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ABSTRACT 

Machine Learning (ML) progressed significantly in the last 

decade, evolving the computer-based learning/prediction 

paradigm to a much more effective class of models known as 

Deep learning (DL). Since then, hyperspectral data 

processing relying on DL approaches is getting more 

popular, competing with the traditional classification 

techniques. In this paper, a valid ML/DL-based works 

applied to hyperspectral data processing is reviewed in order 

to get an insight regarding the approaches available for the 

effective meaning extraction from this type of data. Next, a 

general DL-based methodology focusing on hyperspectral 

data processing to provide farmers and winemakers effective 

tools for earlier threat detection is proposed. 

 

Index Terms— Hyperspectral data, remote sensing, 

agriculture, forestry, machine learning, deep learning 

 

1. INTRODUCTION 

Hyperspectral-based remote sensing (RS) methods consist of 

the image cubes acquisition where, for each of the image’s 

spatially distributed elements, a spectrum of the energy 

reaching the respective sensor is measured. Hyperspectral 

imagery consists of hundreds or thousands of bands arranged 

in a narrow bandwidth (5–20 nm, each). After operations 

prior to flight and post-acquisition data pre-processing - i.e. 

hardware calibration, radiometric correction, ground control 

points in the field, etc. - collected hyperspectral data needs 

to be properly computed to extract relevant information 

through reflectance behavior discrimination. For many 

years, such goal has been achieved through traditional 

techniques that include statistical modelling over data (e.g. 

target detection algorithms), feature extraction for multi-

class discrimination, vegetation indexes with acceptable 

results. Although, emerging approaches to deal with 

hyperspectral data processing complexity based on DL are 

competing with the traditional techniques in terms of 

accuracy [1]. Several promising results have been reported 

for plant identification, crop disease detection or reduction 

of pesticide usage (e.g. [2]–[6]).  

Alongside the pointed developments in hyperspectral data 

processing, remote sensing progresses also brought to light 

Unmanned Aerial System (UAS) that are getting 

increasingly popular in agricultural and forestry. Plus, they 

represent a cost-effective and readily available tool for 

surveying land and crops, with the purpose of acquiring data 

for further analysis and to support decision-making and 

management processes. Meanwhile, hyperspectral sensors - 

commonly used on satellites or manned aircraft a few years 

ago - are getting redesigned to be lighter and smaller and, 

thus, more suitable to be carried by UAVs. Considering the 

aforementioned factors, the main goal of this paper is a 

methodology proposal – refined from [7] - to support 

farmers and winemakers with effective tools for early threat 

detection in vineyards through DL-based decision support 

capabilities. Underlying steps include UAS-based surveying, 

pre-processing tasks, hyperspectral data computation and 

results conversion to human-readable guidelines. 

 
2. HYPERSPECTRAL DATA PROCESSING USING 

DL APPROACHES 

The natural light is primary distant source of energy in a 

passive RS system that reaches the Earth as a solar radiation. 

The reflectance spectra of vegetation canopies can be obtain 

by using radiative transfer models in direct mode for 

sensitivity analysis and or by inverted models for parameter 

retrieval [8]. In terms of processing the hyperspectral data, 

the most crucial part is classification. The traditional 

techniques for hyperspectral data classification are based on 

classifying each pixel by the spectral signatures from 

different bands, and the classification algorithms usually 

consist of parallelepiped classification, k-nearest neighbors, 

maximum likelihood, minimum distance and logistic 

regression [9]. Progresses were made through ML/DL-based 

pixel-wise classification. A known drawback related to such 

classification is that they process each pixel independently 

on their spatial information [10]. However, the spatial 

information of hyperspectral objects is as important as 

spectral information [11]. In fact, spatial information can 

make the classification more precise by reducing the 

uncertainty of samples [12]. Thus, the classification 

accuracy can be improved if the spatial information is well 

adopted. Hyperspectral image classification methods that 

use this exploitation include particularly image segmentation 

based methods [13], [14] and sparse representation [15]–

[17]. To deal with the amount of bands and redundancy 

involved in hyperspectral data, it is very common to apply 

dimensionality reduction [18]. To that end, two methods are 

known: transformation [19] and band selection [20].  
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DL includes a class of model that is learning hierarchically 

deep features of input data with very deep NN [21]. In [22], 

[23] is noted that deep models provide more accurate 

approximation to nonlinear functions than shallow models. 

Deep neural network architecture typically comprise Deep 

Belief Networks (DBNs), Deep Boltzmann Machines 

(DBMs), Stacked Autoencoder (SAE) and stacked denoising 

autoencoders [21].  

For example, in [24], a framework that joins dimension 

reduction and DL to allow hyperspectral image classification 

based on spectral-spatial features is proposed. Discriminant 

algorithms for spectral features and Convolutional Neural 

Networks (CNN) to deal with spatial features are at the basis 

of this proposal that is pointed out as an outperforming 

framework comparatively to commonly used methods for 

hyperspectral image classification. For saliency detection 

regarding to band selection in hyperspectral imaging (HSI), 

a manifold ranking approach—that is also extended to DL—

is presented in [25]. The spectral-spatial residual network 

found in [26] consists of a supervised DL framework that is 

capable of discriminating features from abundant spectral 

signatures and spatial contexts in a HSI (provided as input 

and without the need for feature engineering). In [27], both 

attribute profile and DL approaches were merged with the 

goal of classifying HSI. Profiling working together with 

CNN showed better results than using each of the involved 

approaches individually. Also, the need for lighter network 

architectures and deep network types was highlighted. Even 

for anomaly detection, CNN demonstrated to outperform 

classical methods such as Reed-Xiaoli (RX)-based 

approaches [28] 

In [29] a novel Recurrent Neural Networks (RNN) model 

was presented, inspired from the observation that 

hyperspectral pixels can be regarded as sequential data. The 

proposed model achieved higher accuracy than Support 

Vector Machine (SVM) with Radial Basis Function (RBF) 

and CNN for hyperspectral image classification. In [30] 

were explored CNNs for HSI classification with a great 

results. Hyperspectral data classification method using deep 

features extracted by SAEs was proposed by [21]. The 

presented SAE with Logistic Regression (SAE-LR) showed 

statistically higher accuracy than RBF-SVM, considered as 

conventional classifier. In [17] an active set algorithm for 

learning relevant features in spatial-spectral HIS 

classification was presented. The effectiveness and 

efficiency were proven by testing the approach in analysis of 

four hyperspectral classification scenarios. Supervised 3-D 

DL framework for spectral-spatial representation learning 

and HSI classification was presented in [26]. 

As a concrete application example, Castro et al. [31] 

investigated the detection of cruciferous weeds in wheat and 

broad bean crop using hyperspectral and multispectral 

readings. To detect the cruciferous weed reflectance 

differences, three classifications methods were applied: 

stepwise discriminant (STEPDISC) analysis and two neural 

networks, specifically, Multilayer Perceptron (MLP) and 

RBF.  

With a broader insight in hyperspectral processing though 

ML/DL, next section focuses on the proposal of a DL-based 

methodology for early threat detection in vine cultures. 

 

3. DL-BASED ARCHITECTURAL PROPOSAL FOR 

VINEYARD DISEASE DETECTION 

Considering the key-knowledge that will extract relevant 

information from the acquired hyperspectral data, the 

remainder of this paper is dedicated to the proposal of a 

methodology - depicted in Figure 1 - that explores UAS-

based high-resolution spectroscopy for vineyard diseases 

early detection and further monitoring. 

 

Figure 1 Methodology proposal for a full-stack vineyard early 

disease detection and monitoring system. 

The underlying processes rely on the following: (1) data 

acquisition, (2) pre-processing, (3) data computation (4) 

analysis and interpretation and (5) decision support for 

intervention. Data acquisition refers to the auto-pilot mode 

flight campaigns carried out with UAS to gather 

hyperspectral data with a lightweight pushbroom VNIR 

hyperspectral sensor with on-board data processing, data 

storage of 480GB, GPS and IMU for small UAV 

applications. Spectral range of the sensor is (400-1000 nm) 

with 270 bands. Next, acquired data must undergo a pre-

processing step that usually consists of calibrating imagery 

regarding radiometry, atmospheric noise, etc., as well as 

performing orthorectification - required when a pushbroom 

sensor is used, as it is the case - for spatial correction 

purposes. Afterwards, data computation is responsible for 

highlighting the occurrence of diseases, using DL. A data set 

must be initially used to teach the machine – computer-based 

entity – about the features that should be considered to 

discriminate healthiness from abnormal conditions and also 

for distinguishing diseases. After this learning step, the 

machine will develop processes by itself to predict the 

phytosanitary status in new querying data. Intelligent 
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algorithms have already been applied to hyperspectral data 

[32] attesting the feasibility of this combination. Just like for 

statistical-based hyperspectral data manipulation, some 

engines and libraries (e.g. Tensorflow) to support the 

development of ML applications - as the one that is being 

proposed - are available. Outcome is then analyzed and 

interpreted by an expert who can adjust some parameters 

(for example, perform corrections on undetected disease 

areas and deleting parts wrongly marked with infection) to 

correct farmer’s guiding files (reports, task maps, etc.). 

Eventually, these rectifications might be used to fine-tune 

the computational approach parameters for performance 

improvement purposes. Lastly, validated data is delivered to 

the farmer who will be able to perform field interventions 

with decision support provided by, for example: (1) heat 

maps properly subtitled to facilitate the identification of 

problems in a terrain parcel, from an aerial point of view; 

and (2) a set of instructions detailing the most proper 

treatments.  

Sustainable agricultural practices and yield improvement 

through the proper administration of phytosanitary products 

are the main goals of this methodology. However, other 

goals will be pursued, such as support decision for proper 

water irrigation (according to hydric stress) and fertilizer 

application (considering nitrogen concentrations). Finally, 

multi-temporal data sets shall be considered for predicting 

yields and enhance agricultural practices upon the different 

vineyard development stages. 

 

4. CONCLUSION 

DL for hyperspectral data classification seems to be 

effective method because of its already proven ability to deal 

with high dimensionality and to discriminate features. Even 

though very robust labeled dataset for training is needed for 

accurate results, the potential in combining hyperspectral 

data with DL is enormous and, thus, desirable to implement 

the proposed methodology. Applying of DL approach to 

hyperspectral data processing has already started in our team 

and the results will be presented in upcoming works. 
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