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Abstract. We use Adler, Tresser and Worfolk decomposition of Anosov au-
tomorphisms to give an explicit construction of the stable and unstable C1+

self-renormalizable sequences.

1. Introduction. Several authors have studied the existence of correspondences
between smooth conjugacy classes of Anosov diffeomorphisms and smooth self-
renormalizable structures, cohomology classes of Hölder cocycles, scaling functions,
ratio functions and eigenvalues (see [2, 5, 10,11,13,16,17,21–33]).

In [2], it is presented an explicit construction of the self-renormalizable structures
for Anosov diffeomorphisms that are topologically conjugate to the golden Anosov
automorphism. Here, using the Adler, Tresser and Worfolk [1] decomposition of
Anosov automorphisms, we extend the explicit construction of self-renormalizable
structures to self-renormalizable sequences that apply to Anosov diffeomorphisms
of any given topological class. The one-dimensional smooth self-renormalizable
sequences encode all the smooth information of the foliations of Anosov diffeomor-
phisms. This work extends the results of Pinto and Rand for hyperbolic diffeomor-
phisms on surfaces, presented in Chapter 4 of [32], to self-renormalizable sequences.
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2. Anosov diffeomorphisms. Let

Ã =

(
a b
c d

)
∈ GL(2,Z)

be a hyperbolic matrix, i.e. the eigenvalues λ and µ of Ã are such that |λ| > 1 and
|λµ| = 1. Let T = R2/Z2 be the 2-dimensional torus and let πT : R2 → R2/Z2 be
the natural projection. The matrix Ã determines a unique Anosov automorphism
A : T→ T such that

A ◦ πT = πT ◦ Ã.
ByWilliams [39] and Adler, Tresser and Worfolk [1], there existN ∈ N, an invertible
matrix C, and

G̃ =

[(
0 1
1 aN−1

)
· · ·
(

0 1
1 a1

)(
0 1
1 a0

)]
,

such that G̃ = CÃC−1, if λ > 1, and −G̃ = CÃC−1, if −λ > 1. For simplicity
of notation, from now on, we will consider the indices mod N . We note that
the modulus of the contracting eigenvalue µ is equal to |µ| =

∏N−1
i=0 γi, where

γi = 1/(ai + 1/(ai−1 + 1/ . . .)). Let ~vi = (−1, γi−2), ~wi = (γi−1, 1) and

Ti = R2/(~viZ× ~wiZ).
Let πi : R2 → Ti be the natural projection and let us define Fi : Ti → Ti+1 by

Fi(πi(x~vi + y ~wi)) = πi+1(y~vi+1 + (x+ aiy)~wi+1). (1)

Hence, the map Fi : Ti → Ti+1 has the following diagonal form

Fi(πi(x~i+ y~j)) = πi+1(−γix~i+ γ−1i y~j),

with respect to the canonical basis <~i,~j > of R2. Let

Gi = G(1,γ,N,i) : Ti → Ti
be the Anosov automorphism given by

Gi = Fi−1 ◦ . . . ◦ F0 ◦ FN ◦ . . . ◦ Fi+1 ◦ Fi.
Let

G(−1,γ,N,i) : Ti → Ti
be the Anosov automorphism given by

G(−1,γ,N,i) = −G(1,γ,N,i).

Therefore, by Adler, Tresser and Worfolk [1], the hyperbolic automorphism A is
topologically conjugate to the Anosov automorphim G(1,γ,N,0), if λ > 1, and to the
Anosov automorphim G(−1,γ,N,0), if −λ > 1.

Definition 2.1. Let the ATW-triple (θ, γ,N) be formed by (i) θ ∈ {−1, 1}, (ii)
N ∈ N and (iii) γ < 1 with a m-periodic continuous fraction expansion such that
mk = N for some k ∈ N. Let AT W be the set of all ATW-triples.

We say that S is a C1+ structure on T if, for every pair of charts contained in
S, there is α > 0 such that the overlap map is a C1+α diffeomorphism. A triple
(G,T,S) is a C1+ Anosov diffeomorphism if there is α > 0 and a finite C1+α atlas
S ′ ⊂ S of the C1+ structure S on T such that (i) G is a C1+α diffeomorphism with
respect to the atlas S ′; (ii) the tangent bundle has a C1+α uniformly hyperbolic
splitting into a stable direction and an unstable direction with respect to the atlas
S ′ (see [34]). Let G be the set of all C1+ Anosov diffeomorphisms.
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By Franks [7] and Manning [14], every C1+ Anosov diffeomorphism (G,T,S) is
topologically conjugate to a unique Anosov automorphism G(θ,γ,N,0). Let the map
T : G → AT W be defined by T (G) = (θ, γ,N), where (θ, γ,N) is such that G is
topologically conjugate to G(θ,γ,N,0). Hence, the map T determines a one-to-one
correspondence between ATW-triples and topological conjugacy classes of Anosov
automorphisms. Therefore, the topological classification of Anosov automorphisms
is completely determined by the ATW-triples.

We denote by G(θ, γ,N) the set of all C1+ Anosov diffeomorphisms (G,T,S)
that are topologically conjugate to the Anosov automorphism G(θ,γ,N,0).

Let S(θ, γ,N) be the set of all C1+ structures S for which the triples (G(θ,γ,N,0),

T0,S) are C1+ Anosov diffeomorphisms. We observe that the natural projection
π0 : R2 → T0 determines a unique affine canonical structure S ∈ S(θ, γ,N) with
the property that the map G(θ,γ,N,0) is an Anosov automorphism with respect to
the canonical structure S.

Lemma 2.2. The map S : S(θ, γ,N) → G(θ, γ,N) that associates to each C1+

structure S the C1+ conjugacy class of (G(θ, γ,N, 0),T0,S) induces a one-to-one
correspondence between C1+ structures and C1+ conjugacy classes.

See the proof of Lemma 2.2 in [22].
Hence, given a topological conjugacy class G(θ, γ,N), to characterize all the C1+

conjugacy classes in G(θ,γ,N,0) it is enough to characterize all the C1+ structures S
with the property that the triple (G(θ,γ,N,0),T0,S) is a C1+ Anosov diffeomorphism.

Remark 1. Hence, from now on, we fix the map G = G(θ,γ,N,0) : T0 → T0

and we consider all the structures S on T0 such that (G,T0,S) is a C1+ Anosov
diffeomorphism.

Given a C1+ Anosov diffeomorphism (G(θ,γ,N,0),T0,S), let Si be the pushforward
of the C1+ structure S by Fi−1 ◦ · · · ◦ F1 ◦ F0, i.e. Si = (Fi−1 ◦ · · · ◦ F1 ◦ F0)∗S
where F0, F1, · · · , Fi−1 are defined by (1). We note that S0 = S. By construction,
Fi : Ti → Ti+1 is a C1+ diffeomorphism with respect to the C1+ structures Si and
Si+1 and so Gi = G(θ,γ,N,i) is a C1+ Anosov diffeomorphism with respect to the
C1+ structure Si.

2.1. Smooth foliations. Let di,Si be the distance on the torus Ti determined by
a Riemannian metric ρ(Si) compatible with the structure Si. Given z ∈ Ti, we
denote the local stable manifold W s

i (z, ε0) through z by

W s
i (z, ε0) = {w ∈ Ti : di,Si(Gni (w), Gni (z)) ≤ ε0, for all n ≥ 0} .

By the Stable Manifold Theorem (see [34]), the images of the local stable manifolds
by the charts of the structure Si are smooth curves.

The stable manifold W s
i (πi(x, y)) passing through πi(x, y) is the projectionW s

i (z)
= πi(H) by πi of the horizontal line H in the plane passing through (x, y). An open
(resp. closed) stable leaf segment I passing through a point πi(x, y) is of the form
I = πi(K, y), where K is an open (resp. closed) interval in R with x ∈ int(K).
The endpoints of the stable leaf segment I are the points πi(∂K, y). A stable leaf
segment is either an open or closed stable leaf segment. The interior of a stable
leaf segment is the complement of its boundary. A map c : I → R is a stable leaf
chart of a stable leaf segment I if c is a homeomorphism onto its image. If I is a
stable leaf segment of Ti then Fi(I) is a stable leaf segment of Ti+1 and F−1i−1(I)
is a stable leaf segment of Ti−1. Similarly, the Stable Manifold Theorem implies
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that the images of the stable manifolds by the charts of the structure Si are smooth
curves. We note that the unstable manifolds of Gi are the projection by πi of the
vertical lines in the plane. The unstable leaf segments and unstable leaf charts are
defined similarly.

Let I and J be open intervals in R. The closure of the set πi(I×J) is a rectangle
if πi|I × J is a homeomorphism onto its image. If Wu

i (w, ε) and W s
i (z, ε) intersect

in a unique point v = Wu
i (w, ε) ∩ W s

i (z, ε), we denote the intersection point v
by [w, z]. Given a rectangle Ri in Ti then, for every x ∈ Ri, there are closed
unstable and stable leaf segments `ui (x,Ri) and `si (x,Ri), passing through x, such
that Ri = [`ui (x,Ri), `

s
i (x,Ri)], i.e. Ri is the set of all points of the form [w, z] with

w ∈ `ui (x,Ri) and z ∈ `si (x,Ri). The leaf segments `si (x,Ri) and `ui (x,Ri) are called
spanning stable and spanning unstable leaf segments, respectively.

Definition 2.3. A basic stable holonomy is the homeomorphism θi,s : `
s
i (x,Ri)→

`si (z,Ri) defined by θi,s(w) = [w, z].

The basic unstable holonomies are defined similarly. The stable lamination at-
las Ls(Si), determined by a Riemannian metric ρ(Si) compatible with the C1+

structure Si, is the set of all maps ei : Ii → R, where ei is an isometry between
the induced Riemannian metric on the stable leaf segment Ii and the Euclidean
metric on the reals. We call the maps ei ∈ Ls(Si) the stable lamination charts.
The unstable lamination atlas Lu(Si) is defined similarly. By Theorem 2.1 in [26],
the basic stable and unstable holonomies are C1+ with respect to the lamination
atlases Ls(Si) and Lu(Si), respectively. The affine canonical structures Si deter-
mine canonical affine stable and unstable lamination atlases Ls(Si) and Lu(Si),
respectively.

3. Self-renormalizable sequences. Train-tracks are optimal leaf-quotient spaces
on which the stable and unstable Markov maps induced by the action of C1+ Anosov
diffeomorphisms on leaf segments are local homeomorphisms.

Let the stable leaf box tsRi
of a rectangle Ri be the set of all spanning unstable leaf

segments of Ri. By the local product structure, one can identify a stable leaf box
tsRi

with any spanning stable leaf segment `si (x,Ri) of Ri, i.e. there is a one-to-one
correspondence between points y in `si (x,Ri) and spanning unstable leaf segments
`ui (y,Ri) in tsRi

. Given a rectangle partition {R1, . . . , Rn} of the torus, we say that
two points I ∈ tsRi

and J ∈ tsRj
are equivalent I ∼ J , if (i) the unstable leaf segments

I and J are unstable boundaries of the rectangles Ri and Rj , (ii) int(I ∩J) 6= ∅ and
(iii) Ri 6= Rj .

The pre-Markov partition of Gi is given byMi = {Ai,1, Ai,2, Bi}, where Ai,1 =
πi([0, γi−1] × [0, 1]), Ai,2 = πi([γi−1, 1] × [0, 1]) and Bi = πi([−γi−1, 0] × [0, γi−2]).
The stable train-track Tsi is the quotient space given by

Tsi = tsAi,1

⊔
tsAi,2

⊔
tsBi

/ ∼ .

The unstable train-track Tui is defined similarly. There is a canonical projection
map πTs

i
:
⊔
Ri∈Mi

Ri → Tsi that sends the point x ∈ Ri to the point `u(x,Ri) in
Tsi . A topologically regular point I in Tsi is a point with a unique preimage under
πTs

i
(i.e. the preimage of I is not a union of distinct unstable boundaries of pre-

Markov rectangles). If a point has more than one preimage by πTs
i
, then we call it

a junction. We note that there is only one junction jsi consisting of the union of all
unstable boundaries of the ATW rectangles Ai and Bi.
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A chart i : I → R in Ls(Si) determines a train-track chart iT : IT → R for IT
given by iT ◦ πTs

i
= i. We denote by B′s(Si) the set of all train-track charts iT

determined by charts i in Ls(Si). Given any train-track charts iT : IT → R and
jT : JT → R in B′s(Si), the overlap map jT ◦ i−1T is equal to j ◦ θi ◦ i−1, where
i = iT ◦ πTs

i
: I → R and j = jT ◦ πTs

i
: J → R are charts in Ls(Si), and

θi : i
−1(iT (IT ∩ JT ))→ j−1(jT (IT ∩ JT ))

is a basic stable holonomy. By Theorem 2.1 in Pinto and Rand [26], there exists
α > 0 such that, for all train-track charts iT and jT in B′s(Si), the overlap maps
jT ◦ i−1T = j ◦ θi ◦ i−1 have C1+α diffeomorphic extensions with a uniform bound
in the C1+α norm. Hence, B′s(Si) is a C1+α atlas on Tsi . Let Bs(Si) be the C1+

structure that is C1+ compatible with the C1+α atlas B′s(Si).
The (stable) Markov map mi,s : T

s
i → Tsi−1 is the mapping induced by the action

of Fi on spanning unstable leaf segments and it is defined as follows: if I ∈ Tsi , then
mi,s(I) = πTs

i
(Fi(I)) is the spanning unstable leaf segment containing Fi(I). This

map mi,s is a local homeomorphism because Fi sends short stable leaf segments
homeomorphically onto short stable leaf segments. The (unstable) Markov map
mi,u : Tui → Tui+1 is defined similarly.

Let us define m1,i,s = mi,s : Tsi → Tsi−1 and, recursively, let mn+1,i,s =
mi−n,s ◦ mn,i,s : Tsi → Tsi−1. A n-cylinder of Tsi is a subset C of Tsi such that
(i) mn−1,i,s(C) ∈ {tsAi,1

, tsAi,2
, tsBi
} and (ii) mn−1,i,s is a homeomorphism of int(C)

onto its image. A n-cylinder of Tui is defined similarly. Hence, a n-cylinder of Tsi
(resp. of Tui ) is the projection into Tsi (resp. Tui ) of a stable leaf (resp. unstable
leaf) n-cylinder segment. We say that mi,s has bounded geometry in an atlas B′i,
if there is κ1 > 0 such that κ−11 < |e(C1)|/|e(C2)| < κ1 for every n-cylinders C1

and C2, with a common endpoint, and for every chart (e, U) of the atlas B′i with
C1 ∪ C2 ⊂ U .

Lemma 3.1. Given a C1+ Anosov structure Si, the Markov maps mi,s are C1+

local diffeomorphisms and have bounded geometry with respect to the C1+α atlases
B′s(Si) and B′s(Si−1) and the Markov maps mi,u are C1+ local diffeomorphisms and
have bounded geometry with respect to the C1+α atlases B′u(Si) and B′u(Si+1).

A stable exchange map θ̃i : πTs
i
(I) → πTs

i
(J) is the homeomorphism given by

θ̃i ◦πTs
i
= πTs

i
◦θi, where θi : I → J is a basic stable holonomy. The stable exchange

pseudo-group Ei,s is the set of all stable exchange maps. The unstable exchange
pseudo-group Ei,u is defined similarly.

Lemma 3.2. The elements of the exchange pseudo-groups Ei,s and Ei,u are C1+

diffeomorphisms with respect to the C1+ structures Bs(Si) and Bu(Si), respectively.

See the proof of Lemma 3.2 in [22].

Definition 3.3. A C1+ stable self-renormalizable sequence BBs = (B0, . . . ,BN−1)
is a sequence of C1+ structures Bi with the following properties:
(i) The elements of the exchange pseudo-group Ei,s are C1+ diffeomorphisms with

respect to the C1+ structure Bi.
(ii) For some α > 0, the Markov maps mi,s : Tsi → Tsi−1 are C1+α local diffeo-

morphisms and have bounded geometry with respect to some atlasses B′i ⊂ Bi
and B′i−1 ⊂ Bi−1.
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The C1+ unstable self-renormalizable sequence BBu is defined similarly. Given a
C1+ structure S, define

BBs(S) = (Bs(S0), . . . ,Bs(SN−1))

and
BBu(S) = (Bu(S0), . . . ,Bu(SN−1)).

Theorem 3.4. The map S 7→ (BBs(S),BBu(S)) determines a one-to-one corre-
spondence between C1+ conjugacy classes of C1+ Anosov diffeomorphisms and pairs
of C1+ stable and unstable self-renormalizable sequences.

See the proof of Theorem 3.4 in [27].

4. Circle diffeomorphisms. Let the ATW partition of Ti be given by AT Wi =
{Ai, Bi}, where Ai = πi([0, 1]× [0, 1]) and Bi = πi([−γi−1, 0]× [0, γi−2]). We form
the stable circle Ssi = tsAi

⊔
tsBi

/ ∼ . Let πSsi :
⊔
Ri∈ATWi

Ri → Ssi be the natural
projection sending x ∈ Ri to the point `ui (x,Ri) in Ssi . Topologically, the space
Si = Ssi is a counterclockwise oriented circle.

Let IS be an arc in Si and I a leaf segment such that πSi(I) = IS. The chart
i : I → R in Ls(Si) determines a circle chart iS : IS → R for IS given by iS ◦πSi = i.
We denote by A′s(Si) the set of all circle charts iS determined by the charts i in
Ls(Si). Given any circle charts iS : IS → R and jS : JS → R, the overlap map
jS ◦ i−1S is equal to j ◦ θi ◦ i−1, where i = iS ◦ πSG : I → R and j = jS ◦ πSG : J → R
are charts in Ls(Si), and

θi : i
−1(iS(IS ∩ JS))→ j−1(jS(IS ∩ JS))

is a basic stable holonomy. By Theorem 2.1 in Pinto and Rand [26], there exists
α > 0 such that, for all circle charts iS and jS contained in A′s(Si), the overlap
maps jS ◦ i−1S = j ◦ θi ◦ i−1 are C1+α diffeomorphisms with a uniform bound in
the C1+α norm. Hence, A′s(Si) is a C1+ atlas. Let As(Si) be the C1+ structure
that is C1+ compatible with the C1+ atlas A′s(Si). Let As(L) be the C1+ structure
C1+ compatible with the atlas A′s. The affine canonical structure Si determines an
affine stable and unstable canonical structures As(Si) and Au(Si), respectively.

Suppose that I and J are stable leaf segments and θ : I → J is a holonomy map
such that, for every x ∈ I, the unstable leaf segments with endpoints x and θ(x) cross
once, and only once, a stable boundary of a pre-Markov rectangle. We define the
arc rotation map θ̃i : πSi(I) → πSi(J), associated to θi, by θ̃i(πSi(x)) = πSi(θi(x)).
By Theorem 2.1 in Pinto and Rand [26], there exists α > 0 such that the holonomy
θi : I → J is a C1+α diffeomorphism, with respect to the C1+ lamination atlas
Ls(Si). Hence, the arc rotation maps θ̃i are C1+ diffeomorphisms with respect to
the C1+ structure As(Si). Furthermore, the rotation maps θ̃i are affine with respect
to the affine canonical atlas A′s(Li).

Lemma 4.1. There is a well-defined C1+ circle diffeomorphism gs,i;Ssi → Ssi with
respect to the C1+ structure As(Si), such that gs,i|πSi (I)

= θ̃i, for every arc rotation
map θ̃i. Furthermore, gs,i has rotation number γi and gs,i is the rigid rotation with
respect to the affine canonical structure As(Si).

See the proof of Lemma 4.1 in [22].
Let As0,∗ be the C1+ structure on T s0 given by the pushforward of the C1+

structure As0 on S0 by the natural projection map πSi,Ts
i
: Si → Tsi .
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Theorem 4.2. The circle map gs,0 is a C1+ diffeomorphism with respect to the
C1+ structure A0 if, and only if, the elements of the stable exchange pseudo-group
E0,s are C1+ diffeomorphisms with respect to the C1+ structure As0,∗.

See the proof of Theorem 4.2 in [22].
Let the C1+ structure Asi,∗ be the pullback of the C1+ structure As0,∗ by the

sequence of Markov maps mi,0,s. The circle diffeomorphism g0 is a C1+ periodic
point of renormalization with respect to the C1+ structure A0 if, and only if, the
sequence (As0,∗, . . . ,AsN−1,∗) is a C1+ stable self-renormalizable sequence (see [3]
and [22]).

A similar construction holds for the unstable foliation determining a C1+ circle
diffeomorphism gu,i : Sui → Sui with respect to the C1+ structure Au(Si) with rota-
tion number γi−1. Furthermore, the map S 7→ (As(S),Au(S)) determines a one-to-
one correspondence between C1+ conjugacy classes of C1+ Anosov diffeomorphisms
and pairs of C1+ circle diffeomorphisms (gs,i, gu,i) that are C1+ periodic points of
renormalization with respect to the C1+ structures (As(Si),Au(Si)) (see [22]).
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