signals can be used to acquire other biosignals. Figure 3 shows the T-

shirt cardiac monitoring system being proposed.  

 

 

Fig. 3. The SIVIC T-shirt and data acquisition module. 

3 Data Fusion for Diagnosis 

The ECG contains important hemodynamic information, such has the heart rate 

(HR). During an ECG cycle three main events take place: the P wave (contraction of 

the atria), the QRS complex (corresponding to the contraction of the left ventricle) 

and the T wave (relaxation of the ventricles). Their morphologies (amplitude and 

interval/segment length) will vary in accordance to the physiological condition. 

The HR, given in beats per minute (bpm), is the interval between two consecutive 

R-waves in the QRS complex. Noise contamination such as baseline wander, power 

line interference, and muscle activities can corrupt the signal and reduce the clinical 

value of an ECG recording. Since wearable devices are more affected by noise, filter-

ing of the ECG is a necessary pre-processing step to ensure a reduction of the noise 

components while preserving the QRS complex shape. The Pan-Tompkins algorithm 

is used for ECG filtering and the HR calculation [9].  

The availability of different sensors in wearable systems allows for fusing the re-

spective data to formulate better decisions from the captured data. Other biosignals, 

such as the blood pressure (BP), defined by the systolic (maximum) and diastolic 

(minimum) pressures, can provide important information about the patient condition, 



eventually affected by physical activity or diseases. Accelerometers enable tracking 

the wearer activity, i.e. if he is sitting, walking or running, which will influence the 

heart activity. The SIVIC system also includes an electrode-skin impedance measur-

ing circuit, which allows detecting if the electrodes are connected to the patient or are 

loose/disconnected.  

Signals that can be measured with the SIVIC system, the extracted features, and 

the patient/system condition inferred from the respective classification are summa-

rised in Table 1. 

Table 1. Data fusion model for the measured signals. 

Signals Features Classifier 

ECG 

HR I 

Normal/Abnormal 
HR II 

HR III 

⁞ 

Blood Pressure 
Systolic 

Hypotensive/Normal/Hypertensive 
Diastolic 

AAA Sac Pressure Mean Pressure Endoleak 

Accelerometer Motion Resting/Walking/Running 

Electrode-Skin Impedance Resistance Connected/Disconnected 

 

Data fusion techniques have been applied as a means for a combined analysis of 

several physiological signals that can potentially provide additional information on a 

patient's condition. Kenneth et.al performed the fusion of ECG, blood pressure, satu-

rated oxygen content and respiratory data for achieving improved clinical diagnosis of 

patients in cardiac care units [10].  

Table 2. Fusion rules for patient condition diagnosis. 

Signals Condition Rule 

ECG Normal HR between 60 and 100 bpm 

Asystole No QRS for at least 4 seconds 

Extreme Bradycard HR lower than 40 bpm for 5 consecutive beats 

Extreme 

Tachycardia 

HR higher than 140 bpm for 17 consecutive 

beats 

Blood 

Pressure 

(mmHg) 

 Systolic Diastolic 

Normal 90-139 60-89 

Hypotension <90 <60 

Hypertension >140 >90 

AAA 

Pressure 

Normal Low pressure (~40 mmHg) 

Endoleak Sistemic pressure 

 

 



In our case, as a first approach, a fuzzy logic system is used for the data fusion due 

to its probability assignment based on rules. Since the values of the features extracted 

from the biosignals can be assigned in regions well defined in the medical literature, 

the rules creation is relatively straightforward (Table 2). 

3.1 Fuzzy Logic 

The fuzzy logic system comprises 4 main components: fuzzy rules (knowledge 

base), fuzzy sets, fuzzy inference engine and defuzzification (Fig. 4) [11]. The inputs 

of the fuzzy logic system are the features previously extracted from the measured 

signals (Table 1). The outputs are the Patient Status, System Status and the Global 

Status, which can be normal or faulty - i.e., either the patient has a health condition or 

the monitoring system is malfunctioning. The outputs are determined based on the 

input values of the fuzzy sets and the assigned rules for each output. The rules to de-

fine the Patient Status are based on medical information, here collected from the liter-

ature, the rules for the System Status are defined from the system specifications, and 

the rules for the Global Status include both. 

 

 

Fig. 4. Block diagram of fuzzy logic system. 

 

The fuzzy sets include the HR for each channel, the blood pressure (systolic and 

diastolic), and can also include the contact resistance and the acceleration if these data 

are available. 

The trapezoidal curve was chosen for the membership function. This is a function 

of a vector, x, and depends on four scalar parameters a, b, c, and d (equation 1). The 

parameters a and d locate the "feet" of the trapezoid and the parameters b and c locate 

the "shoulders". 
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Table 2 shows the normal values for the HR and BP, and some examples of pa-

thologies. 

4 Results 

Data from the MIT Multiparameter database (MGH/MF) was used to test the fuzzy 

logic system using Matlab [12, 13]. The features from ECG signals (leads I, II and V) 

and the arterial blood pressure (ART) were extracted and feed to the fuzzy logic sys-

tem. The ECG provides the HR information and the ART waveform is used to know 

the systolic and diastolic pressures. 

The fuzzy logic was evaluated for 3 situations: 

1) The recorded signals have good quality, i.e. the signal-to-noise-ratio (SNR) is 

good enough to identify relevant features, but the patient's blood pressure is 

very high (record MGH085 from the MGH/MF database). The System Status 

is ok, but the Patient Status indicates a health problem. Result: Patient Status: 

14; System Status: 86; Global Status: 86. 

2) Atrial flutter, or arrhythmia, is an abnormality of the heart rhythm resulting in 

a rapid and sometimes irregular heartbeat. Atrial flutter is recognized on an 

ECG by presence of characteristic flutter waves at a regular rate of 240 to 440 

beats per minute (Fig. 5). In this case the HR is calculated using lead V, and 

the ART waveform is also used for a more reliable HR estimation, since these 

signals are related. Result: Patient Status: 14; System Status: 86; Global Sta-

tus: 86. 

 

Fig. 5. MGH023 record: Atrial flutter. (Grid intervals: time 0.2 s, ECG 0.5 mV, ART 25 mmHg 

3) Sinus tachycardia is a heart rhythm originating from the sinoatrial node with 

an elevated rate of impulses, defined as a rate greater than 100 bpm in an aver-

age adult. The calculated HR from each channel indicates the patient has tach-

ycardia (MGH010 record)   Result: Patient Status: 14; System Status: 86; 

Global Status: 81. 

 



After validating the fuzzy logic system with a database that contains annotations 

from physicians, the SIVIC wearable system was used to acquire the ECG signal of 

lead I. The smartphone receives the acquired data via Bluetooth, filters the received 

signal and calculates the HR and SNR. These features (HR and SNR) are used by the 

fuzzy logic system to monitor the patient and the wearable system. When a degrada-

tion occurs in the patient or system, the smartphone detects the fault and requests for 

further tests to the monitoring system in order to determine the cause and, if possible, 

to correct the fault. Figure 6 displays ECG waveforms acquired with the SIVIC sys-

tem. On the left side of the figure the ECG waveform presents a normal sinus rhythm. 

On the right side of Fig. 6 the ECG waveform is corrupted with noise and the moni-

toring system is unable to calculate a reliable HR, since the SNR is high. A possible 

cause for this situation is a loose electrode, which could be determined by measuring 

the electrode-skin impedance. Since this is a very common problem in wearable de-

vices, the SIVIC system periodically records the impedance of the textile electrodes 

and stores this value  for each user. When the problem in the signal was detected the 

smartphone sent a request to the SIVIC system to perform an impedance measure-

ment, and received a value of 13.911 M, which was much higher than the recorded 

impedance values for the wearer under observation (around 1 M). In this situation 

the smartphone issues a warning for the user to readjust the electrodes embedded in 

the t-shirt. 

Fig. 6. Normal ECG (left side) and ECG corrupted with noise (right side). 

 

5 Discussion 

 

When the data fusion model detects that the System Status is degraded, further 

tests can be performed by the system to determine the cause. The smartphone sends 

an order for specific tests to be performed depending on the signals features. For in-

stance if an ECG channel presents a behavior similar to the atrial flutter condition, but 

the remaining channels are normal, the cause of the flutter could be caused by the 



acquisition system, rather than the patient's heart. An oscillation in the ECG amplifier 

could cause such flutter in the signal. A simple test would be to connect both inputs of 

the amplifier and observe if the flutter persists. If not, it could be the case the signal is 

really displaying a health condition that is more visible in this particular ECG chan-

nel. 

On the other hand, the data fuzzy model is flexible in the sense that further inputs 

can be added to the system  providing extra information regarding the patient and the 

system. For instance environmental sensors, like accelerometers, can be added to 

monitor the patient activity. If motion is detected at the same time the ECG signal is 

degraded, the system can determine the degradation of the biosignal as temporary and 

not related with any fault from the electronics or the electrodes. 

6 Conclusion 

The advances on sensors, wireless communications, and information technologies 

have promoted the rapid development of various wearable patient monitoring sys-

tems. The availability of wearable vital signals monitoring systems allows for secur-

ing independent lives of patients with chronic disorders or who require a permanent 

vigilance, while improving their daily quality of life. The work presented herein 

shows how data fusion, notably fuzzy logic, can be explored to improve the dependa-

bility of a cardiovascular monitoring wearable system, after providing a means to, on 

the fly, diagnosing whether deviations detected in the acquired signals are due to a 

disease or condition of the patient, or actually to a fault in the system. It is also a tool 

which can help, in the electronics design stage, the process of identifying test opera-

tions needed to improve the system's diagnosability. 
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