GreenDroid:

A Tool for Analysing Power Consumption
in the Android Ecosystem

Marco Couto*T, Jacome Cunha**, Jodo Paulo Fernandes®, Rui Pereira*’, and Jodo Saraiva*'
* HASLab/INESC TEC
t Universidade do Minho, Portugal
1 Universidade Nova de Lisboa, Portugal
§ RELEASE, Universidade da Beira Interior, Portugal
{marcocouto,ruipereira,jas } @di.uminho.pt, jacome @fct.unl.pt, jpf@di.ubi.pt

Abstract—

This paper presents GreenDroid, a tool for monitoring and
analyzing power consumption for the Android ecosystem. This
tool instruments the source code of a giving Android application
and is able to estimate the power consumed when running it.
Moreover, it uses advanced classification algorithms to detect
abnormal power consumption and to relate them to fragments in
the source code. A set of graphical results are produced that help
software developers to identify abnormal power consumption in
their source code.

I. INTRODUCTION

While in the previous century computer manufacturers,
software engineers and software developers were mainly look-
ing for fast computer devices/software, this has drastically
changed with the recent advent and wide use of mobile devices,
like laptops, tablets and smartphones. In our mobile-device
age execution time is not the only concern. In fact, nowadays
one of the main computing bottlenecks is power consumption.
Indeed, mobile-device manufacturers and their users are as
concerned with the performance of their device as they are
with battery consumption/lifetime.

This growing awareness on energy efficiency is also chang-
ing the way programmers develop their software. As shown
by recent empirical studies [1], software developers are more
and more concerned on developing energy efficient software.
Unfortunately, developing energy-aware software is still a
difficult task. While the programming language community
has developed advanced and widely-used software tools, such
us debuggers and fault localization tools [2], memory profiler
tools [3], [4], testing tools [5], [6], [7], benchmark and runtime
monitoring frameworks [8], compiler optimizations [9], etc
there are no equivalent tools/frameworks to profile/optimize
power consumption.

This paper presents a software tool, named GreenDroid',
for monitoring and analyzing power consumption for the
Android ecosystem, one of the largest software ecosystems for
mobile devices. This tool uses a power consumption model

This work is financed by the FCT — Fundag@o para a Ciéncia e a Tec-
nologia (Portuguese Foundation for Science and Technology) within project
UID/EEA/50014/2013.

IThe tool is available at https://github.com/greensoftwarelab/GreenDroid.

to estimate the power consumed by an Android application.
Moreover, GreenDroid also relates the power consumed by
the application to fragments of the applications’ source code.
Thus, it can give software developers an indication by pointing
to the source code, where their applications may be causing
an abnormal power consumption.

To do this, GreenDroid combines several software engi-
neering techniques: it uses a traditional compiler front-end that
parses Android/Java programs and builds an Abstract Syntax
Tree (AST).

Then, it uses generalized tree traversal in the AST in order
to instrument a given application’s source code and test cases
with calls to the power model.

After that, the Android testing framework is used to execute
the instrumented test cases with the instrumented version of
the application, so that it collects information about power
consumed at runtime. Then, our tool uses source code classi-
fication algorithms, proposed in [10], in order to relate power
consumption to source code fragments.

Finally, the tool produces different graphical results relating
execution time and power consumption (bar diagrams), source
code methods/classes/packages and power consumption (sun-
burst diagrams), hardware devices and power consumption (pie
chart).

It is important to say that this is only a tool demo.
Here, we demonstrate how to combine several technologies
to build a tool that is capable of analyzing power consumption
of Android applications. The classification methodology, the
results obtained from analyzing concrete applications and the
discussion about them are presented in [10].

In the next sections we will explain how the tool was
developed, what technologies were used and how does the
tool works. We start by briefly presenting the Power Tutor
Model: a power consumption model for Android devices, and
the extension we performed so that it can be used as an API
by other applications. In Section III we describe GreenDroid’s
instrumentation front-end. Section IV presents the techniques
used to execute the instrumented application and to analyze
the collected power-related data. It also presents the different
graphical results produced by our tool when analyzing a

real Android application. After that, we present related work
(Section V) and our conclusions (Section VI).

II. ENERGY CONSUMPTION MODELS FOR ANDROID
APPLICATIONS

In a computer device, the hardware is what consumes
power. However, the software that operates the hardware can
have a significant impact on the power consumed, very much
like the driver that operates a car. Thus, in order to measure the
power consumed by a software system, we have to measure the
power consumed by the hardware executing it. There are two
main approaches to monitor power consumption: Firstly, by
using an external data acquisition (DAC) device that monitors
the power consumed by other electronic device. Secondly,
by using power consumption models that estimate power
consumption. The GreenDroid tool uses this second approach.

There are several power consumption models for the An-
droid ecosystem [11], [12], [13], [14], [15] that consider the
hardware components of Android devices (like for example,
CPU, Display, GPS, WiFi, etc), their characteristics (number
of cores), and possible states to provide a power model.
GreenDroid uses the power tutor model [15]: a state-of-the-art
power consumption model for smartphones [11].

This power consumption model associates to each hardware
component a list of different state variables. These variables
influence the operating mode that a particular component can
have, and, thus, the power consumed by it. Table I shows
an example of a power consumption model instance for a
particular smartphone.

Component Variable Range Power Coefficient
util 1100 | Dun: 434

CPU] Bui: 3.42
freq, freqn 0,1 n.a.
CPU_on 0—1 Bepu: 121.46
npackets, Rgata 0 — oo n.a.

O N Ruhunnel 1-54 ﬁcr

Wi-Fi Wi— Fi; 0.1 Bwi_rii 20
Wi — Fih, 0,1 BWi—Fi_h,: 720

Audio Audio_on 0,1 Baudio: 384.62

LCD brightness 0-255 Bor: 2.40
GPS_on 0,1 BGon: 429.55

GPS GPS_sT 0 Bao: 17355
data_rate 0— oo n.a.
downlink_queue 0 — oo n.a.

3G uplink_queue 0—oo | na.
3Gidie 0,1 Bsg_idie: 10
3GracH 0,1 Bsc_racH: 401
3GpcH 0,1 Bsc_pcH: 570

TABLE I: Power tutor instance for the HTC Dream smart-
phone, reprinted from [15]

Using this model, one can calculate the actual power
consumption of the device at a given time, applying the
following formula:

Power = (Bun X freq,, + fu X freq;) x util+

Bopu x CPU,, + By, X brightness + Baon X GPS,n+
Bast X GPS4l + Bwiri, x Wi-Fi; + BWi-Fi, x Wi-Fi,+ (1)
B3G;die X 3Gidie + B3Gpacy X 3Gracu+

Bscpon X 3GpcH

A. The Power Comsumption Model as an API

The Power Tutor Model is available as an Android stan-
dalone tool, which shows the current power consumed by
an Android device. To be able to reuse this power model
to monitor the power consumed by a known application, we
need to update its implementation into an API-based software,
so that its methods can be reused/called in the instrumented
source code.

Thus, we introduce a new Java class which implements the
methods to be used/called by other applications and respective
test cases. Those methods work as a link interface between the
power consumption model and the applications’ source code
which is to be monitored. The methods implemented in the
new Java class, called Estimator, and which are accessible to
other applications are:

traceMethod(): The implementation of the program
trace.
config(): Performs the initialization of the
Power Tutor Model.
start(): Starts the power monitoring thread.
stop(): Stops the power monitoring thread

and saves the results.

ITI. ENERGY CONSUMPTION INSTRUMENTATION

Having introduced an API for the power consumption
model, we describe now the instrumentation phase of the
GreenDroid tool: giving the source code of an Android ap-
plication and its test cases, it embeds calls to the model’s API
in both the source code and test cases. This phase is shown in
Figure 1. The idea is that when the (instrumented) test cases
are executed by the (instrumented) application, then power
consumption is monitored during that execution.

S

DEVELOPER

ANDROID APP
& TESTS
jinst SOURCE CODE

INSTRUMENTATION
TOOOL /

POWER MODEL
INSTANCE

CPU [4.3:3.4
LCD |24
WIFI | 121; 20

<XML>

Android
Manifest File
(App & Tests)

INSTRUMENTED

Instrumented SOURCE CODE

Android
Manifest File
(App & Tests)

Fig. 1: GreenDroid: Instrumentation of the code and tests of
an Android Application

A. Java front-end for source code transformation

Android applications are written in Java. Thus, in order
to automatically instrument the source code of an Android
application, we use the well-known Java front-end framework?:
it consists of a parser (produced by JavaCC? from a Java

Zhttps://code.google.com/p/javaparser.
3Java Compiler Compiler web page: https://javacc java.net.

grammar), the construction of the corresponding AST, and
generalized methods to traverse that tree. Next Java fragment
shows the GreenDroid invocation to the generated Java parser.

//creates an input stream for the file to be parsed
FileInputStream in = new FilelInputStream("test.java");
CompilationUnit cu;
try { //parse the file

cu = JavaParser.parse (in);
} finally { in.close(); }

As we can see, the parse method receives as argument an input
stream for a file containing java code, parses it and returns
an object from the class CompilationUnit. This object is the
root of the AST, and it consists of an entire class hierarchy
representing the tree.

Once created this class hierarchy, we have an object ori-
ented representation of the AST. Moreover, the Java front-end
also supports a simple form of generalized tree traversals [16],
making it easier to manipulate such AST as necessary in our
instrumentation phase. This is described next.

B. Source code and Test Instrumentation

The AST returned by the Java parser has to be updated with
calls to our APIL. Our goal is to relate power consumption with
the applications’ source code, therefore we have to instrument
fragments of the source code. Since programmers structure
their programs in methods, GreenDroid instruments source
code methods.

However, because methods may consume a tiny negligent
amount of power, that is not measurable by the power model,
we decide to monitor power consumption in the test cases
only. Source code methods are instrumented in order to trace
their execution. Then, our classification algorithms [10] relate
power consumption to method calls.

In order to achieve this transformation, we needed to
implement a method that traverses through the AST and
injects tracing instructions on the application methods (i.e.,
the traceMethod() method of our API). The following code
fragment shows how to use the provided generalized tree
traversal visitor to go through all the methods of an AST
representing a Java source code file:

CompilationUnit cu;
//parse one java file, like in the previous listing

new MethodChangerVisitor () .visit (cu, className);

The last instruction performs the traversal over some type
of nodes of the AST. The name of the class implies that
is a method declaration visitor. In order to enable method
declaration visiting, we needed to overwrite the visit method.
The next code fragment shows an implementation of that
method that injects calls to our API traceMethod:

public class MethodChangeVisitor extends VoidVisitorAdapter ({

@Override
public void visit (MethodDeclaration n, Object arg)
String cName = (String)arg;

Expression className = new StringLiteralExpr (cName) ;
Expression method = new StringLiteralExpr (n.getName());

MethodCallExpr mcB = new MethodCallExpr () ;
mcB.setName ("Estimator.traceMethod") ;
ASTHelper.addArgument (mcB, className) ;
ASTHelper.addArgument (mcB, method);

n.getBody () .getStmts () .add (0, mcB);
}

}

This code injection allows to instrument the application so
that it keeps trace of the called methods. Next, we explain how
the source code of the tests is instrumented in order to monitor
the power consumed.

1) Test Cases Instrumentation: In order to use the instru-
mented application and the developed Estimator power class,
the application needs to call the start and stop methods be-
fore/after every test case is executed. This will enable a power
consumption sampling during the execution of a test. Both
jUnit and Android testing framework allow test developers to
write a setUp and a tearDown method. These two methods
are executed after a test case (test method) starts and after it
ends, respectively. All test cases belonging to the same test
suite (test class) will first call setUp, then execute and at the
end call tearDown

Thus GreenDroid needs to instrument those methods (or
create them if they do not exist) with calls to the API methods,
like the following example:

public class TestA extends
ActivityInstrumentationTestCase2<ActivityA>({

public void setUp() {

Estimator.config(
"package", android.os.Process.myUid(), this.getContext ());

Estimator.start ();

}

public void tearDown () {Estimator.stop(); ... }

This approach ensures that every time a test begins, the
start method is called. This method starts a thread to collect in-
formation from the operating system and then apply the power
consumption model to estimate the power to be consumed. The
config method is necessary, since the power monitor needs to
know the UID and the context of the application being tested,
for each test. The tearDown method is responsible for stopping
the thread and saving the results.

To perform this instrumentation, we follow the same strat-
egy as in the source code instrumentation. First, we define a
new type of visitor and implement a visit method, and then
we call it to perform the AST traversal. In this specific case,
we need the visit method to first check if there is a setUp
and tearDown method. If that is true, then it injects the
instructions, as shown in the next code fragment:

public class TestChangerVisitor extends VoidVisitorAdapter({
@Override
public void visit (MethodDeclaration n, Object arg) {
Definitions defs = (Definitios arg);
Expression className =
new StringLiteralExpr (cDef.getDescriptor());
if (n.getName () .equals ("setUp")) {
defs.setSetUp (true);
MethodCallExpr mStt = new MethodCallExpr();
mStt.setName ("StaticEstimator.start");

MethodCallExpr mCon = new MethodCallExpr () ;

mCon.setName ("StaticEstimator.config");

n.getBody () .getStmts () .add (0, new ExpressionStmt (mCon)) ;
n.getBody () .getStmts () .add (1, new ExpressionStmt (mStt));

}else if (n.getName.equals ("tearDown")){ ... }
.
}
If at the end of the visiting the AST we have not found
a setUp and/or a tearDown method, we need to create new
methods and inject them directly in the class (test suite). The
next code fragment shows how this operation is performed:
CompilationUnit cu = JavaParser.parse (in);
new TestChangerVisitor () .visit (cu, defs);
if (!defs.hasSetUp()){ //create the setUp method
MethodDeclaration newSetUp = new MethodDeclaration();
newSetUp.setName ("setUp") ;
newSetUp.setModifiers (ModifierSet .PUBLIC) ;

newSetUp.setType (new VoidType());
newSetUp.setBody (new BlockStmt ()) ;

//add the setUp method

MethodCallExpr mcStart = new MethodCallExpr();
mcStart.setName ("StaticEstimator.start");

MethodCallExpr mcConfig = new MethodCallExpr () ;
mcConfig.setName ("StaticEstimator.config");

ArraylList<Statement> body = new ArrayList<Statement>();
body.add (new ExpressionStmt (mcConfig));
body.add (new ExpressionStmt (mcStart));

newSetUp.getBody () .setStmts (body) ;
cu.getTypes () .get (0) .getMembers () .add (newSetUp); }
if (!defs.hasTearDown()){ ... }

IV. ENERGY CONSUMPTION: MONITORING AND
ANALYSIS

After both the application source code and test cases are
instrumented, GreenDroid uses the Android Testing framework
to execute the tests so that it monitors and analyzes the Power
consumption of the underlying application. Figure 2 shows the
architecture of this phase of our tool.

o o,
THE APP \ \
(INSTRUMENTED) LY
1
p- - o
INSTRUMENTED > > @’
SOURCE CODE | || ¥
T Commtn

TESTING
FRAMEWORK

X AAAA
=V A

Fig. 2: GreenDroid: Power monitoring and analysis

A. Framework for Test Execution

In order to execute the instrumented tests of the Android
application, GreenDroid uses the Android testing framework*
which is based on jUnit.

Before running the application on a specific Android de-
vice, first GreenDroid creates the files for both projects, using

4Android testing web page: https://developer.android.com/tools/testing/
index.html.

the android test tools, and installs them. This is done by the
following command lines:

#Generate the installation files for the project and test project
$ android update project -p "path/to/project" -n Green

$ android update test-project —-p "path/to/test/project"

--main "path/to/project"

$ ant -f "path/to/test/project/build.xml" clean

$ ant -f "path/to/test/project/build.xml" debug

#Install previous generated files in the device
$ adb install -r "path/to/project/bin/Green-debug.apk"
$ adb install -r "path/to/test/project/bin/GreenTest-debug.apk"

The tests can now be executed using the Android testing
framework. The following example shows how to run previ-
ously installed tests in the device by invoking an android tool:

Sadb shell am instrument

"test.package/com. zutubi.android. junitreport.JUnitReportTestRunner;

Since the instrumented tests run on the instrumented appli-
cation, both the program trace and power consumption metrics
are generated. With this information we produce different
graphical views on those results so that software developers
can easily identify abnormal consumption in their source code.

B. GreenDroid: Power Consumption Graphics

To help software developers in analyzing the power con-
sumption of their applications, GreenDroid produces three
different graphical results relating execution time and power
consumption, hardware devices and power consumption, and
source code methods/classes/packages and power consump-
tion.

a) Execution Time and Power Consumption:: Green-
Droid generates a bar diagram where per executed test it
displays the total execution time of the test, and the power
consumed per second. Figure 3 shows an example produced
by executing the twenty test cases available for an open source
Android application (OxBenchmark application).

&00
300
400

| === COnSUMpLion
per second
(i fs)
== Execution
Tirme (5]

200

100

12 3 4 56 7 8 9 101112 13 14 15 16 17 18 19 20
#Test

Fig. 3: Consumption per second versus Execution time per test
case.

This diagram shows which test cases have higher power
consumption per second, and thus, indicating an abnormal
power consumption. For example, in Figure 3 we can see that
two of the fastest test cases are the ones consuming more
power per second. This goes against the usual intuition that
faster is greener!

b) Hardware Devices and Power Consumption:: Some
hardware devices, like for example GPS and Bluetooth, are
usually very power consuming. In order to analyze power
consumption of an Android application it is very useful to
identify which hardware device is responsible for it. Thus,
GreenDroid generates a pie chart (as shown in Figure 4), that
represents the total power consumed per hardware component.

Fig. 4: Power Consumption per Hardware Device.

c) Source Code and Power Consumption:: In [10] we
have presented a methodology to classify program methods
according to power consumption. We defined a simpler ver-
sion of the spectrum-based fault localization [17] technique
to classify methods as green/yellow/red classification, where
green is a power efficient method and red a power inefficient
one. A method classified as yellow means that it has been used
in both power efficient and inefficient program executions.
GreenDroid produces a sunburst diagram where the methods
of the monitored application are shown according to this
classification. Figure 5 shows the sunburst diagram resulting
of analyzing the OxBenchmark application.

\\\\\\\\\\\‘{\ ﬁl]
A

S !
. 2
E.. package .

3

’} class .

//////" /l @Q \\ method

i \
v ////fu N

Fig. 5: Sunburst diagram (and how to interpret it)

The outermost circle represents the methods, and they are
separated by classes, which are separated by packages. The
classification of classes and packages depends on the classi-
fication made to the methods included in them. This diagram
also gives information about the hardware device responsible
for the power consumption (by pointing to a method/class), and
to its source code. Thus, a software developer can immediately
look at the source code of red methods in order to optimize
them in terms of power.

V. RELATED WORK

In the past few years, research on the power consumption
of smartphones has been increasing. Several research works
indicate that power consumption modeling and energy-aware
software are becoming important and gaining much interest.

It is possible to find different tools designed to estimate the
required power for a smartphone application. The majority of
these tools, however, focus on Android based smartphones,
mostly because it is an open source OS> and statistics reveal
that the sale of Android devices are much higher than any other
smartphone®. In fact, in the second quarter of 2013 almost 80%
of the market share belonged to Android devices.

As previously mentioned and described, Power Tutor [15]
was our starting point, as it was for many other research works.
For example, DevScope [14] is a tool which creates a power
consumption model relating the different hardware components
of a device to its different states and consequent power
consumption values. This model is used by AppScope [13]
to estimate the power consumption of an application, and
by UserScope [18] to create a user-specific profiler for a
smartphone. However, instead of an independent Android
application to create the power consumption model for these
tools, they use a Linux kernel module. Additionally, these tools
are neither an API library, nor are they open-source.

ADEL (Automatic Detector of Energy Leaks) [19] uses
an external power consumption meter to detect unnecessary
network communication by tracing the indirect use of received
data. However this, and other examples of works based on
power consumption models [12], [20], [21], are not as powerful
as the previously mentioned ones. SEMO [22] is a power
monitoring system and application for Android smartphones
which profiles application power usage based only on the
battery discharge level, and unfortunately produces less reliable
results due to this. JouleTrack [23], a web based tool for
software energy profiling, which allowed developers to upload
their code to be executed in a specific machine, where the
average energy consumption by processor instruction was
already known. This tool was discontinued in 2006.

More recent works are also focused on defining reference
models with metrics and criteria for green computing and
energy sustainable software engineering. The GREENSOFT
model [24] proposes a definition of “Green and Sustainable
Software” and “Green and Sustainable Software Engineering”,
and it also defines a model that helps software developers
and users in creating, maintaining, and using software in a
more sustainable way, providing metrics and criteria for mea-
suring software quality and classifying a software product’s
sustainability. In a similar work, it was developed a new
language, named Eco [25], that is a minimal extension to
Java, and enables the possibility to develop a program that
adaptively adjusts its own behaviors to avoid leading to battery
drain and/or CPU overheating. This new language is based
on a novel energy-aware and temperature-aware programming
model that, like the previous model, is focused on improving
software sustainability.

The closest work to our paper is Hao” and colleagues’ work
with eCalc [26]. They also estimate Android application’s
energy through the execution of software artifacts with a series
of test cases, alongside previously created power consumption

SAn Android overview can be found at http://www.openhandsetalliance.
com/android_overview.html.

SInformation about global smartphone shipments can be found at
http://techcrunch.com/2013/08/07/android- nears- 80- market- share-in-global-
smartphone- shipments-as-ios-and-blackberry- share-slides-per-idc.

models/CPU profiler. Unfortunately, these models only define
the cost functions at the instruction level, and the application
itself is not publicly available. Additionally, while eCalc only
predicts the energy value and returns that same value, we take
this a step further. We visually present our estimated values
to the developer, showing which are the most critical methods
in their code and classifying this information in an easy to
understand format.

This paper builds on our previous work [10] where we
presented a simple method classification algorithm: a method
is considered as having an abnormal power consumption
whenever it is called in a program execution which consumes
more power than the average of all monitored runs of that
program. As a consequence, that approach compares power of
the different executions of the same application.

VI. CONCLUSIONS

This paper is a tool demo of GreenDroid: a tool to analyze
the power consumption of Android applications and detect
possible power leaks in the source code. The tool focuses
on providing to the developers several representations of the
analysis made to the energy efficiency of Android applications.
In fact, we have already tested this tool with 6 different
Android open-source applications. The results are presented
and discussed in our previous works [10], and they indicate that
it is possible to locate which parts of the code may be leading
to energy inefficiency. We are focused on testing our tool with
other applications to check if it is still able to present the same
kind of results, and we still want to validate our classification
method to test its consistency and accuracy. Moreover, we also
want to extend this tool to be able to analyze other types of
applications, and not only Android-based ones.

REFERENCES

[11 G. Pinto, F. Castor, and Y. D. Liu, “Mining questions about software
energy consumption,” in Proc. of the 11th Working Conf. on Mining
Software Repositories. NY, USA: ACM, 2014, pp. 22-31.

[2] J. Campos, A. Riboira, A. Perez, and R. Abreu, “Gzoltar: an eclipse
plug-in for testing and debugging,” in IEEE/ACM Int. Conf. on Auto-
mated Software Engineering, ASE’12, 2012, pp. 378-381.

[3] T. Ball and J. R. Larus, “Optimally profiling and tracing programs,”
ACM Trans. Program. Lang. Syst., vol. 16, no. 4, pp. 1319-1360, Jul.
1994.

[4] C. Runciman and N. Réjemo, “Heap Profiling for Space Efficiency,” in
2nd Int. School on Advanced Functional Programming, vol. 1129. sv,
1996, pp. 159-183.

[5] K. Claessen and J. Hughes, “Quickcheck: a lightweight tool for random
testing of haskell programs,” in Proc. of the 5th ACM SIGPLAN Int.
Conf. on Functional Programming, NY, USA, 2000, pp. 268-279.

[6] H. Wu and J. Gray, “Automated generation of testing tools for domain-
specific languages,” in Proc. of the 20th IEEE/ACM Int. Conf. on
Automated Software Engineering, NY, USA, 2005, pp. 436-439.

[71 P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated
random testing,” in Proc. of the 2005 ACM SIGPLAN Conf. on Prog.
Lang. Design and Implementation, ser. PLDI 05, NY, USA, 2005, pp.
213-223.

[81 S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z.
Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanovi¢, T. VanDrunen, D. von Dincklage, and
B. Wiedermann, “The dacapo benchmarks: Java benchmarking devel-
opment and analysis,” SIGPLAN Not., vol. 41, no. 10, pp. 169-190,
Oct. 2006.

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

D. A. Padua and M. J. Wolfe, “Advanced compiler optimizations for
supercomputers,” Commun. ACM, vol. 29, no. 12, pp. 1184-1201, Dec.
1986.

M. Couto, T. Carcido, J. Cunha, J. P. Fernandes, and J. Saraiva,
“Detecting anomalous energy consumption in android applications,” in
Programming Languages, ser. LNCS, F. Quintao Pereira, Ed., vol. 8771.
Springer, 2014, pp. 77-91.

M. Dong and L. Zhong, “Self-constructive high-rate system energy
modeling for battery-powered mobile systems,” in Proc. of the 9th Int.
Conf. on Mobile Systems, Applications, and Services (MobiSys 2011),
Bethesda, MD, USA, 2011, 2011.

M. Kj@rgaard and H. Blunck, “Unsupervised power profiling for mobile
devices,” in Mobile and Ubiquitous Systems: Computing, Networking,
and Services, ser. LNCS SITE, A. Puiatti and T. Gu, Eds., vol. 104.
Springer, 2012, pp. 138-149.

C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, “Appscope: Applica-
tion energy metering framework for android smartphone using kernel
activity monitoring.” pp. 387-400, 2012.

W. Jung, C. Kang, C. Yoon, D. Kim, and H. Cha, “Devscope: A
nonintrusive and online power analysis tool for smartphone hardware
components,” in Proc. of the 8th IEEE/ACM/IFIP Int. Conf. on Hard-
ware/Software Codesign and System Synthesis. NY, USA: ACM, 2012,
pp. 353-362.

L. Zhang, B. Tiwana, R. Dick, Z. Qian, Z. Mao, Z. Wang, and L. Yang,
“Accurate online power estimation and automatic battery behavior based
power model generation for smartphones,” in Proc. of Int. Conf. on
Hardware/Software Codesign and System Synthesis (CODES+ISSS),
Oct 2010, pp. 105-114.

J. Visser and J. Saraiva, “Tutorial on strategic programming across
programming paradigms,” in 8th Brazilian Symposium on Programming
Languages (SBLP), 2004.

R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund, “Spectrum-based
multiple fault localization,” in Proc. of the 2009 IEEE/ACM Int. Conf.
on Automated Software Engineering, ser. ASE "09. Washington, USA:
IEEE Computer Society, 2009, pp. 88-99.

W. Jung, K. Kim, and H. Cha, “Userscope: A fine-grained framework
for collecting energy-related smartphone user contexts,” in Proc. of the
2013 Int. Conf. on Parallel and Distributed Systems. Washington, DC,
USA: IEEE Computer Society, 2013, pp. 158-165.

L. Zhang, M. S. Gordon, R. P. Dick, Z. M. Mao, P. Dinda, and
L. Yang, “Adel: An automatic detector of energy leaks for smartphone
applications,” in Proc. of the 8th IEEE/ACM/IFIP Int. Conf. on Hard-
ware/Software Codesign and System Synthesis. New York, NY, USA:
ACM, 2012, pp. 363-372.

D. Kim, W. Jung, and H. Cha, “Runtime power estimation of mobile
amoled displays,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2013, March 2013, pp. 61-64.

A. Carroll and G. Heiser, “An analysis of power consumption in a
smartphone,” in 2010 USENIX Annual Technical Conference, Boston,
USA, June 23-25, 2010.

F. Ding, F. Xia, W. Zhang, X. Zhao, and C. Ma, “Monitoring energy
consumption of smartphones,” CoRR, 2012.

A. Sinha and A. P. Chandrakasan, “Jouletrack: A web based tool
for software energy profiling,” in Proc. of the 38th Annual Design
Automation Conference. ACM, 2001.

S. Naumann, M. Dick, E. Kern, and T. Johann, “The greensoft model: A
reference model for green and sustainable software and its engineering,”
Sustainable Computing: Informatics and Systems, 2011.

H. S. Zhu, C. Lin, and Y. D. Liu, “A programming model for sustainable
software,” in Proceedings of the 37th International Conference on
Software Engineering, 2015, to appear.

S. Hao, D. Li, W. G. J. Halfond, and R. Govindan, “Estimating
android applications’ CPU energy usage via bytecode profiling,” in First
International Workshop on Green and Sustainable Software, GREENS
2012, Zurich, Switzerland, 2012.

