The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-09153-2_20

Characterizing the Control Logic of Web
Applications’ User Interfaces

Carlos Eduardo Silva and José Creissac Campos

Departamento de Informatica, Universidade do Minho
& HASLab/INESC TEC
Braga, Portugal
{cems, jose.campos}@di.uminho.pt

Abstract. In order to develop an hybrid approach to the Reverse En-
gineer of Web applications, we need first to understand how much of the
control logic of the user interface can be obtained from the analysis of
event listeners. To that end, we have developed a tool that enables us
to perform such analysis, and applied it to the implementation of the
one thousand most widely used Websites (according to Alexa Top Sites).
This paper describes our approach for analyzing the user interface layer
of those Websites, and the results we got from the analysis. The conclu-
sions drawn from the exercise will be used to guide the development of
the proposed hybrid reverse engineering tool.

Keywords: Web applications, user interfaces, reverse engineering

1 Introduction

Reverse Engineering [1,2] is the process of moving from more concrete repre-
sentations of a system, typically its source or binary code, to more abstract
representations of the same system. Doing this we gain knowledge about the
design of the system, avoiding details that are relevant only to its implementa-
tion. Reverse engineering can be useful in a number of different situations, be
it during development, testing or maintenance. Two basic types of techniques
can be used. Static techniques start from the code (the source code or some
form of byte-code) analyzing it statically. Dynamic techniques take a black box
approach and analyze the behavior of the system while executing.

We are particularly interested in applying reverse engineering to Web ap-
plications. While development for the Web has changed how the software in-
dustry approached software development and distribution, it is recognized that
applying adequate standards and methodologies is still a challenge [3]. Through
reverse engineering we aim to provide support to the process of engineering and
re-engineering Web applications. By helping the process of gaining an under-
standing of an existing system, it becomes possible to better support its testing
and validation, or its maintenance and evolution. For example, by enabling the
comparison of different versions of the same software.

2 Carlos Eduardo Silva and José Creissac Campos

More specifically, we are interested in the user interface layer of Web applica-
tions. This is both because they are typically more susceptible to changes (due
to changes in user requirements or the technology), and are particularly hard to
develop and maintain (due, not only to the event based nature of the code, but
also the the wide variety of technologies available for that development).

Early attempts at applying static analysis techniques to analyze the user
interface layer of Web applications [4], have shown that this type of technique,
while feasible for native applications (see, for example, [5]), suffers from a number
of shortcomings when applied to the Web. The two main issues are related to
the existence of many alternative implementation technologies, on the one side,
and to the on the fly generation of the user interfaces, on the other.

The fact that many different languages, toolkits and frameworks exist, which
can be used to implement Web applications, and their user interfaces in partic-
ular, means that a static analysis approach will either have to be able to parse
and interpret the different languages and/or toolkits/frameworks, or commit to
a particular technology. The first solution is not viable, in practice, as it means
that developing such an approach would be prohibitively expensive. The second,
means that the utility of the approach becomes rather restricted. This is spe-
cially the case when one considers the fast pace of technological development in
the field.

Dynamic analysis avoids the above problems by taking a black box view of
the system under test, and exploring its behavior at run time. Here what is
needed is some adapter layer to programmatically interact with the user inter-
face. Frameworks such as Selenium [6] provide this layer for the case of Web
applications, and have already been used in tools such as Crawljax [7].

The fact that dynamic analysis takes a black box view of the system under
test, however, also poses some limitations. Most notably, apart from very simple
user interfaces, it is not possible to be sure that all possible behaviors/states
of the system have been explored. Additionally, when in presence of alternative
system behaviors, it is not easy to determine what are the conditions that triggers
each alternative behavior [8]. The danger, then, is that models obtained through
a dynamic approach to reverse engineering will be incomplete, both regarding
the full behavior of the system under test, and regarding the semantics of the
observed behaviors.

To avoid these issues, we propose to use an hybrid approach to reverse en-
gineering [9]. The approach combines dynamic analyzes of the application, with
static analyzes of the source code of the event handlers found during interaction.
Information derived from the source code is both directly added to the generated
models, adding semantics to the model, and used to guide the dynamic analysis,
thus enabling it to be more complete.

In order to avoid the pitfalls of static analysis, the goal is to keep the analysis
of event handlers as simple as possible. This, however, begs the question of
whether enough control logic is present in the event handlers of Web applications,
and whether we can adequately identify and process the event handlers. To
answer those questions, we have carried out a study of the top one thousand

Characterizing the Control Logic of Web Applications’ User Interfaces 3

most used Websites according to Alexa Top Sites!. In this paper we describe
how the study was setup, and the results that were achieved.

The paper is organized as follows: Section 2 defines the criteria used in the
analysis; Section 3 explains how information about event handlers was extracted
from the Web pages, and Section 4 describes the tool which was developed;
Section 5 describes the analysis of the Websites, and the paper concludes with
Section 6.

2 Criteria for Analysis

Since the interest is in identifying possible alternative behaviors of the system,
and the conditions under which these alternative behaviors occur, the focus of
the static analysis are the conditions in if statements and loops in the event
handlers.

The analysis of the Websites was thus made according to a set of criteria
defined to help understand how much information could be obtained from the
event handlers. The following criteria were defined:

— Number of hrefs — The analysis of how many hrefs are used in the page.
A high number of hrefs and the failure to detect events handlers might lead
us to infer the usage of Web 2.0 (i.e. static) techniques in the page.

— Number of Events — This criterion is the total number of events we were
able to find on the Website.

— Number of Click Events - It is important to discern, from all the events
in the page, those which are triggered by clicks, since they are easier for us
to simulate. Moreover, only the visible click events are being considered in
this criterion.

— Number of Ifs — This criterion is important since we need to measure
how much used these constructs are, in comparison to others that affect the
control flow of the application.

— Number of other Control Flow constructs — The other type of con-
structs related to the control flow we are analyzing, these include while/for
loops and ternary conditional operators.

— Number of Element Variables — This criterion counts the number of vari-
ables we found, whose value is obtained from elements in the page. We are
currently not distinguishing between input and non-input elements. More-
over, this analysis was performed by detecting usage of classic JavaScript
getElementBy function calls only.

— Number of Synthesized Variables — Variables related to function calls
that we could not ascertain were used to retrieve elements from the page.

— Number of Object Variables — Variables associated with objects or object
properties.

— Number of Global Variables — Variables whose declaration is made out-
side the scope of the handler/function being analyzed.

! http://www.alexa.com/topsites (last accessed: May 8, 2014)

4 Carlos Eduardo Silva and José Creissac Campos

— Number of Control Flow Variables — Variables that might be assigned
different types depending on the control flow structures.

— Number of Hybrid Variables — Variables that can be classified using
more than one of the previously defined types, at different points in the
code.

— Event Delegation — If our analysis infers the Website uses the event dele-
gation approach for event handlers (see Section 3).

3 Extracting Web page behavior information

In order to combine dynamic analysis with the static analysis of event handlers,
we must be able to identify those event handlers at run time. Identifying the
event handlers in a page, depends on how those event handlers were added to
the page in the first place.

There are two main approaches to add events to a Web page. The classic
approach is to add an event handler to an element. However, even using this ap-
proach, there are several different ways of adding event handlers to the elements.
A simple example is:

element.onclick = event_handler;

An event handler added in this way is retrieved simply by querying ele-
ment.onclick in JavaScript. However, in our analysis, we soon discovered that
most Websites use other methods for adding event handlers. For example:

element.addEventListener(’click’, event_handler, false)

The above source code is another option of adding an onclick event to an element.
Using element.onclick in this case will not retrieve any results. Moreover, we also
have to consider all the different JavaScript frameworks, for instance, in jQuery
[10] the event handler is added as follows:

$(element) .click(handler) ;

To address this we resorted to Visual Event, an open source framework? which
is able to parse several JavaScript libraries and retrieve the event handlers. It
currently works with a number of different libraries, and can be extended by
developing new parsers for those not supported and adding them to the frame-
work.

The other approach to adding event handling code to a Web page is called
event delegation®. The idea is to take benefit of the browsers’ event bubbling
features. That is, when we have nested elements in HTML, triggering an event
handler in an element also implies triggering the handlers for that event in
the parent elements. For example, in Figure 1 on the left side we have the

2 http://www.sprymedia.co.uk/article/Visual+Event+2 (last accessed: May 8,
2014)
3 http://icant.co.uk/sandbox/eventdelegation/ (last accessed: May 8, 2014)

Characterizing the Control Logic of Web Applications’ User Interfaces 5

html -

<html>
<head></head> [: ﬁ
head —0{ bod

<body> L *

<div id"a">a :

<div id="b">b 3 :
<div id="c">c | diva |

</div> *

</div> E
Z;“Z: avb]

ody> aaea. » i E S

</html> Bubbling H

— Capturing * :

div c

Fig. 1. Bubbling and Capturing Example

source code of a simple Web page with three divs. Triggering an event on the
innermost element, that is, div ¢ , causes the browser to traverse the Document
Object Model (DOM) from the root node (html) to the element, this is called
the capturing phase. Afterwards the browser also needs to traverse the DOM
from the element to the root node, this is called the bubbling phase. Depending
on the browser and how event handling is configured, relevant event handlers
will be triggered in each element in either the capturing or bubbling phase.

This behavior of the Web browsers led to the usage of event delegation.
That is, instead of assigning event handlers to each element, we assign a single
handler to a parent container (the extreme case is to add the handler to body)
and that container then controls the events depending on which child element
has triggered the event.

Discerning which technique is being used is important since the approach to
reverse engineering the events is completely different. After all, on the classic
approach we can simply analyze the handlers for each element whereas in the
event delegation approach we must use additional logic to identify which element
triggers which behavior.

4 Approach

In order to gather the data of the Websites we have developed a framework to an-
alyze pages according to the criteria defined in Section 2. The architecture of our
tool is depicted in Figure 2. The framework is composed by three components:
DOM Analyzer, Event Detection and Variables Analyzer. Selenium WebDriver?,
a tool to automate the Web browser, was used to perform the communication
with the Web browser.

4 http://docs.seleniumhq.org/projects/webdriver/ (last accessed: May 8, 2014)

6 Carlos Eduardo Silva and José Creissac Campos

Web
Framework
Browser
) DOM Event Variables
v Analyzer || Detection | | Analyzer
Web Automation

Data
Gathered p

Fig. 2. Framework’s architecture

4.1 DOM Analyzer

This component is responsible for parsing the HTML and gathering data from
the DOM. The DOM provides an Application Programming Interface (API) for
valid HTML and well-formed XML documents®. Whenever a Web page is loaded,
the Web browser creates a DOM of that page, which in terms of HTML is the
standard on how to manipulate HTML elements.

We parse the DOM with an HTML cleaner to overcome malformed HTML
tags that may exist. Afterwards we inject JavaScript to discover which elements
are visible and which elements are invisible. This is important since our analysis
of the elements that are responsible for the behavior of the page will focus on
the visible elements only.

In order to do this, the JavaScript we are injecting in the page is using the
jQuery find(’:hidden’) function. Obviously, this also means that we have to add
the jQuery framework to all the sites we are analyzing. In order to avoid problems
with sites using other JavaScript frameworks, since many other frameworks use
the § character as a shortcut, we are using the jQuery noconflict() method.

4.2 Event Detection

The Event Detection component analyzes the page and searches for the event
handlers that are present therein. As we discussed previously in Section 3, we
must be able to search for the event handlers independently of what approach is
being used in the Web page. Thus, Visual Event is first used to retrieve all the
event handlers assigned to the Web page using the classic approach. However,
the event delegation approach is significantly harder to analyze.

Since it can be implemented in several different ways, we are currently only
identifying if that approach is being used. Even to perform that identification,

5 http://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/introduction.
html (last accessed: May 8, 2014)

Characterizing the Control Logic of Web Applications’ User Interfaces 7

1 | document.body.onclick = function(e) {
2 e= (e) 7 e : event

3 var el = e.target || e.srcElement;
4 if (el.id = "¢”) {

5 //Handler code

6 if (e.preventDefault)

7 e.preventDefault ();

8 }

9 else {

10 e.returnValue = false;

11 }

12 }

13 |}

Fig. 3. An example of using Event Delegation

we require an analysis of the entire JavaScript source code, in search of usages
of JavaScript tokens similar to the ones present on Figure 3, which depicts the
source code of an example of assigning an event handler to an HTML element
using the event delegation approach.

We are currently using a combination of the Firebug® and NetExport” ex-
tensions of the Firefox Web browser in order to retrieve all the JavaScript files
that are requested from the server when a page is loaded. Then we analyze all
the JavaScript source code in search for patterns similar to the ones presented
on Figure 3.

4.3 Variables Analyzer

After extracting the relevant JavaScript code from the event handlers, we create
an Abstract Syntax Tree (AST). In order to do this we use Mozilla’s Rhino® to
parse the JavaScript source code and generate the AST.

The code is analyzed to identify the statements that affect control flow.
The relevant constructs are: ifs/elses, ternary operators, and while/for loops.
Moreover, it is also necessary to analyze the variables used in those constructs.

Initially, we statically analyzed and classified those variables, based on how
they are used on the source code, into the following four categories:

— Constants - are variables that remain unaffected by any type of function
call. Our analysis will ignore these variables since we consider them of no
interest, as they cannot cause changes in the logic of the control flow.

5 http://getfirebug.com/ (last accessed: May 8, 2014)

" http://www.softwareishard.com/blog/netexport/ (last accessed: May 8, 2014)

8 https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino (last ac-
cessed: May 8, 2014)

8 Carlos Eduardo Silva and José Creissac Campos

— Element variables - are variables that use function calls like getElement-
Byld(...) to retrieve elements from the page. Moreover, these variables are
further divided into:

e Input variables - elements of the page that a user can manipulate (e.g
textboxes).

e Static variables - elements of the page that a user cannot manipulate
(e.g labels).

— Synthesized variables - are variables that use other types of function calls,
typically these will be calls to auxiliary functions at the user interface level,
or to the business logic of the application.

— Object variables - are variables which are associated with an object or one
object property.

An analysis of more complex pieces of source code led us to the need of also
identifying three more types of variables:

— Global variables - If the variable declaration or assignment is outside the
scope of our function we consider that variable to be global.

— Control Flow variables - are variables that have simultaneous assignments
in different parts of the source code under different control constructs. For
example, lets imagine we were analyzing the source code in Figure 3. If we
added a new if condition after line 11 using the e variable, our analysis
would conclude that, at that stage, e would have either been affected by the
previous invocation of the preventDefault() method, or by the assignment of
false to its returnValue property. In these situations we call that variable a
Control Flow variable since its origin may differ according to the flow of the
application.

— Hybrid variables - are variables for whose classification we identified more
than one type of the previously discussed types of variables (except con-
stants since those can be ignored). For instance, in the following source code
variable b would be obtained from both an input variable and a synthesized
variable:

var b = document.getElementById(’c’);
b = b + getServerData();
if (b>0){...}

Another aspect we can see from the source code above is that our analysis
must include all previous assignments of that variable in the source code. Oth-
erwise, in the previous code we would define the variable as Synthesized instead
of Hybrid, which would be inaccurate.

It is also important to notice that our analysis is focusing only on events
associated with visible elements. While the depth of analysis is customizable
(that is, as long as they are available in the browser, it is possible to configure the
tool to analyze the source code of the functions called from the event handlers,
and the ones called from those, etc.), in what follows we will only be analyzing the
event handlers up to a depth of one. If an event handler has several function calls,
we are also going to analyze those functions (if those functions are available),

Characterizing the Control Logic of Web Applications’ User Interfaces 9

but not the functions called by them. This happens because the goal of this
analysis was to evaluate how much information about control flow we could
access, analyzing as few JavaScript as possible.

Our approach to gather the data regarding variables is the following: we start
by gathering the control flow constructs present in the portion of source code we
are analyzing. This source code is either an event handler function or a single
function in the code we retrieved by analyzing a function call. For each construct
we gather which variables are used.

The following source code shows an example of an if construct:

if (b==document.getElementById(’c’){...};

We differentiate our analysis according to the variable. If we have a single name
token followed by any type of operator we have to analyze the previous code
in search for that variable assignment, such as, b in the source code above. In
that case we extract all the previous assignments of that variable on the source
code and analyze each one for the types of variables being used. Afterwards,
according to the number of different types found we identify the variable under
analysis conforming to the previously explained catalog.

However, if we have more complex constructs before or after the operators,
e.g., document.getElementById(’c’) in the above source code, we process them
as a variable. Therefore, we need to identify which type of variable that part of
the source code is according to our catalog, in this example we would identify it
as an Element variable.

5 Top Sites analysis

In this section we describe how the tool just described was used to investigate
how much control logic information might be possible to extract from event
handlers. As already explained, the goal is to assess the viability of developing
an hybrid approach to the reverse engineering of Web applications.

5.1 Scope of the analysis

Since the approach we have developed is fully automated, we could define any
number of Websites for analysis. We decided to focus our analysis on the most
popular Websites globally, thus we used the Alex top Websites list. Our analysis
covered the first one thousand sites on that list. The analysis was performed on
the 26th of February, 2014.

It is important to note that in order for the analysis to be automated we had
to bypass several errors that could occur analyzing these applications. For ex-
ample, one important problem we had was that some sites could never finish the
page loading. This problem was unrelated to our tool, since opening those sites
on different Web browsers, no matter how much time we waited the page would
never finish loading. When this happens we cannot extract any information from
the page. In order to overcome the application being set on a loop waiting for

10 Carlos Eduardo Silva and José Creissac Campos

Table 1. Events and control-flow constructs

S 9 %
IS N
& S &
A <, § g
& & gO 5
‘Zg? A‘Z’Q \g}:’ 6 § QO
& S 9 NG & &
Mean 214.09 26.57 18.53 40.26 40.34 116.96
Standard Deviation 301.28 74.78 68.19 153.71 153.71 412.49
Median 104 5 1 3 3 9
Maximum value 3349 902 887 2109 2109 5121
Percentage of zeros 6.4 21.8 46.5 34.8 34.6 31
Mean excluding zeros | 228.73 33.98 34.63 61.74 61.68 169.51

the loading we set a timeout of one minute for each analysis. The final result
showed that forty five of the one thousand sites could not finish loading in the
minute we set. This means that almost five percent of our analysis scope has no
data gathered because of this problem.

Another problem we had in many sites was that while analyzing the event
handlers source code, we got JavaScript parsing errors. In these cases we skipped
only those handlers analysis. At this point we could not identify if the malformed
JavaScript was coded on purpose, to prevent third party analysis such as this
one, or were simply coding errors.

5.2 Data Analysis

We decided to group the criteria into two groups, one with the data on events
and constructs, and the other with the data on variables. The event delegation
criterion is going to be treated independently of the other criteria since is the
only one with a boolean as a result and not a number.

Table 1 shows a summary of the results we retrieved from the analysis of the
one thousand sites. Something we can immediately gather, from the table by
analyzing the maximum value in comparison with the mean and the median, is
that there clearly exist outliers in the data. Moreover, we can see that the data
is quite disperse, by comparing the standard deviation values with the mean
values.

In terms of hrefs, and discounting the 4.5% of sites that were not computed,
numbers show that only around 2% of the analyzed pages that did not use any
type of hrefs. This means that the wide majority of Websites still uses hrefs
for navigation between pages. This was, of course, to be expected, but shows
that the reverse engineering tool should not be restricted to single page Web
applications, and consider also navigation between pages.

The analysis of the event handlers shows that only approximately 22% of
sites did not have any event we could find. Moreover, when rstricting the events
to only clicks we get a 46.5% in total. That means that there were approximately
25% of sites that had events we could detect but none of those events were clicks.

Characterizing the Control Logic of Web Applications’ User Interfaces 11

Table 2. Variables comparison

A
> S
$ ‘°§ 5\ >
S & & & £ 5
& N) 9 N N
X % O < O 23
Mean 0.98 15.09 16.96 29.66 4.98 0.37
Standard Deviation | 4.83 79.40 84.28 142.37 4548 2.84
Median 0 0 1 1 0 0
Maximum value 49 1008 1830 2520 1155 64
Percentage of zeros 89.2 65 444 486 86.7 93.1
Mean excluding zeros| 9.1 43.11 30.49 57.7 37.41 5.27

Also, having a mean of around 26.57 events and 18.53 clickable events shows that
an analysis based on this type of events would have an important impact on the
Web overall.

In terms of control flow structures the data we gathered showed an inter-
esting result. The usage of if constructs is almost identical to use of the other
control flows constructs. We were expecting a lot more usage of ifs than the
other constructs but that was not the case in this analysis. One hypothesis is
that since these are the most popular sites globally, most source code is done
with performance and space constraints and a significant part of those other
constructs are ternary conditional operators.

Regarding these criteria global values, finding an average of 80 control flow
constructs per site with only an analysis of a depth of one function call is quite
significant for our approach. Obviously, we must also take into consideration that
around 35% of sites had no construct at all. We can only assume that either no
logic was present on the client side, or that the event delegation approach was
being used.

Concerning function calls, we found an average of 111.96 function calls per
site, only on the subset of source code we were analyzing. This shows that there
is a significant amount of other source code that is not analyzed in our approach.
Moreover, considering those function calls might have other function calls and
so on, that is even more significant. Also important is that most JavaScript code
obfuscation techniques increase the number of function calls significantly to hide
the logic behind the code [11]. Thus, even an increase in our analysis to a depth
of 5 or more function calls might not retrieve interesting results, despite the
added computational load.

Table 2 depicts a summary of the data we gathered about our analysis of
variables on the source code. Element variables were not found in 89.2% of the
sites. This was something we were expecting since not only there are a lot of
different frameworks in JavaScript, but also there are several ways to shorten the
usage of document.getElementBy. For instance, by wrapping those calls inside
auxiliary functions:

function getId(id){ return document.getElementById(id); }

12 Carlos Eduardo Silva and José Creissac Campos

Nevertheless, about 10% the most popular sites use this construct unaltered to
get elements on their event handlers. Also interesting is that excluding the sites
with no variables of this type found, we got an average of 9 element variables
found.

In terms of synthesized variables, they were found in 35% of sites and exclud-
ing zeros we got an average of 43.11 variables found. It is interesting, however,
that the number of sites where these variables were found is quite lower than
what we were expecting, particularly when comparing with object and global
variables whose results were higher. Thus, most sites are not currently using
these variables, which means that they might be using functional references on
variables, which we are currently interpreting as object variables.

This conclusion is important because it means that we have to analyze each
object variable of our analysis to see if the type of that variable is or not a
function. Although this might lead to a lot more computation, this statistical
analysis showed us that it is important for us to do add this feature.

Both object and global variables were found in most sites. In fact, if we
exclude the 35% of sites where no control flow constructs were found, thus no
analysis of variables was performed, only around 10% of sites were analyzed and
got none of these variables. It is also interesting that the type of variable that
clearly got more matches in our analysis was the global.

Both control flow and hybrid variables were found in a significantly smaller
number than other types of variables excluding element variables. Since han-
dling these variables is quite more complex than the others, these results were
promising to our approach. Moreover, the hybrid variables were clearly the ones
that were identified less in our analysis.

In terms of event delegation we identified 30.6% of sites that were using
this approach for adding event handlers. It was also interesting and something
unexpected, that most of these sites also had click events that we were able to
identify. Thus, there are a significant number of sites that use both approaches
for adding event handlers.

6 Conclusions

This paper has presented two main contributions. First a tool for analyzing Web
applications, based only on the event handlers’ source code, was proposed. The
tool works by extracting information about the control flow of the application,
based on the types of variables identified. Second that approach was used on the
top thousand most popular Web sites globally. The analysis of those sites, in
terms of events and variables used in control flow constructs, has been presented
and discussed.

That analysis enabled us to retrieve useful information towards our goal of
developing an hybrid tool for the reverse engineering of Web applications. For
instance, an analysis of the two approaches of adding event handlers to a page
as discussed in Section 3 shows that the classic approach is widely used, since
we got results in approximately 78% of sites while the event delegation just

Characterizing the Control Logic of Web Applications’ User Interfaces 13

appeared on approximately 30% of sites. Therefore, a tool that reverse engineers
sites based on the classic approach would work on the majority of Websites.

Another important result is that the amount of if constructs used in the
source code we analyzed is similar to the amount of other control flow constructs.
This means that if our analysis focus only on ifs we would be analyzing only half
the constructs that affect the control flow of the application.

In terms of our variable’s analysis we infer that both control flow and hybrid
variables are used significantly less than other types of variables, thus the added
computational logic we would need to handle these variables might not compen-
sate. Furthermore, we were expecting more synthesized variables than what we
found, this mean we must further inspect object variables to identify if they are
functions.

Future work will comprise the usage of this data into developing a Reverse
Engineering tool that will be able to extract information on most sites. Moreover,
there were a few shortcomings in our analysis that could be improved such as
extending the element variables identification to other frameworks or techniques,
this could mean an analysis of the entire JavaScript files similar to the one we
are doing to identify event delegation approaches. Furthermore, trying to find
correlations between the several criteria could also yield interesting results.

Acknowledgments

This work was partly funded by project LATiCES (Ref. NORTE-07-0124-FEDER-
000062) financed by the North Portugal Regional Operational Programme (ON.2
— O Novo Norte), under the National Strategic Reference Framework (NSRF),
through the European Regional Development Fund (ERDF), and by national
funds, through the Portuguese funding agency, Fundacao para a Ciéncia e a
Tecnologia (FCT). Carlos Eduardo Silva is further funded by the Portuguese
Government through FCT, grant SFRH/BD/71136/2010.

References

1. Eldad Eilam. Reversing: Secrets of Reverse Engineering. Wiley, 2005.

2. Alexandru C. Telea, editor. Reverse Engineering — Recent Advances and Applica-
tions. InTech, 2012.

3. Tommi Mikkonen and Antero Taivalsaari. Web applications — spaghetti code for
the 21st century. Technical Report SMLI TR-2007-166, Sun Microsystems, 2007.

4. Carlos Eduardo Silva. Reverse engineering of rich internet applications. Master’s
thesis, Universidade do Minho, 2009.

5. J.C. Campos, J. Saraiva, C. Silva, and J.C. Silva. GUIsurfer: A reverse engineering
framework for user interface software. In Telea [2], chapter 2, pages 31-54.

6. Roy de Kleijn. Learning Selenium: Hands-on tutorials to create a robust and main-
tainable test automation framework. Leanpub, 2014.

7. Ali Mesbah, Arie van Deursen, and Stefan Lenselink. Crawling Ajax-based web
applications through dynamic analysis of user interface state changes. ACM Trans-
actions on the Web (TWEB), 6(1):3:1-3:30, 2012.

14

10.
11.

Carlos Eduardo Silva and José Creissac Campos

Ines Coimbra Morgado, Ana C. R. Paiva, Joao Pascoal Faria, and Rui Camacho.
GUI reverse engineering with machine learning. In 2012 First International Work-
shop on Realizing AI Synergies in Software Engineering (RAISE), pages 27-31.
IEEE, June 2012.

Carlos Eduardo Silva and José Creissac Campos. Combining static and dynamic
analysis for the reverse engineering of web applications. In P. Forbrig, P. Dewan,
M. Harrison, K. Luyten, C. Santoro, and S.D.J. Barbosa, editors, Proceedings of
the 5th ACM SIGCHI Symposium on Engineering Interactive Computing Systems
(EICS 2013), pages 107-112. ACM, 2013.

Jenkov Jakob. jQuery Compressed. Jenkov Aps, 2011.

Sebastian Schrittwieser and Stefan Katzenbeisser. Code obfuscation against static
and dynamic reverse engineering. In Proceedings of the 13th International Con-
ference on Information Hiding, IH’11, pages 270-284, Berlin, Heidelberg, 2011.
Springer-Verlag.

