
Feature Extraction for the Author Name Disambiguation
Problem in a Bibliographic Database

Jorge M. B. Silva
CRACS/INESC TEC

Rua do Campo Alegre 1021/1055
Porto, Portugal

jmbs@inesctec.pt

Fernando Silva
CRACS/INESC TEC & Universidade do Porto

Rua do Campo Alegre 1021/1055
Porto, Portugal

fds@dcc.fc.up.pt

ABSTRACT
Author name disambiguation in bibliographic databases has
been, and still is, a challenging research task due to the high
uncertainty there is when matching a publication author
with a concrete researcher. Common approaches normally
either resort to clustering to group author’s publications, or
use a binary classifier to decide whether a given publication
is written by a specific author. Both approaches benefit
from authors publishing similar works (e.g. subject areas
and venues), from the previous publication history of an
author (the higher, the better), and validated publication-
author associations for model creation. However, whenever
such an algorithm is confronted with different works from
an author, or an author without publication history, often
it makes wrong identifications.

In this paper, we describe a feature extraction method that
aims to avoid the previous problems. Instead of generally
characterizing an author, it selectively uses features that
associate the author to a certain publication. We build a
Random Forest model to assess the quality of our set of fea-
tures. Its goal is to predict whether a given author is the
true author of a certain publication. We use a bibliographic
database named Authenticus with more than 250,000 val-
idated author-publication associations to test model qual-
ity. Our model achieved a top result of 95.37% accuracy in
predicting matches and 91.92% in a real test scenario. Fur-
thermore, in the last case the model was able to correctly
predict 61.86% of the cases where authors had no previous
publication history.

CCS Concepts
•Computing methodologies → Supervised learning
by classification; Feature selection;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SAC 2017,April 03-07, 2017, Marrakech, Morocco
Copyright 2017 ACM 978-1-4503-4486-9/17/04. . . $15.00

http://dx.doi.org/10.1145/3019612.3019663

Keywords
Author Name Disambiguation, Author Identification, Su-
pervised Learning, Feature Extraction, Random Forests

1. INTRODUCTION
Since 2010 there are more than 50 million articles published
and each year more than 1 million new ones are added to
this total. Furthermore, the number of published papers
has increased at a 2.5% rate each year [12]. The exorbitant
number of new publications, along with their metadata het-
erogeneity, utterly increased the difficulty of creating and
maintaining reliable bibliographic databases [5]. The prob-
lem aggravates in the case of author identification. The same
identity (or author) name can be stored in several formats
and written in different forms. Moreover, distinct identities
may have the same name. This problem is known as au-
thor name disambiguation and is the hardest challenge faced
by current bibliographic databases such as DBLP, CiteSeer,
MEDLINE, BDBComp [6, 4].

Author disambiguation in a bibliographic database is nec-
essary primarily for two reasons. First, it allows users to
search for publications of a particular author without having
to manually filter incorrect results. Second, disambiguating
author names improves the accuracy of bibliometric analy-
sis [15]. This last point is particularly important for pub-
licly funded research organizations where bibliometric anal-
ysis serves towards three principal objectives: production
efficiency incentive, funding allocation, and research con-
tribution demonstration. Due to the difficulty of the task,
research organizations appoint experts to manually disam-
biguate author names in their publications [4]. Additionally,
some relevant online databases, such as DBLP, still rely sig-
nificantly on manual intervention.

Author name disambiguation approaches are categorized in
two groups: author grouping and author assignment [5]. The
first clusters publications according to the individual iden-
tity of authors. For example: partitioning the publications
of 10 distinct authors named ”J. Smith” from a set of 100
publications. The latter treats the problem as a binary clas-
sification problem which consists in deciding whether a pub-
lication is truly written by a specific author. In this paper
we focus on the author assignment category. The common
methodology in these algorithms consists in capturing the
general characteristics of publications of an author a and
use them to determine whether a publication p is similar

783

enough to be considered written by a. There are two ap-
proaches for this: use features of past publications to train
a supervised model to identify publications of specific au-
thors (in this case each label in the training set uniquely
identifies an author) [9], or using a function that generalizes
the features of previous publications of an author and com-
pare them with the features of a new publication (in some
cases the comparison function is also a supervised learning
algorithm) [4]. These approaches have some drawbacks [5,
16], namely they assume that authors generally write sim-
ilar papers (e.g. in terms of subject areas and publication
venues), and also require a validated publication history of
an author.

In this paper we focus on the possibility of extracting fea-
tures that are not general to all previous publications of an
author a, but that relate him to a publication p. We aim
at using these features in a supervised learning classifier to
determine whether p is written by a. By not representing
the general characteristics of a, we avoid the fallacy that au-
thors always publish similar papers. Furthermore, we aim to
produce a model where the training phase does not require
training data from author a in order to correctly identify the
authorship of his publications. As a result, we also avoid the
other problem of requiring previous history. We use a pub-
lic bibliographic database for Portuguese researchers named
Authenticus [1] to conduct our work.

This paper is structured as follows: in Section 2 we review
the state of art for the author name disambiguation prob-
lem. In Section 3 we describe the information available in
the Authenticus database. In Section 4 we define our ma-
chine learning approach and detail the feature extraction
process. In Section 5 we test feature relevance and model
performance. Finally, in Section 6 we present the conclu-
sions and discuss future work.

2. RELATED WORK
Author grouping and author assignment methods are the
two main types of strategies for author name disambigua-
tion [13]. The former methods cluster publications based on
properties such as co-authors, institutions, and keywords.
They rely on a pairwise similarity score between papers ob-
tained by a function which can be pre-defined, or estimated
using supervised learning. Some examples of pre-defined
similarity functions are: rule-based scoring using bibliomet-
ric metadata related to authors and their publications [3],
co-authorship network analysis [13], and similarity coeffi-
cients such a Jaccard Index and cosine, directly applied to
some features [14]. Using supervised learning, Huang et
al. [11] trained a SVM classifier to estimate the distance
between two publications. Treeratpituk et al. [15] built a
Random Forest classifier for the same purpose. Gurney et
al. [8] constructed a logistic regression model to create a
network of publication/author nodes where edges weights
represent the probabilistic value of the two nodes being the
same person. Then, they employ a community detection
algorithm over the network to discriminate the pairings of
nodes in relation to unique authorship.

Author assignment methods use former knowledge about the
author to directly predict whether he published a certain

paper. These methods can also use either supervised or
unsupervised learning. The latter approaches cluster the
characteristics of authors. To solve the problem, they ini-
tially assume that a publication p was written by a set of
authors A. Then, the likelihood of each author having writ-
ten p is estimated by recurring to publication’s attributes in
a hierarchical way. The crucial point in these methods is to
define the hierarchical path. Han et al. [10] adopted the Ex-
pectation Maximization algorithm for the purpose, while in
another example, Bhattacharya et al. [2] used a Naive Bayes
model. Supervised learning techniques generalise character-
istics of authors into a feature set, then a classifier is built to
predict whether a publication fits the characteristics of an
author. Han et al. [9] trained two classification algorithms
(SVM and Naive Bayes) to identify authors of publications
using as information: co-author names, work titles and pub-
lication venues. The labels in their training set uniquely
identify publication’s authors. D’Angelo et al. [4] statisti-
cally estimated groups of features that generalize the charac-
teristics of previous publications of authors, and then define
four filters that infer the author of a publication. Wand
et al [16] applied the same feature extraction methodology
with a Boosted-trees classification algorithm to predict au-
thorship. In [7], Veloso et al. proposed SLAND an approach
that uses a supervised rule-based associative classifier to in-
fer the author of a publication. The association rules were
demand-driven and the strategy also has a first phase which
consists in using an unsupervised learning method to define
the training data for the model construction.

In overall, the results reported in the cited works are great
(on average, they report around 90% accuracy with the best
ones achieving 99.6%). Nevertheless, in most cases the ap-
proaches are tested in specific datasets that do not reflect
the conditions in a real-scenario application [8]. There are
some critical difficulties that emerge in a real scenario. First,
authors do not always write similar publications. This is a
common difficulty for most of the cited works since they
mostly use pairwise publication comparison 1, or generically
represent author’s characteristics to infer authorship. Sec-
ond, most of the supervised learning approaches mentioned
require training data from any author whose authorship is
to be determined [5]. Since validated data from all the au-
thors is hard to obtain, this becomes a problem in a real-
scenario. Finally, there are typographical errors and missing
information in metadata that may compromise the feature
extraction process.

Our proposed method differs from those cited as it extracts
features that estimate the likelihood of publication p being
written by author a without focusing on all previous publi-
cations of a, but rather on specific ones that are similar to
p. To the best of our knowledge, the closest work related to
our feature extraction strategy is [7]. They adopt associa-
tion rules in such a way that the features relate the author to
the publication. Additionally, they also do not need author
specific data to train the model. However our work is still
different, since they use a demand-driven rule extraction to
obtain features for authors and we define a set of generic
features for any author instead.

1in the clustering case this is known as transitivity prob-
lem [16].

784

3. AUTHENTICUS DATABASE
The Authenticus project aims at facilitating and improving
the results of bibliometric analysis performed by research or-
ganizations in Portugal. For the purpose they built a biblio-
graphic database for Portuguese researchers which strives for
both automation and accuracy. The database is periodically
updated with new publications by querying sources such as:
ISI Web-of-Knowledge, Scopus, Crossred and DBLP. It cur-
rently has 402,122 publications and 83,182 distinct authors
(or researchers). We are using a subset of the database that
includes 164,576 publications with at least one of its au-
thors validated, and 10,428 researchers (authors) with at
least one publication validated. This adds to a total of
298,800 author-publication associations validated. Lack of
manual validated data is often a problem in an author name
disambiguation task [13, 3] and it is the main reason why
classification techniques are generally ruled out. In our case,
since we use the Authenticus database we have a consider-
able amount of data to train a model with our features and
to properly assess its quality.

The database contains multiple tables with information about
publications and researchers. Some of the details stored in
the database for each publication are: authors’ names and
emails, affiliations, publication venue, keywords, research ar-
eas and times cited. For each researcher profile, the database
stores the information about name, emails, affiliations his-
tory and known publications. Through the connection be-
tween the researchers and publications, several tables are
created with statistics for researchers. Some examples are:
keywords used, times cited, published in which journals and
conferences. We use most of this information to extract fea-
tures for the classification model.

4. MACHINE LEARNING APPROACH

4.1 Problem Description
We formalize the problem of author disambiguation as the
task of receiving a publication p with n authors {a1, a2, . . . , an},
and matching them with n researchers {r1, r2, . . . , rn} from
the Authenticus database (D). Each author, ai has a meta-
data record mai consisting of a set of attributes retrieved
from p’s metadata. Some of its attributes such as journal,
keywords and research areas are common to all authors,
while information such as author name, email and affilia-
tion are specific to each author. At the first stage we use a
function Ω, such that Ω(mai , D) = Cai , where Cai is a list
of researchers from D that are candidates for the matching
with ai and ∃! c ∈ Cai such that c is the correct match for
ai. Moreover, each candidate c ∈ Cai has a history record
hc, consisting of a set of attributes (e.g. keywords, scientific
areas and co-authors) from the researcher’s previous history
of publications. Our goal is to use the available metadata to
extract features that, when applied to a classification model,
have the ability to identify the true author in a list of can-
didates for an author position. More concretely, we want to
build a function Θ, such that Θ(Cai ,mai , C) = r, where C is
a list containing the lists of candidates for the other author
positions and r is one of the true authors of the publication.

The Ω function in this context is known as blocking func-
tion and it is used to filter candidates for an author posi-

Feature Group # of Features

Name matching 2
Email matching 1
Co-authorship 5
Keywords 5
Research areas 2
Journal 1
Affiliations 4
History statistics 2

Table 1: Features grouping in our dataset.

tion. Therefore, drastically decreasing the number of com-
putations required. In this paper we use email and name
matching to select the candidates. The Θ function consists
of two parts. A δ function that builds a feature set Fc re-
lating the history of a researcher (hc) not only with the
metadata associated with the publication author (mai) but
also with other candidates (C), and a classification model
M which given Fc, predicts the probability of c being the
correct identification for author ai.

4.2 Feature Extraction
In this section we describe our function δ which creates the
feature set F for an instance of the author name disambigua-
tion problem. We use a total of 22 features. Since some of
the features are similar we categorized them in 8 groups.
Table 1 names these groups and the number of features in
each one.

We now discuss what each feature (or group of features)
represents and the process for its extraction. For the sake
of understanding, we exemplify the feature extraction con-
sidering the case of a researcher (r) that is a candidate for
author position ai in publication p. Moreover, we have a
list C which consists of all the candidates lists for all author
positions in p and a metadata record mai associated to ai

which consists in some author (name, email, affiliation) and
publication (keywords, journal, citations, research areas) in-
formation.

total ← ΠtotalΓsum(attr)σresearcher=r

id, score ← Πid,attr/totalσresearcher=r

(1)

Names matching: author’s names are usually written with
several initials and the last name in complete form. The two
features in this group are binaries. The first is set to 1 in
case that the initials in the author’s name matches perfectly
(in order and values) with the full name of researcher r. The
second is 1 when the researcher’s last name is fully written
in the authors name.

Email matching: this feature represents the best score of
the comparison between the author email in the publication
and the emails stored for researcher r. For the purpose we
use Jaro Winkler string comparison algorithm which returns
a value between 0 and 1.

Co-authorship: features in this group estimate the likeli-
hood of r in having co-authored with any of the candidates
for the other author positions. We extract the features by
assigning a probability score to each researcher that has
already co-authored with r (we apply formula (1) to the

785

database to calculate this score). Then, we iterate through
the candidates lists in C and for each one, we select the
highest probability score among the candidates. Finally, we
use the 5 top scores as features.

Keywords: features in this category estimate the probabil-
ity of r using some of the keywords in p. Using formula (1)
we extract the scores of the keywords already used by r.
Then we match them with the ones in p and we return the
top 5 scores as features.

Research areas: research areas help identifying publica-
tion’s topics. Therefore we also estimate the likelihood of r
in having published in the scientific areas of p. We query
this information from the database (using formula (1)) and
we get the top 2 scores as features.

Journal: in case the publication was published in a journal
(i.e. conference papers not considered) we estimate the like-
lihood of r publishing in the same journal. More concretely,
we count the number of times r published in the referred
journal, and divide by his total number of publications.

Affiliations: this category consists in 4 binary features that
relate r’s affiliation history with the ones in the publication.
The first feature is 1 in case the affiliation metadata in mai

is specifically related to ai instead of a global affiliation for
all the authors. For the remaining three features we use
the affiliation history of r up until two years before p was
published. The second feature is 1 in case r worked in that
affiliation, the next is 1 in case r worked in the same city
and the last one is 1 if he worked in the same country.

History statistics: these two features are based on general
statistics of r’s publications history. The first is the module
of the difference between the average number of co-authors
in r’s publications and the number of authors in p. The sec-
ond one is the difference since the year of r’s last publication
and the year p was published.

Often, it is not possible to extract all the mentioned features.
For example, for publications with 3 keywords we cannot
extract 5 keywords features. In these cases, we extract 3
features and we set as ”-1” the remaining two. The ”-1”
value represents lack of information about some features and
therefore we do not attempt to correct them with traditional
missing values approaches during the training phase of the
classification algorithm. Additionally, we scaled the features
(exception to history statistics group) between 0 and 1, to
define a maximum score for the feature which is known as
an important step for classification models.

4.3 Classification Algorithm
Our surveyed related work revealed that the best results for
author name disambiguation using classification algorithms
were obtained using a Random Forest classifier and thus we
also adopt such classifier. This algorithm is an ensemble
learning method consisting of N different Decision Trees,
where N is user defined. Each Decision Tree adjusts the
features into a tree topology where the leafs are the classifi-
cation decisions (known as labels) and nodes represent tests
for a certain feature value. Classification starts at the tree’s
root, then a walk-through the nodes occurs depending on
the value of the feature at each node’s condition. When a

Figure 1: Frequency of positive case previous history

leaf is reached, we have a prediction for the label. In a Ran-
dom Forest every Decision Tree classifies a case, and each
prediction is a vote. In the end, there is a count and the
label with most votes wins. It is possible to obtain the clas-
sification confidence by dividing the number of votes on the
winning label by the total number of trees.

5. EXPERIMENTS
To evaluate the performance of the Random Forest classifier
with our set of features, we first divided the Authenticus
database into two groups: researchers’ history and testing
data. The first one serves as a knowledge base of previous
publications from the researchers, while the other one rep-
resents publications we use to assess the model quality. To
balance the number of publications the researchers have in
their history versus the number of publications they have
in the testing data, we divided the groups by publications
dated before 2012 (inclusive) and after 2012. From the test-
ing data, in order to decrease the computational time of our
tests we randomly selected 40,000 publications. Then, we
used our feature extraction function to create a dataset with
the known validated authors labelled as a ”match” (positive
case). Furthermore, for each validated author, we picked
a maximum of 4 incorrect candidates2 and labelled them
”no match” (negative case). To select 4 candidates from the
whole list, we calculated the correlation between the fea-
tures of each candidate and the ones from the true author
using Pearson Correlation Coefficient and we chose the top
results. Thus, these are potentially the worst cases for the
model evaluation. The dataset has a total of 73,591 positive
cases and 229,738 negative ones. Moreover, there are 8641
distinct researchers. Each positive case has an average of 65
publications as knowledge base (previous history). However,
the dispersion of the values is extremely high (78 standard
deviation) and we still have enough cases with low amounts
of previous history. Figure 1 illustrates the distribution of
cases depending on the number of publication in history.
To ease visualisation we separated cases where the value is
higher than 50 (30,255 cases). The dataset has 21,170 cases
where the amount of history is relatively low (less than 20
publications). Additionally, we have 421 cases where the

2a maximum of 4 false authors per case were chosen to ease
results interpretation and class balancing.

786

keyword_5
keyword_4
co−author_5
affiliation_1
keyword_3
co−author_4
hist_stats_2
co−author_3
affiliation_3
res_areas_2
keyword_2
affiliation_4
co−author_2
affililiation_2
res_areas_1
hist_stats_1
keyword_1
co−author_1
journal
email
name_2
name_1

0 20 40 60 80

Mean Decrease Accuracy

Figure 2: Feature rlevance in Random Forest Classifier (MDA)

true researcher has no history at all which is the worst case
scenario for any author name disambiguation algorithm.

5.1 Feature Relevance
To estimate individual feature importance we trained a ran-
dom forest classifier using the whole dataset and calculated
the Mean Decrease Accuracy (MDA) of each feature. This
test randomizes the order of values of a feature f and then
determines model accuracy (i.e. associates the value of f in
case i to a random case j). Thus estimating the relevance
of f in the dataset. The higher a feature’s MDA is the more
important it is. Figure 2 illustrates the individual MDA
scores.

The name matching features MDA (80.5% and 67.23%) is
much higher than the other features. Such difference is ex-
plained because they are binary values, therefore there is
not a smooth transition between values. This does not mean
that they are not important, for example, affiliations group
also consists of binary features but since they do not impact
accuracy as much (are not so relevant) they have much lower
scores. Email is the third most important feature (44,4%)
which is expected since when this information is available it
works almost as a unique identifier of the author. In fourth
place the journal feature (41.5%) was a surprising result es-
pecially since its score difference when compared to similar
features (co-author, research areas and keywords) is high.
The remaining groups (exception to the last 3 features) have
a relatively good importance with the values ranging from
5% to 32%. We highlight the tendency of groups where fea-
tures are sorted by score (co-authorship, keywords, research
areas). Within these groups, feature importance follows the
same numerical order of the group. This is not only justified
by the fact that the top feature is more important, but also
because often we are not able to get all the features for a
group, therefore the lowest rank features in a group are ”-1”
in several cases. This is particularly noticeable in the 3 worst
features (4.2%, 3.1% and 1.7%) because most publication do
not have at least 5 authors nor 4 or more keywords.

TPR TNR F1-Score Accuracy AUC

3 80.014% 93.004% 36.081% 80.771% 81.446%

4 88.534% 93.862% 73.226% 89.358% 90.148%

5 93.896% 89.635% 84.699% 92.967% 94.624%

6 94.994% 91.143% 87.398% 94.129% 95.665%

7 95.419% 88.685% 87.068% 93.839% 95.483%

8 95.984% 90.130% 88.699% 94.604% 96.593%

9 96.344% 90.365% 89.416% 94.919% 97.112%

10 96.462% 90.765% 89.802% 95.105% 97.191%

11 96.534% 90.785% 89.932% 95.162% 97.271%

12 96.543% 90.959% 90.028% 95.212% 97.289%

13 96.579% 91.030% 90.122% 95.256% 97.315%

14 96.580% 90.979% 90.100% 95.244% 97.329%

15 96.585% 90.987% 90.112% 95.249% 97.331%

16 96.661% 91.213% 90.345% 95.361% 97.626%

17 96.686% 91.114% 90.341% 95.354% 97.619%

18 96.663% 91.129% 90.309% 95.341% 97.632%

19 96.686% 91.189% 90.377% 95.373% 97.629%

20 96.684% 91.196% 90.376% 95.373% 97.627%

21 96.686% 91.152% 90.359% 95.364% 97.623%

22 96.666% 91.204% 90.349% 95.362% 97.645%

Table 2: M × N cross-validation results changing the number of fea-
tures. # - Number of features. TPR - True Positive Rate. TNR -
True Negative Rate. AUC - Area Under Curve

5.2 Model Evaluation
To assess the quality of the random forest classifier we used
a M ×N cross validation strategy to decrease overfit in our
results. In more detail, we divide the dataset in 10 folds (M
folds), and then each one in 10 more parts (N folds). For
every M fold we test each N fold by using M \ N to train
the model and N to evaluate it. We use stratified folds thus
the number of positive and negative cases is the same in all
folds. As a result, each test evaluates 735 positive cases and
2,973 false ones.

We tested model quality using different subsets of features.
Following the MDA ranks we started with the whole group
and after each test we removed the worst feature until there
were only 3 features left. Table 2 demonstrates the results
of our test.

The subsets of features with 9 or more features have simi-
lar scores in every assessed metric. The difference between
the highest score and lowest among these group is 0.3% for
true positive rate (TPR), 0.9% for true negative rate (TNR),
0.9% for F1-score, 0.4% for accuracy and 0.5% for area un-
der the curve (AUC). The metrics decline for subsets with
less than 9 features. Exception to the TNR score whose best
score by a margin of more than 2.6% is in the subset with
only four features (2 from name matching, email and jour-
nal). Nevertheless, the TPR drastically decreases for this
subset (more than 8.0%). In overall the subset with 19 fea-
tures (consists in removing the last two features of keywords
and the last one from co-authorship groups) is the best to
train a Random Forest classifier.

Our previous test demonstrated that the set of features ex-
tracted achieves a top accuracy of 95.373%. This score is
related to the ability in predicting whether a researcher is

787

Fold Cases BF MF Correct MA GA

0 7396 216 416 6764 94.21% 91.45%

1 7263 181 413 6669 94.17% 91.82%

2 7526 198 416 6912 94.32% 91.84%

3 7402 180 425 6797 94.12% 91.83%

4 7337 194 365 6778 94.89% 92.38%

5 7373 208 424 6741 94.08% 91.43%

6 7331 185 389 6757 94.56% 92.17%

7 7353 218 369 6766 94.83% 92.02%

8 7312 163 418 6731 94.15% 92.05%

9 7298 173 393 6732 94.48% 92.24%

Total 73591 1916 4028 67647 94.38% 91.92%

Table 3: Real scenario test results. BF - Blocking method Fail, MF -
Model Fail, MA - Model Accuracy, GA - Global Accuracy.

the true author of a publication. However, this information
is not enough to solve the problem described in section 4.1.
Consider that in a list of candidates for an author position,
more than one researcher is labelled as a match3, in these
cases we require a tiebreaker to select only one. For the pur-
pose we use the confidence of the Random Forest classifier.
To assess the accuracy in selecting the correct researcher
from a list of candidates we divided the 40,000 publications
in our dataset (D) into 10 folds. We test each fold K by
training the Random Forest with D \ N and evaluating it
using the publications p in K. For each p we create lists of
candidates for each author position and apply the classifier
in order to select the match with highest confidence. Then
we evaluate the results for those cases where data is vali-
dated. Table 3 demonstrates test results.

Our dataset includes 73,591 author-publications confirmed
pairs that we can verify the correctness of our model se-
lection. In 1916 cases our blocking method failed to select
the correct researcher as a candidate due to misspelling er-
rors in the author’s name. For the remaining 71,675 cases,
our model assigned the highest confidence of matching to
the correct researcher in the candidates list, 67,647 times
(94.38% accuracy). Considering the errors of the block-
ing method, in general we predicted the correct researcher
91.92% of times.

On average the candidates list for the correct cases had 134
candidates (375 standard deviation (std)), while the wrong
cases had 481 (756 std). The average confidence score of
the correct cases was 0.92 (0.18 std) and 0.50 (0.36 std)
for the other ones. Additionally, the average difference of
scores between the true author and the selected candidate
was 0.23 (0.25 std). Figure 3 illustrates the frequency of
best scores estimated for the wrong cases and the difference
of that score and the one from the correct candidate. In
most of the wrong cases, the difference of scores leading to
a wrong decision is smaller than 0.2. In fact in almost 1200
cases the difference was smaller than 0.05. Thus, indicating
that when the model fails, the true author still had a close
score to the candidate selected.

To estimate the ability of the model in predicting authors

3the same problem occurs in the case all candidates are la-
belled as no match.

Figure 3: Score analysis for the wrong model selection.

Figure 4: History analysis for correct and wrong cases.

with few past publications or even none, we calculated the
number of correct and incorrect cases evaluated by the model
considering the number of publications the true author had
in his history. Figure 4 illustrates the results of this study.
To ease visualisation we removed cases with more than 50
publications in history. For these cases, we had 28,033 cor-
rect predictions and 1190 wrong ones (4.1% error rate). On
average the model incorrectly predicts 6.8% of the cases
when the number of publications is fewer than 50. The
model is much more likely to fail when the author has 0
publications. Still for this case the model correctly predicted
253 cases out of 409 (62%). For the remaining number of
publications the model had very similar results, ranging for
a minimum of 2.7% wrong cases to a maximum of 9.8%.
Therefore, we can assume as long as the true researcher has
at least one publication in his history, the performance of
the model is very reliable. For 0 publications in history,
the percentage of correct predictions is still reasonably good
since this represents the worst case scenario.

788

6. CONCLUSIONS & FUTURE WORK
In this paper we addressed the author name disambigua-
tion problem. We avoided the common problems of gen-
eralisation of these algorithms by defining a set of features
that relates an author to a specific publication, instead of
summarizing his global characteristics. To determine the
quality of the features extracted we used them to build a
Random Forest model that predicts whether a researcher in
the Authenticus database matches the profile of an author
in a publication. We started experimentation by using the
Mean Decrease Accuracy to determine individual features
rank. Then, using this rank we performed feature selection
by testing several subsets of features. We concluded that we
could remove 3 of our initial features and that the model ob-
tained was able to achieve 95.37% accuracy in predicting a
match. Furthermore, we tested the selected model in a real
case scenario where the Random Forest model in 94.38% of
the times was able to select the correct researcher from the
candidates list (when the true author was in the candidates
list, 91.92% for all cases). Therefore proving that the fea-
tures extracted are able to create a classifier suited for the
author name disambiguation problem. We demonstrated
that when our model fails, the score assigned to the true
researcher is close to the selected candidate in most cases.
Furthermore, we confirm the ability of the algorithm in cor-
rectly predicting most cases independently of the number of
publications in the history of the author. Additionally, we
were able to find the correct candidate for 62% of the cases
where authors had no history.

There are some steps we must complete before deploying
this set of features as a solution for the real problem. First
we have to test other classification algorithms such as Naive
Bayes, SVM or ensemble methods. Second, we need to fur-
ther improve the predicting ability for authors with no his-
tory, if necessary we may have to create another model just
for these cases. Finally, we have to improve our blocking
function to deal with the misspellings. This function repre-
sented a global error of 2.40%.

7. ACKNOWLEDGMENTS
This work is partially funded by the ERDF through the
COMPETE 2020 Programme within project POCI-01-0145-
FEDER-006961, and by National Funds through the FCT
as part of project UID/EEA/50014/2013. The authors are
thankful to Sylwia Bugla and Fábio Domingues for their
work on Authenticus data set.

8. REFERENCES
[1] P. Authenticus. Authenticus bibliographic website.

https://www.authenticus.pt/en/home/view article/1.
Accessed: 2016-07-04.

[2] I. Bhattacharya and L. Getoor. A latent dirichlet
model for unsupervised entity resolution. In SDM,
volume 5. SIAM, 2006.

[3] E. Caron and N. J. van Eck. Large scale author name
disambiguation using rule-based scoring and
clustering. In Context counts: Pathways to master big
and little data. Proceedings of the STI conference,
pages 79–86, 2014.

[4] C. A. D’Angelo, C. Giuffrida, and G. Abramo. A
heuristic approach to author name disambiguation in
bibliometrics databases for large-scale research
assessments. Journal of the American Society for
Information Science and Technology, 62(2):257–269,
2011.

[5] A. A. Ferreira, M. A. Gonçalves, and A. H. Laender.
A brief survey of automatic methods for author name
disambiguation. Acm Sigmod Record, 41(2):15–26,
2012.

[6] A. A. Ferreira, R. Silva, M. A. Gonçalves, A. Veloso,
and A. H. Laender. Active associative sampling for
author name disambiguation. In Proceedings of the
12th ACM/IEEE-CS joint conference on Digital
Libraries, pages 175–184. ACM, 2012.

[7] A. A. Ferreira, A. Veloso, M. A. Gonçalves, and A. H.
Laender. Effective self-training author name
disambiguation in scholarly digital libraries. In
Proceedings of the 10th annual joint conference on
Digital libraries, pages 39–48. ACM, 2010.

[8] T. Gurney, E. Horlings, and P. Van Den Besselaar.
Author disambiguation using multi-aspect similarity
indicators. Scientometrics, 91(2):435–449, 2012.

[9] H. Han, L. Giles, H. Zha, C. Li, and
K. Tsioutsiouliklis. Two supervised learning
approaches for name disambiguation in author
citations. In Digital Libraries, 2004. Proceedings of the
2004 joint ACM/IEEE conference on, pages 296–305.
IEEE, 2004.

[10] H. Han, W. Xu, H. Zha, and C. L. Giles. A
hierarchical naive bayes mixture model for name
disambiguation in author citations. In Proceedings of
the 2005 ACM symposium on Applied computing,
pages 1065–1069. ACM, 2005.

[11] J. Huang, S. Ertekin, and C. L. Giles. Efficient name
disambiguation for large-scale databases. In European
Conference on Principles of Data Mining and
Knowledge Discovery, pages 536–544. Springer, 2006.

[12] A. E. Jinha. Article 50 million: an estimate of the
number of scholarly articles in existence. Learned
Publishing, 23(3):258–263, 2010.

[13] F. Momeni and P. Mayr. Using co-authorship networks
for author name disambiguation. In Proceedings of the
16th ACM/IEEE-CS on Joint Conference on Digital
Libraries, pages 261–262. ACM, 2016.

[14] L. Tang and J. P. Walsh. Bibliometric fingerprints:
name disambiguation based on approximate structure
equivalence of cognitive maps. Scientometrics,
84(3):763–784, 2010.

[15] P. Treeratpituk and C. L. Giles. Disambiguating
authors in academic publications using random
forests. In Proceedings of the 9th ACM/IEEE-CS joint
conference on Digital libraries, pages 39–48. ACM,
2009.

[16] J. Wang, K. Berzins, D. Hicks, J. Melkers, F. Xiao,
and D. Pinheiro. A boosted-trees method for name
disambiguation. Scientometrics, 93(2):391–411, 2012.

789

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on 'IEEE_Xplorer'] Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20170118110126
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 0
 1

 1

 HistoryList_V1
 qi2base

